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Abstract

The ability of growth factors and their cognate receptors to induce mammary epithelial
proliferation and differentiation is dependent on their ability to activate a number of specific
signal transduction pathways. Aberrant expression of specific receptor tyrosine kinases
(RTKs) has been implicated in the genesis of a significant proportion of sporadic human
breast cancers. Indeed, mammary epithelial expression of activated RTKs such as
ErbB2/neu in transgenic mice has resulted in the efficient induction of metastatic mammary
tumours. Although it is clear from these studies that activation these growth factor receptor
signalling cascades are directly involved in mammary tumour progression, the precise
interaction of each of these signalling pathways in mammary tumourigenesis and metastasis
remains to be elucidated. The present review focuses on the role of several specific
signalling pathways that have been implicated as important components in RTK-mediated
signal transduction. In particular, it focuses on two well characterized transgenic breast
cancer models that carry the polyomavirus middle T (PyV mT) and neu oncogenes.
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Introduction
The ability of mammary epithelial cells to respond to
growth factor is dependent on specific growth factor
receptors that are coupled to a number of intracellular sig-
nalling pathways. Of relevance to this is that the develop-
ment, maturation and differentiation of the mammary
epithelial cell are dependent on the interplay of hormones
and growth factors. The development of the mammary
gland is thought to involve a series of defined steps that
consist of cell proliferation, differentiation and pro-
grammed cell death (apoptosis). After of the formation of
the primary mammary tree from its embryonic rudiment,
there is a rapid expansion of ductal outgrowth through the
mammary fat pad, which is accompanied by the formation
of mammary terminal end-buds. By 10 weeks of age the

mammary epithelium has reached the end of the fat pad
and ceases further ductal outgrowth.

After pregnancy, a further rapid expansion of the lobu-
loalveolar epithelium occurs, which leads to induction of
terminal differentiation and lactation at birth. After the pups
have been weaned from the lactating mother, the mammary
epithelium undergoes a rapid involution through the induc-
tion of programmed cell death (apoptosis). The balance of
soluble growth factors, hormones and cell–substratum
interactions controls the regulation of this cycle of prolifera-
tion, differentiation and apoptosis. Of particular relevance
to these processes is the activity of the tyrosine kinase
class of receptors that are thought play a key role in trans-
ducing these various extracellular signals. Elevated activity
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of certain tyrosine kinases can result in aberrant cell prolif-
eration and ultimately cell transformation.

The present review examines the role of certain tyrosine
kinases that have been implicated in mammary tumour
progression.

Involvement of the Neu receptor tyrosine
kinase in mammary tumourigenesis
The progression of the primary mammary epithelial cell to
a malignant phenotype involves multiple genetic events,
including the activation of dominant activating oncogenes
and inactivation of specific tumour suppressor genes. Of
relevance to the present review is the observation that the
activation of certain RTKs is implicated in the genesis of
human breast cancer. For example, amplification and over-
expression of neu/erbB2 proto-oncogene is observed in
20–30% human breast cancer, and is inversely correlated
with the survival of the patient [1,2••,3]. Although amplifi-
cation and elevated expression of neu has been estab-
lished as an important event in sporadic breast cancer,
comparatively little is known concerning the molecular
mechanism by which activation of neu influences
mammary tumourigenesis and metastasis.

Direct evidence in support of a role for neu in mammary
tumourigenesis is derived from observations made in trans-
genic mice that express oncogenic forms of the neu onco-
gene under the transcriptional control of mouse mammary
tumour virus (MMTV) enhancer. Mammary epithelial spe-
cific expression of activated neu results in the rapid induc-
tion of metastatic multifocal mammary tumours [4,5,6••,7•].
Although mammary epithelial expression of the activated
neu oncogene is tumourigenic, no comparable activating
mutations have been detected in the transmembrane
domain of human breast cancer that overexpresses ErbB2
[8]. Thus, the primary mechanism by which ErbB2 induces
mammary tumourigenesis in human breast cancer is
through overexpression of the wild-type receptor.

The oncogenic potential of the wild-type neu proto-onco-
gene in the mammary epithelium was tested in transgenic
mice through MMTV directed expression of the wild-type
neu cDNA [9]. These animals develop focal mammary
tumours in 50% of female mice by age 205 days, with fre-
quent metastases in the lung. Further genetic and bio-
chemical analyses of these strains revealed that, in
addition to elevated expression of tyrosine phosphorylated
Neu, elevated levels of tyrosine phosphorylated ErbB3
were consistently observed [7•]. It is interesting to note
that ErbB3 is the epidermal growth factor receptor family
member that is primarily responsible for recruiting the
phosphatidyl inositol-3 kinase (PI-3K) signalling molecule
to Neu [10•,11•]. Given the importance of this signalling
pathway in providing cell survival signals [12–15], it is
conceivable that elevated expression of ErbB3 in these

mammary tumours is required to provide the necessary
antiapoptotic signals.

Another potent tyrosine kinase that is implicated in murine
mammary tumourigenesis and metastasis is that associ-
ated with PyV mT antigen [16]. Mammary epithelial
expression of PyV mT results in the rapid induction of mul-
tifocal metastatic mammary tumours. Because these
tumours occur early in mammary gland development and
involve the entire mammary gland, expression of PyV mT is
clearly sufficient for transformation of the primary
mammary epithelium. The potent transforming activity of
the PyV mT and neu oncogenes in the mammary epithe-
lium of these transgenic strains is due to their capacity to
associate with and activate a number of common sig-
nalling molecules. After activation of the associated tyro-
sine kinase activities of Neu and PyV mT, specific
phosphotyrosine residues within these oncogenes provide
specific binding sites for a variety of signalling molecules
that harbour either SH2 or phosphotyrosine binding/inter-
acting domains [17].

Activation of Src family kinases in mammary
tumour progression
A class of signalling molecules that plays an important role
in mammary tumourigenesis and metastasis is the Src
family of tyrosine kinases. Both activated Neu and PyV mT
form stable complexes with c-Src and c-Yes, resulting in
an increase in the specific activity of these Src family
kinases [17–21,22•,23–26,27•]. The importance of c-Src
in PyV mT-mediated tumour progression has been demon-
strated by crossing the MMTV/PyV mT strains to c-src-
and c-yes-deficient mice [28••]. The results of that study
demonstrated that c-Src was required for efficient
mammary tumourigenesis and metastasis, whereas c-Yes
function was dispensable for induction of mammary
tumours. The difference in oncogenic potential between
these crosses was not due to levels of tyrosine phospho-
rylated PyV mT, because the mammary tissue derived from
each of the respective crosses had equal levels of tyrosine
phosphorylated PyV mT. Although these observations
argue that activation of c-Src function is a critical event in
mammary tumour progression, mammary epithelial expres-
sion of an activated c-src oncogene in transgenic mice
resulted in the induction of mammary epithelial hyper-
plasias rather than the multifocal mammary tumours
observed in the PyV mT strains [29]. Taken together,
these observations argue that, although c-Src function is
necessary for mammary tumour progression, its activation
is not sufficient to induce the rapid tumour progression
that is observed in the PyV mT transgenic strains.

Although it is clear that c-Src function is required for
PyV mT-mediated tumourigenesis, its requirement for
tumourigenesis in the Neu-induced model remains to be
firmly established. Like PyV mT transformed tumour cells,
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however, c-Src derived from the Neu-induced mammary
tumour cells is complexed with a 89-kDa phosphotyrosine
protein that appears to be specific to the mammary epithe-
lium [24]. These observations suggest that activation of
c-Src by either PyV mT or activated Neu may result in
recruitment of similar sets of mammary specific substrates.
Future crosses of the activated Neu strains with src-defi-
cient strains should allow these issues to be addressed.

Activation of the phosphatidyl inositol-3
kinase in mammary tumour progression
Another class of SH2 signalling molecules that are known
to be associated and activated by both PyV mT and acti-
vated Neu oncogenes is PI-3K. Association of PI-3K with
PyV mT occurs through its binding to phosphotyrosine
residues (Tyr 315/322) within the PyV mT coding
sequences [30]. In contrast, recruitment of the PI-3K by
Neu occurs through the recruitment to ErbB3 [10•,11•].
Activation of PI-3K and consequent production of phospho-
inotide-3 lipids stimulates a number of plekstrin homology-
containing serine kinases, including PDK1 and integrin-
linked kinase [31–33]. These activated serine kinases in
turn activate the Akt/PKB class of serine kinases, which can
stimulate a number of antiapoptotic signalling molecules
such as nuclear factor-κB [34–36]. In addition, activation of
Akt can inhibit proapoptotic proteins such as Bad, Forkhead
transcription factors and caspase 9 [12,37,38].

The importance of the PI-3K signalling pathway has been
highlighted by several recent studies. Mammary epithelial
expression of mutant PyV mT decoupled from the PI-3K
pathway results in the induction of extensive mammary
epithelial hyperplasias [15]. Consistent with the impor-
tance of the PI-3K signalling pathway in promoting cell
survival, these mammary epithelial hyperplasias were
highly apoptotic. Conversely, inducible expression of a
dominant-negative inhibitor of PI-3K in mammary tumour
cells expressing wild-type PyV mT was capable of effi-
ciently inducing apoptotic cell death. Despite the initial
induction of global mammary epithelial hyperplasias, focal
mammary tumours eventually developed in these
mammary strains. Mammary tumour progression in these
mutant PyV mT strains was further correlated with a dra-
matic upregulation of the ErbB2 and ErbB3 RTKs. It is
conceivable that elevated levels of ErbB2/ErbB3 can indi-
rectly recruit the PI-3K, and thus compensate for the
inability of the mutant PyV mT to associate and activate
the PI-3K.

Another interesting phenotype of tumours that are induced
by this mutant PyV mT is that they are poorly metastatic by
comparison with tumours that express the wild-type
PyV mT oncogene [39]. The observed defect in the
metastatic potential of mammary tumours induced by this
mutant form of PyV mT was further correlated with a
defect in neovascularization [39]. Taken together, these

observations argue that activation of the PI-3K PyV mT
may play a critical role in promoting metastatic invasion.

Although activation of Neu is not directly associated with
activation of the PI-3K signalling pathway, it can het-
erodimerize with ErbB3, which possesses six PI-3K
binding sites. Indeed, it is thought that recruitment of the
PI-3K signalling pathway by members of the epidermal
growth factor receptor family is through heterodimerization
with the ErbB3 RTK [10•,11•]. Given the importance of
ErbB3 in recruiting the PI-3K signalling molecule, elevated
expression of ErbB3 may be an important step in Neu-
induced mammary tumourigenesis. Consistent with this
view, elevated expression of ErbB3 is observed during
mammary tumour progression in transgenic mice that
express Neu in the mammary epithelium [7•]. Interestingly,
the observed upregulation of ErbB3 protein in the Neu-
induced mammary tumours does not occur at the level of
erbB3 transcript, because both tumour and adjacent
normal mammary tissue express comparable levels of
erbB3 transcript [7•]. The precise molecular mechanism
by which elevated levels of ErbB3 protein is achieved
during mammary tumour progression remains to be eluci-
dated, however. Consistent with these transgenic mouse
studies, a large proportion of ErbB2-expressing human
breast cancers exhibit elevated levels of erbB3 transcripts
[7•]. Thus, coexpression of ErbB2 and ErbB3 RTKs
appears to be common event in tumour progression in
both humans and these transgenic mouse models.

Activation of the Ras signalling pathway in
mammary tumour progression
Other cytoplasmic proteins such as Shc and Grb2 have
been demonstrated to form specific complexes with both
activated forms of Neu and PyV mT [40–42,43•,44–47,
48•,49,50]. The association of Grb2 and Shc with either
of these activated oncoproteins is known to play a central
role in stimulation of Ras signalling. For example, tyrosine
phosphorylation of Shc either by the PyV mT complex or
by Neu results in an association with Grb2. In turn, Grb2
stimulates a guanine nucleotide exchange protein, SOS,
to convert Ras from the inactive GDP-bound state to the
active GTP-bound form [45,51–56]. In contrast to
PyV mT, which signals to Ras through its association with
Shc, Neu can activate Ras through Grb2, Shc and several
other unidentified adapter proteins [46,57]. Upon Ras
activation, it can associate with a number of downstream
effector molecules including PI-3K, Raf serine kinase,
GAP and Ral [58–65].

Direct evidence in support of a role for Ras in mammary
tumour progression stems from observations made with
transgenic mice that express an oncogenic version of Ras
under transcriptional control of the MMTV promoter.
Mammary epithelial-specific expression of v-Ha-ras
resulted in the induction of focal mammary tumours in



female transgene carriers [66••]. Because these tumours
were focal in origin and arose after a long latency period,
expression of activated ras is not sufficient to induce
mammary tumours, but rather requires additional genetic
events. Although insufficient for tumour induction alone, a
growing body of evidence suggests that activation of the
Ras signalling pathway is critical for the progression to the
tumourigneic phenotype. For example, mammary-specific
expression of a mutant PyV mT oncogene decoupled from
the Shc/Grb2 signalling molecules results in the induction
of widespread mammary epithelial hyperplasias [15]. In
contrast to the rapid tumour progression observed in the
wild-type PyV mT transgenic mice, focal mammary
tumours arise in the mutant PyV mT strains after a long
latency period. Interestingly, a certain proportion of
tumours that arise in these mutant PyV mT strains exhibit
reversion of Shc-binding site mutation [15]. The strong
biological selection for retention of Shc-binding site sug-
gests that retention of this signalling pathway is critical for
tumour progression.

Further evidence in support of the importance of the
Shc–Grb2–Ras signalling axis in mammary tumour pro-
gression stems from observations made by interbreeding
the PyV mT transgenic strains with the Grb2 knockout
mice. Because homozygous deletion of Grb2 is not com-
patible with embryonic viability [67••], it was not feasible to
ascertain whether Grb2 function was absolutely required
for PyV mT tumour progression. The results of those experi-
ments, however, revealed that a reduction to one copy of
Grb2 was sufficient to interfere with tumour progression
[67••]. Conversely, ectopic expression of Grb2 or Shc in
the mammary epithelium of transgenic mice cooperates
with mutant PyV mT decoupled from the Shc adapter
protein to accelerate mammary tumour progression [68].
Taken together, these observations argue that dosage of
these key adapter proteins that couple to Ras can have
profound effects on mammary tumour progression.

Although studies with PyV mT transgenic mice have
clearly demonstrated the importance of PI-3K, c-Src and
Shc/Grb2/Ras signalling pathways in mammary tumouri-
genesis and metastasis [15,28••], the role of these various
signalling molecules in Neu-induced tumourigenesis is
less well understood. In contrast to the well-defined sig-
nalling molecules emanating from the PyV mT oncogene,
the binding sites for only a subset of signalling molecules
that couple to Neu have been identified. These include
Grb2 and Shc molecules, which bind tyrosine residues
1144 and 1227 in Neu [43•]. In addition to these sig-
nalling molecules that positively activate the Ras signalling
pathway, an autophosphorylation site that negatively regu-
lates Neu-mediated signal transduction has also been
described [43•]. The identity of this signalling molecule
remains to be elucidated, however. Thus, unlike PyV mT,
the signalling molecules that modulate the Ras signalling

pathway are probably more complex in Neu-mediated
tumourigenesis. Future studies to investigate the role of
Neu-coupled signalling molecules in mammary tumour
progression should provide important insight into the mol-
ecular basis of breast cancer.

Conclusion
The studies outlined above strongly support the notion that
tyrosine kinase-mediated signalling in the mammary epithe-
lium involves the concerted activation of a number of sig-
nalling pathways that can cooperate to lead to malignant
transformation of the mammary epithelial cell. Future strate-
gies to interfere with the ability of tyrosine kinases to trans-
form cells will independently target these coupled
signalling pathways. The development of novel inhibitors of
these signalling molecules will hopefully provide effective
treatment for this prevalent, but poorly understood disease.
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