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Abstract: To effectively predict the thermal conductivity and viscosity of alumina (Al2O3)-water
nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly,
using a two-step method, four Al2O3-water nanofluids were prepared respectively by dispersing
different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average
diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were
analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial
basis function (RBF) neural network was constructed to predict the thermal conductivity and
viscosity of Al2O3-water nanofluids as a function of nanoparticle volume fraction and temperature.
The experimental results showed that both nanoparticle volume fraction and temperature could
enhance the thermal conductivity of Al2O3-water nanofluids. However, the viscosity only depended
strongly on Al2O3 nanoparticle volume fraction and was increased slightly by changing temperature.
In addition, the comparative analysis revealed that the RBF neural network had an excellent ability
to predict the thermal conductivity and viscosity of Al2O3-water nanofluids with the mean absolute
percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an
effective way to predict the thermophysical properties of nanofluids with limited experimental data.
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1. Introduction

Considering the higher thermal conductivity of many solid materials, including Cu, CuO, TiO2,
ZnO, Fe3O4, MgO, Al2O3 and graphite, dispersing solid particles in the conventional coolants (such as
water, oil, ethylene glycol, refrigerant, etc.) is one of the most efficient ways to enhance the heat transfer
process [1]. However, a large number of experimental results indicated that the lower suspension
stability of large particles seriously limited the practical application of the traditional liquid-solid
mixture. In the 1990s, the idea of nanofluids consisting of nanoparticles and base fluid was firstly
introduced by Choi [2]. Due to the potential advantages in flow and heat transfer performance,
nanofluids become a focus in the field of thermal science [3].

Thermal conductivity and viscosity are the most important physical parameters and play crucial
roles for studying nanofluids. Over the last two decades, various experimental investigations have
been published to evaluate the effects of nanoparticles on thermal conductivity and the viscosity
characteristics of base fluids. References [4–13] respectively reviewed the experimental and theoretical
developments of various nanofluids’ thermophysical parameters. According to their analysis, it could
be found that the addition of nanoparticles did enhance the thermal conductivity and viscosity of base
fluids in varying degrees. However, it was unfortunate that there were still many differences in the

Materials 2017, 10, 552; doi:10.3390/ma10050552 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma10050552
http://www.mdpi.com/journal/materials


Materials 2017, 10, 552 2 of 16

measurements of thermal conductivity and viscosity due to the effects of nanofluids manufacturing and
measuring technologies [14]. In addition, considering the complex mechanisms, including nanoparticle
heat transport [15,16], nano-shells at the interface between liquid and particle [17–20], Brownian
motion [21,22], and clustering of nanoparticles [23,24], the thermal conductivity and viscosity of
nanofluids are very difficult to predict accurately using the traditional model-based approach. For these
cases, it is very valuable to further study the experimental characteristics and predictive modeling of
nanofluids’ thermal conductivity and viscosity.

In recent years, with the development of artificial intelligence technology, various data-driven
modeling approaches have been put forward to solve the thermal science problem [25,26]. Inspired by
the biological brain, an artificial neural network (ANN) can effectively establish the relationship
between the input and output variables without considering the detailed physical process, which
attracts increasing attention in terms of predicting the thermophysical properties of nanofluids.
Hojjat et al. [27] firstly analyzed the application of a three-layer feed forward neural network on
the thermal conductivities prediction of various non-Newtonian nanofluids. They found that the
ANN predicted values were in agreement with the experimental data. The average and maximum
errors were only 1.6% and 5.8%, respectively. On this basis, Longo et al. [28], Mehrabi et al. [29,30],
Ariana et al. [31], Esfe et al. [32–38], and Vakili et al. [39] successively designed different ANN models
(such as a feed forward neural network, adaptive neuro-fuzzy inference system, diffusional neural
networks, etc.) to further verify the effectiveness of ANN in the modeling and prediction of nanofluid
thermal conductivity. All of their results demonstrated that ANN was an effective tool in comparison
with the traditional model-based approach for describing the enhancement behavior of nanofluid
thermal conductivity. In addition, attracted by the better nonlinear mapping and recognition abilities
of ANN, Yousefi et al. [40], Mehrabi et al. [41], Zhao et al. [42,43], and Heidari et al. [44] also extended
the ANN based modeling approach to the prediction of nanofluid viscosity. As reported in their
analysis, ANN could be used for predicting the viscosity of nanofluids with satisfactory accuracy.

Up to now, much valuable literature has demonstrated the effectiveness of different ANN models
for modeling and predicting the thermalphysical properties of nanofluids. However, considering the
data characteristics of nanofluids’ properties and the modeling process of an ANN, there are still many
difficulties or obstacles to be resolved. For example, most of the developed ANN had only one output
(thermal conductivity, viscosity, or density) and were usually trained by using a large number of
samples, which were obtained from different experiments. Fewer publications discussed the multiple
parameter modeling and prediction performance of ANNs, especially with limited experimental data.
This may means that the application of ANNs in nanofluids is still in its infancy.

Based on the above background, this study presents a further investigation into the prediction of
Al2O3-water nanofluid thermal conductivity and viscosity by using ANN and the limited experimental
data. With the influences of nanoparticle volume fraction (1.31%, 2.72%, 4.25%, and 5.92%) and
temperature (from 296 to 313 K), four different Al2O3-water nanofluids were prepared and measured.
On this basis, a RBF neural network with multiple outputs was constructed and verified through the
experimental data.

2. Experimental Methods

2.1. Materials and Method of Preparing Nanofluids

In this study, a two-step method is used to manufacture the Al2O3-water nanofluids with different
nanoparticle volume fraction. The spherical Al2O3 particles (Xuan Cheng Jing Rui New Material Co.,
Ltd, Xuancheng, China) with an average diameter of 30 nm, a purity of 99.9%, a density of 3.6 g/cm3,
and the specific surface area of 15 m2/g are selected. During the manufacturing, the measurement of
the masses of the nanoparticles is carried out by using an electronic balance with an accuracy of 1 mg.
The volume fractions of the nanoparticles (1.31%, 2.72%, 4.25%, and 5.92%) are calculated according to
the following function:
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ϕp =
ρ f φp

ρp + ρ f φp − ρpφp
(1)

where ϕp is the volume fraction of the nanoparticle, φp is the weight fraction of the nanoparticle, and
ρp and ρ f are the densities of the nanoparticle and base fluid, respectively.

To keep the stability of the nanofluids, the sodium dodecylbenzene sulfonate (SDBS) from
Guangzhou Chemical Reagent Factory (Guangzhou, China) is added as the dispersing agent. The mass
of the SDBS is quantitatively determined with the electronic balance and equal to that of nanoparticle,
based on the existing experiment investigations [45,46]. Moreover, periodical magnetic stirring and
ultrasonic oscillating are applied to prepare the nanofluids, considering that the fact that the stability
process technologies of nanofluids in different studies are not very unified. The times of periodical
magnetic stirring and ultrasonic oscillating are usually determined according to the actual conditions.
In the present study, the corresponding times of the above stability process technologies are 12 h and
5 h, respectively.

Figure 1 shows the manufactured Al2O3-water nanofluids after different standing times (0 h, 36 h,
and 72 h). It can be seen that there is no obvious sedimentation for the above four different nanofluids,
which means that they were manufactured successfully. In addition, Figure 2 presents the Scanning
Electron Microscope (SEM) image of the Al2O3 nanoparticle with a volume fraction of 5.92% in water.
It is clearly observed that most of the nanoparticles can be spherical and have good dispersion.
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2.2. Method of Investigating the Thermal Conductivity and Viscosity

To effectively measure the thermal conductivity of Al2O3-water nanofluids, a transient hot-wire
apparatus designed by Xi’an Xiatech Electronic Technology Co., Ltd (Xi’an, China) is applied.
The measuring accuracy of this apparatus is ±2%–3% in the thermal conductivity range of
0.001–20 W/m·K and temperature range of 113–423 K. Considering the constant temperature
requirement, an external temperature-controlled bath is used, as shown in Figure 3. For the viscosity
measurement of Al2O3-water nanofluids, the apparatus (Figure 4) including a Kinexus pro + Super
Rotation Rheometer (Malvern Instruments Ltd, Malvern, UK) and a Silent Air Compressor (Shanghai
Dynamic Industry Co., Ltd, Shanghai, China), is applied in the present experiment. Since the viscosities
of Al2O3-water nanofluids are usually not very high, the Peltier Cylinder Cartridge is selected. The size
of the cup is C14 (DIN standard). The diameter of the bob is 14 mm. Both the cup and bob are
sandblasted to reduce slippage. The angular velocity of the rheometer is ranged from 10 nrad/s
to 500 rad/s. The temperature resolution of this viscosity measuring equipment is 0.01 K in the
temperature range of 233–473 K. More detailed devices information and the experimental procedure
for viscosity measurement are referenced in [47–49].

Materials 2017, 10, 552  4 of 17 

 

2.2. Method of Investigating the Thermal Conductivity and Viscosity 

To effectively measure the thermal conductivity of Al2O3-water nanofluids, a transient hot-wire 
apparatus designed by Xi’an Xiatech Electronic Technology Co., Ltd (Xi’an, China) is applied. The 
measuring accuracy of this apparatus is ±2%–3% in the thermal conductivity range of 0.001–20 W/m 
K and temperature range of 113–423 K. Considering the constant temperature requirement, an 
external temperature-controlled bath is used, as shown in Figure 3. For the viscosity measurement of 
Al2O3-water nanofluids, the apparatus (Figure 4) including a Kinexus pro + Super Rotation 
Rheometer (Malvern Instruments Ltd, Malvern, UK) and a Silent Air Compressor (Shanghai 
Dynamic Industry Co., Ltd, Shanghai, China), is applied in the present experiment. Since the 
viscosities of Al2O3-water nanofluids are usually not very high, the Peltier Cylinder Cartridge is 
selected. The size of the cup is C14 (DIN standard). The diameter of the bob is 14 mm. Both the cup 
and bob are sandblasted to reduce slippage. The angular velocity of the rheometer is ranged from 10 
nrad/s to 500 rad/s. The temperature resolution of this viscosity measuring equipment is 0.01 K in 
the temperature range of 233–473 K. More detailed devices information and the experimental 
procedure for viscosity measurement are referenced in [47–49].  

External temperature-
controlled bath

Transient hot-wire 
apparatus

 
Figure 3. Measuring equipment of thermal conductivity for Al2O3-water nanofluids. 

Silent Air Compressor

Kinexus pro + Super 
Rotation Rheometer

 
Figure 4. Measuring equipment of viscosity for Al2O3-water nanofluids. 

3. Modeling Method Based on ANN 

As an effective data-driven modeling approach, an ANN is put forward based on the 
inspiration from the human brain’s structure and activity mechanism. Nowadays, there are many 
different ANNs for various applications. In the fields of curve-fitting and nonlinear predictive 
modeling, the RBF neural network exhibits better ability in comparison with others [43]. 

3.1. RBF Neural Network Theory 

In general, an RBF neural network (as shown in Figure 5) is constituted by an input layer, 
hidden layer, and output layer. The input and output layer correspond to the dendrite and synapse 

Figure 3. Measuring equipment of thermal conductivity for Al2O3-water nanofluids.

Materials 2017, 10, 552  4 of 17 

 

2.2. Method of Investigating the Thermal Conductivity and Viscosity 

To effectively measure the thermal conductivity of Al2O3-water nanofluids, a transient hot-wire 
apparatus designed by Xi’an Xiatech Electronic Technology Co., Ltd (Xi’an, China) is applied. The 
measuring accuracy of this apparatus is ±2%–3% in the thermal conductivity range of 0.001–20 W/m 
K and temperature range of 113–423 K. Considering the constant temperature requirement, an 
external temperature-controlled bath is used, as shown in Figure 3. For the viscosity measurement of 
Al2O3-water nanofluids, the apparatus (Figure 4) including a Kinexus pro + Super Rotation 
Rheometer (Malvern Instruments Ltd, Malvern, UK) and a Silent Air Compressor (Shanghai 
Dynamic Industry Co., Ltd, Shanghai, China), is applied in the present experiment. Since the 
viscosities of Al2O3-water nanofluids are usually not very high, the Peltier Cylinder Cartridge is 
selected. The size of the cup is C14 (DIN standard). The diameter of the bob is 14 mm. Both the cup 
and bob are sandblasted to reduce slippage. The angular velocity of the rheometer is ranged from 10 
nrad/s to 500 rad/s. The temperature resolution of this viscosity measuring equipment is 0.01 K in 
the temperature range of 233–473 K. More detailed devices information and the experimental 
procedure for viscosity measurement are referenced in [47–49].  

External temperature-
controlled bath

Transient hot-wire 
apparatus

 
Figure 3. Measuring equipment of thermal conductivity for Al2O3-water nanofluids. 

Silent Air Compressor

Kinexus pro + Super 
Rotation Rheometer

 
Figure 4. Measuring equipment of viscosity for Al2O3-water nanofluids. 

3. Modeling Method Based on ANN 

As an effective data-driven modeling approach, an ANN is put forward based on the 
inspiration from the human brain’s structure and activity mechanism. Nowadays, there are many 
different ANNs for various applications. In the fields of curve-fitting and nonlinear predictive 
modeling, the RBF neural network exhibits better ability in comparison with others [43]. 

3.1. RBF Neural Network Theory 

In general, an RBF neural network (as shown in Figure 5) is constituted by an input layer, 
hidden layer, and output layer. The input and output layer correspond to the dendrite and synapse 

Figure 4. Measuring equipment of viscosity for Al2O3-water nanofluids.

3. Modeling Method Based on ANN

As an effective data-driven modeling approach, an ANN is put forward based on the inspiration
from the human brain’s structure and activity mechanism. Nowadays, there are many different ANNs
for various applications. In the fields of curve-fitting and nonlinear predictive modeling, the RBF
neural network exhibits better ability in comparison with others [43].
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3.1. RBF Neural Network Theory

In general, an RBF neural network (as shown in Figure 5) is constituted by an input layer, hidden
layer, and output layer. The input and output layer correspond to the dendrite and synapse of biological
neurons, respectively. Similarly to the function of cyton, the hidden layer plays a role of intermediation
to process the input-output information and deliver it to the output layer. The connections between
different layers are established through a series of artificial neurons and weights. Theoretically,
the modeling process of an RBF neural network is to solve the mapping from Xn to Yq (n, q ≥ 1).
Assuming the input vector of an RBF neural network is X, the response of kth neuron in the output
layer (yk ∈ Yq) can be obtained using the following linear weighting function [50]:

yk =
m
∑

j=1
ωjkRj(X), (k = 1, 2, · · · , q) (2)

where ωjk is the connection weight between the jth hidden layer neuron and the kth output layer
neuron and m and q are the numbers of neurons in the corresponding layer, respectively.
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Different from those of many other ANN, the responses of RBF neural networks’ jth hidden layer
neuron are usually determined by the RBF. When it selects the Gauss function, the corresponding
Rj(X) can be defined as:

Rj(X) = exp(− ‖X−cj‖2

2σ2
j

), (j = 1, 2, · · · , m) (3)

where ‖‖ is the Euclidean distance between input vector X and the jth neuron center cj and σj is width
of the jth neuron.

Analyzing Equations (2) and (3), it can be easily found that the key to RBF neural network
training is how to determine ωjk, cj, and σj. In the past decades, different unsupervised and supervised
algorithms have been developed to solve the above problem [51]. In this study, the network parameters
are updated by using a orthogonal least square (OLS) approach, for which the minimizing function is
shown in Equation (4). More detailed information about OLSs can be found in [52].

minJ =
q

∑
k=1

(|ynk − ydk|2) (4)

where ynk and ydk are the network output and desired output of the kth output layer node, respectively.
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3.2. Implementing Procedure

In the present investigation, a typical three layer RBF neural network is developed. For the
Al2O3-water nanofluids with the determined nanoparticle size, nanoparticle volume fraction and
temperature are the most important factors for influencing the thermal conductivity and viscosity.
Therefore, both the input and output layers of the RBF neural network consist of two neurons, as
illustrated in Figure 6. The neurons in the hidden layer and others are determined in the training
process. Figure 7 presents the detailed procedure for implementing the modelling and prediction
of nanofluids based on the RBF neural network. To improve the training accuracy, all the input and
output variables are normalized.

x′ = x− xmin

xmax − xmin
(5)

where x is the original value, x′ is the normalized value, and xmax and xmin are the corresponding
maximum and minimum of x.
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To effectively evaluate the predictive accuracy of the RBF neural network, four important
parameters, namely root mean squared error (RMSE), mean absolute percentage error (MAPE), sum of
squared error (SSE), and statistical coefficient of multiple determination (R2), are used.
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RMSE = (
1
t

t

∑
l=1
|Pl −Ql |2)

1/2

(6)

MAPE =
100%

t

t

∑
l=1

∣∣∣∣Pl −Ql
Pl

∣∣∣∣ (7)

SSE =
t

∑
l=1

(Pl −Ql)
2 (8)

R2 = 1−

t
∑

l=1
(Pl −Ql)

2

t
∑

l=1
(Pl)

2
(9)

where P is the desired value, Q is the network output value, and t is the number of samples.

4. Results and Discussion

4.1. Enhancement of Thermal Conductivity

To verify the effectiveness of the above thermal conductivity measuring apparatus, water is
measured first. Considering the temperature balance of the testing sample and the fluid in bath,
the testing temperature can be determined when it remains constant for 20 min. Every experimental
data is the average value of five measurements with a frequency interval of 5 min. Table 1 presents the
experimental thermal conductivity of water in the temperature range of 288–318 K. According to the
comparison, it is concluded that the thermal conductivity apparatus has good precision for the present
study. Based on the experimental data, the measurement uncertainty of thermal conductivity is less
than 5% for water.

Table 1. Thermal conductivity measurement and analysis for water.

Temperature (K) Reference Values (W/(m·K)) Measure Values (W/(m·K)) Deviation (%)

288 0.5916 0.595 0.5747
293 0.6003 0.6019 0.2665
298 0.6088 0.6111 0.3778
303 0.6173 0.6185 0.1944
308 0.6245 0.6252 0.1121
313 0.6318 0.6292 −0.4115
318 0.6379 0.6374 −0.0784

Figure 8 presents the change of the thermal conductivity ratio (kn f /kb f ) between Al2O3-water
nanofluids and water with different nanoparticle volume fractions at room temperature. From Figure 8,
it is found that the thermal conductivity of water can be enhanced obviously with the increase of the
Al2O3 nanoparticle. For example, at a nanoparticle volume fraction of 1.31%, the enhancement of
water thermal conductivity is 9.4%. When the volume fraction of the Al2O3 nanoparticle increases
to 5.92%, the kn f /kb f can change to 1.231. In addition, Figure 8 compares the present measurements
with many experimental data obtained from the existing publications. The results show that they
are in good agreement with both the qualitative and quantitative aspects. This may mean that both
the sample preparation and thermal conductivity measurements are successful. In addition, it is also
clearly observed from Figure 8 that the enhancement of the Al2O3 nanoparticle on water thermal
conductivity cannot be described accurately by using the well-known Maxwell model and the Yu
and Choi model due to the complex influence mechanisms such as the interfacial layer, nanoparticle
Brownian motion, and clustering.
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Maxwell model [59]
kn f

kb f
=

kp + 2kb f + 2ϕp(kp − kb f )

kp + 2kb f − ϕp(kp − kb f )
(10)

where kn f , kp, and kb f are the thermal conductivity of nanofluids, the nanoparticle, and base
fluid, respectively.

Yu & Choi model [60]

kn f

kb f
=

kpl + 2kb f + 2(kpl − kb f )(1 + β)3 ϕp

kpl + 2kb f − (kpl − kb f )(1 + β)3 ϕp
(11)

kpl =
[2(1− γ) + (1 + β)3(1 + 2γ)]γ

−(1− γ) + (1 + β)3(1 + 2γ)
kp (12)

where γ = kl/kp, kl is the thermal conductivity of interfacial layer, β = h/rp, h is thickness of interfacial
layer, and rp is the radius of nanoparticle.

Considering the effects of temperature ranging from 296 to 313 K, Figure 9 presents the variation
of kn f /kb f with various volume fractions. It can be found that, for any volume fraction of the Al2O3

nanoparticle, the corresponding kn f /kb f can linearly improve with the increase of temperature, which
is usually explained by the enhancement of nanoparticle Brownian motion. In the present study, taking
the nanofluids with an Al2O3 volume fraction of 2.72% as an example, the maximum kn f /kb f of 1.283
is obtained at the nanoparticle volume fraction of 5.92% and a temperature of 313 K.
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4.2. Viscosity Investigation

Before experimentally analyzing the viscosity of Al2O3-water nanofluids, it is also necessary to
evaluate the apparatus’s effectiveness by selecting water as a sample. Both the measuring frequency
and data analysis method are same as those for thermal conductivity. From the contrastive analysis
shown in Table 2, it can be inferred that the measurements of viscosity are effective, with a maximum
deviation of 0.988% in the temperature ranges of 288–318 K. In addition, the experimental analysis
indicates that the measurement uncertainty of water viscosity is less than 5% using the above mentioned
approach when the shear rate changes.

Table 2. Viscosity measurement and analysis for water.

Temperature (K) Reference Values (mPa·s) Measure Values (mPa·s) Deviation (%)

288 1.1426 1.1517 −0.7955
293 1.0094 0.9998 0.9517
298 0.8938 0.8943 −0.0658
303 0.8029 0.7958 0.8791
308 0.7226 0.7182 0.6106
313 0.6634 0.6693 −0.8866
318 0.6008 0.6043 −0.5876

To investigate the influence of Al2O3-water nanofluids, Figure 10 presents the relationship
between the shear rate and nanofluid viscosity at the temperature of 298 K. The results show that, with
the increase of the shear rate from 6.326 s−1 to 126.2 s−1, the viscosities of Al2O3-water nanofluids
with different Al2O3 volume fractions do not change significantly. This may mean that the viscosities
of the Al2O3-water nanofluids obtained in the present study display Newtonian behavior.
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Considering the influence of the Al2O3 volume fraction at the temperature of 298 K,
the experimental viscosities of the Al2O3-water nanofluids are given and compared with much
published data in Figure 11. All the results show that the suspension of Al2O3 nanoparticles can increase
the viscosity of water, and there is a slight non-linear relationship between the viscosity of nanofluids
and nanoparticle volume fraction. Moreover, a careful inspection of Figure 11 reveals that the theoretical
viscosities obtained by the classical Brinkman model are significantly lower than the corresponding
measurements. Compared to the Brinkman model, the Corcione model can effectively describe the
effect of nanoparticle volume fraction on viscosity, but its prediction precision is not very ideal. This is
because the viscosity of nanofluids depends strongly on many known and unknown factors.
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The Brinkman model [64] is as follows:

µn f

µb f
=

1

(1− ϕp)
2.5 (13)

where µn f and µb f are the viscosity of nanofluids and base fluid, respectively.
The Corcione model [65] is as follows:

µn f

µb f
=

1

1− 34.87(dp/d f )
−0.3 ϕp1.03

(14)

d f =

[
6M

Nπρ f 0

]1/3

(15)

where M is the molar mass of base fluid molecule, N = 6.022× 1023mol−1 is avogadro’s number, ρ f 0
is the density of base fluids at temperature of 293 K, and dp is the diameter of nanoparticle.

Figure 12 presents the variation of the viscosity ratio, µn f /µb f , between nanofluids and water as
the functions of temperature and nanoparticle volume fraction. From Figure 12, it is observed that,
for the manufactured Al2O3-water nanofluids in this study, temperature has an enhanced effect on
viscosity in the temperature ranges of 296–313 K. At the nanoparticle volume fraction of 4.25%, the
µn f /µb f fractions are respectively 1.605, 1.664, 1.687, and 1.694 when the temperatures are 298 K, 303 K,
308 K, and 313 K.Materials 2017, 10, 552  11 of 17 

 

295 300 305 310 315
1.2

1.4

1.6

1.8

2.0

2.2

2.4

V
is

co
si

ty
 r

at
io

, μ
nf
 /μ

bf

Temperature (K)

 Volume fraction of 1.31%
 Volume fraction of 2.72%
 Volume fraction of 4.25%
 Volume fraction of 5.92%

 
Figure 12. Variations of /nf bf   with temperature for different nanoparticle volume fractions of 

Al2O3-water nanofluids. 

4.3. Predictive Analysis of RBF Neural Networks 

Based on the above experiment, the limited experimental data (40) are used to discuss the 
modeling and prediction processes of the RBF neural network for the thermal conductivity and 
viscosity of Al2O3-water nanofluids. Among them, the ratio of training and testing samples is 3:1. 

For the RBF neural network, Spread is usually a very important factor for influencing the 
training process. Figure 13 shows the relationships of mean square error (MSE) and the number of 
hidden layer neurons with different values of Spread. Table 3 lists the effect of Spread on network 
modeling accuracy. Comprehensively analyzing the results reported in Figure 13 and Table 3, it is 
found that both the network structure and modeling performance cannot be changed significantly 
with different values of Spread in this study. Therefore, the network structure of 2-8-2 neurons with 
the Spread of 0.1 is used. The related weights and biases of a 2-8-2 RBF neural network can be found 
in Table 4.  

0 1 2 3 4 5 6 7 8 9

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

 Spread=0.1
 Spread=0.3
 Spread=0.5
 Spread=0.7
 Spread=1

lo
g 10

(M
S

E
)

Number of hidden layer neurons 

Target value

 
Figure 13. Relationships of mean square error (MSE) and the number of hidden layer neurons with 
different values of Spread. 

  

Figure 12. Variations of µn f /µb f with temperature for different nanoparticle volume fractions of
Al2O3-water nanofluids.



Materials 2017, 10, 552 11 of 16

4.3. Predictive Analysis of RBF Neural Networks

Based on the above experiment, the limited experimental data (40) are used to discuss the
modeling and prediction processes of the RBF neural network for the thermal conductivity and
viscosity of Al2O3-water nanofluids. Among them, the ratio of training and testing samples is 3:1.

For the RBF neural network, Spread is usually a very important factor for influencing the training
process. Figure 13 shows the relationships of mean square error (MSE) and the number of hidden
layer neurons with different values of Spread. Table 3 lists the effect of Spread on network modeling
accuracy. Comprehensively analyzing the results reported in Figure 13 and Table 3, it is found that
both the network structure and modeling performance cannot be changed significantly with different
values of Spread in this study. Therefore, the network structure of 2-8-2 neurons with the Spread of 0.1
is used. The related weights and biases of a 2-8-2 RBF neural network can be found in Table 4.
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Table 3. Performance evaluation of the RBF neural network for the total samples with different values
of Spread.

Parameters Evaluation
Criteria

Spread

0.1 0.3 0.5 0.7 1

knf/kbf

RMSE 8.572 × 10−3 6.797 × 10−3 4.140 × 10−3 4.346 × 10−3 4.043 × 10−3

MAPE(%) 0.5177 0.4803 0.2872 0.3197 0.2866
SSE 2.939 × 10−3 1.848 × 10−3 6.857 × 10−4 7.556 × 10−4 6.538 × 10−4

R2 0.999944 0.999965 0.999987 0.999986 0.999988

µnf/µbf

RMSE 1.423 × 10−2 2.311 × 10−2 1.624 × 10−2 1.381 × 10−2 1.658 ×10−2

MAPE(%) 0.5618 1.3862 0.8233 0.7169 0.8280
SSE 8.094 × 10−3 2.137 × 10−2 1.055 × 10−2 7.634 × 10−3 1.100 × 10−2

R2 0.999913 0.999770 0.999887 0.999918 0.999882

Figures 14 and 15 compare the RBF predicted thermophysical properties of Al2O3-water
nanofluids with the corresponding experimental data. Table 5 lists the predictive evaluation criteria of
the RBF neural network for the training and testing samples. As shown in Figure 14 and Table 5, the RBF
neural network has a high accuracy for modeling the thermal conductivity and viscosity of Al2O3-water
nanofluids with limited experimental data. All the prediction errors of thermal conductivity and
nearly 92.5% of those of viscosity are within the ±2% error band. It is worth noting that there is
a higher accuracy for the testing dataset but not the training ones. This is because the samples of
the testing dataset are very few in this study. In addition, the results analysis of Figure 15 reveals
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that the effects of nanoparticle volume fraction and temperature on the above two thermophysical
properties can be effectively extracted in the data-driven prediction of the RBF neural network. All of
the above investigations demonstrate that a RBF neural network provides a successful alternative
to the traditional model-based prediction approach for the thermal conductivity and viscosity of
Al2O3-water nanofluids.

Table 4. Weight and bias coefficients of the developed RBF neural network.

Neuron

Hidden Layer Output Layer

Weights wij and Biases Weights wjk and Biases

Nanoparticle
Volume Fraction Temperature Biases Thermal

Conductivity Viscosity Biases

1 0.7184 1 1.1894 −61.8011 −143.4012 −4.7283
2 0 1 1.1894 −4.4132 −18.1112 −6.1187
3 1 1 1.1894 24.4808 49.7229
4 0.4595 1 1.1894 92.2675 218.6915
5 0.2208 0.9930 1.1894 −76.4725 −178.5244
6 0 0.9841 1.1894 36.6988 86.1722
7 0.7184 1 1.1894 −61.8011 −143.4012
8 0 1 1.1894 −4.4132 −18.1112Materials 2017, 10, 552  13 of 17 
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Table 5. Performance evaluation of the RBF neural network for the training and testing samples.

Parameters Evaluation Criteria Training Samples Testing Samples

knf/kbf

RMSE 4.464 × 10−3 3.974 × 10−3

MAPE (%) 0.3230 0.3098
SSE 5.977 × 10−4 1.579 × 10−4

R2 0.999985 0.999988

µnf/µbf

RMSE 1.419 × 10−2 1.263 × 10−2

MAPE (%) 0.7472 0.6261
SSE 6.040 × 10−3 1.594 × 10−3

R2 0.999913 0.999932

5. Conclusions

In this paper, the experiments on Al2O3-water nanofluid preparation and thermophysical
properties measurement are performed to obtain the effects of nanoparticle volume fraction
and temperature on thermal conductivity and viscosity. All the experimental results showed
that both thermal conductivity and viscosity could be enhanced with the increase of the Al2O3

nanoparticle volume fraction and temperature. On this basis, considering the advantage of a RBF
neural network in modeling, a case study was investigated to discuss the application of a RBF
neural network on the prediction of nanofluids’ thermal conductivity and viscosity with 40 sets of
experimental data. By comparing the RBF predictive values and the experimental data, it was
demonstrated that RBF neural network not only exhibited good modeling accuracy (thermal
conductivity: RMSE = 8.572 × 10−3, MAPE = 0.5177%, SSE = 2.939 × 10−3, R2 = 0.999944; viscosity:
RMSE = 1.423 × 10−2, MAPE = 0.5618%, SSE = 8.094 × 10−3, R2 = 0.999913), but also could effectively
extract the influences of nanoparticle volume fraction and temperature on Al2O3-water nanofluids’
thermal conductivity and viscosity.
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