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Abstract

Reverse translation of polypeptide sequences to expressible mRNA constructs is a NP-hard

combinatorial optimization problem. Each amino acid in the protein sequence can be repre-

sented by as many as six codons, and the process of selecting the combination that maxi-

mizes probability of expression is termed codon optimization. This work investigates the

potential impact of leveraging quantum computing technology for codon optimization. A

Quantum Annealer (QA) is compared to a standard genetic algorithm (GA) programmed

with the same objective function. The QA is found to be competitive in identifying optimal

solutions. The utility of gate-based systems is also evaluated using a simulator resulting in

the finding that while current generations of devices lack the hardware requirements, in

terms of both qubit count and connectivity, to solve realistic problems, future generation

devices may be highly efficient.

Introduction

Protein sequences can be encoded by an enormous multitude of possible nucleotide sequences.

The degenerate mapping between amino acids and synonymous codons entails an exponential

relationship between the number of potential nucleotide sequences and the length of the poly-

peptide chain. However, different nucleotide sequences encoding the same protein may exhibit

dramatically different outcomes in expression systems [1–4]. Furthermore, recent studies have

shown that codon selection can impact downstream processes such as protein folding and

function [1–3], which is particularly important for use-cases such as recombinant protein ther-

apies [5].

Codon optimization is a procedure designed to increase gene expression based on a heuris-

tic scoring function [6] with many scoring functions having been proposed [7–10]. Some of

the more common scoring functions seek to optimize the fraction of G and C bases [11–15],

match the codon usage bias of the host expression system [16–21], and/or attempt to disrupt

the formation of mRNA secondary structure [7,17,22]. The vast solution space is most com-

monly sampled using genetic algorithms (GA) that seek to evolve solutions by introducing
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synonymous codon mutations and propagating favorable substitutions through generations

[12,16,20,23–25]. However, other methods have been proposed [18,26,27]. While classical

approaches such as GAs can be highly performant, the fraction of solution space that is sam-

pled in a fixed number of iterations decreases exponentially as the polypeptide chain length

grows. Thorough sampling of the solutions space is therefore often intractable with biologically

relevant use-cases. In this study we investigate the viability of programming quantum comput-

ers to efficiently identify high-quality solutions scored with arbitrary objective functions.

Recent advances in quantum information science and technology have elucidated the

potential for quantum devices to outperform classical devices in a narrow range of applications

[28,29]. Among these, certain types of combinatorial optimization problems are among the

most promising for near-term advantage [30]. The field of quantum computing is developing

rapidly in terms of both hardware and algorithms. Each type of quantum computing technol-

ogy offers a unique set of strengths and weaknesses, and applications are often tailored to com-

pliment the strengths of each device. While there are many physical realizations of quantum

technologies, we focus on two markedly different models; quantum annealing (QA) and gate-

based quantum computers.

Quantum annealers are most commonly used to solve high-dimensional combinatorial

optimization problems [31–33]. For example, a recent study showed that protein design,

which requires combinatorial optimization of rotomeric states, can be accelerated with a QA

[34]. Current implementations of quantum annealers offer nearly two orders of magnitude

more qubits than state of the art gate-based devices, offering the potential to address realistic

sized problems. The general class of QA algorithms are classified as metaheuristic methods for

solving local optimization problems in multivariate spaces [31]. These approaches are similar

to simulated annealing but exploit the phenomena of quantum tunneling, instead of thermal

activation, to hop out of local energetic minima [35].

An alternative quantum computing technology, and the technology that was recently used

to demonstrate quantum supremacy [28,29], centers on gate-based instructions. Current gen-

erations of non-error corrected hardware, termed Noisy Intermediate Scale Quantum (NISQ)

[36], can be programmed to solve combinatorial optimization problems using variational

methods such as the Quantum Approximate Optimization Algorithm (QAOA) [37]. While

gate-based quantum computers to date contain significantly fewer qubits compared to quan-

tum annealers, the qubits in gate-based devices tend to be of higher quality. As the technology

matures however there is an expectation that qubit count and connections between qubits will

improve substantially. There is also the expectation that error rates will decrease, and general-

purpose error correction may become possible. Developing and testing suitable algorithms

ahead of the technology development curve is thus a worthwhile endeavor and it is therefore

common practice to utilize simulators, running on classical computing hardware, to permit

evaluation of quantum algorithmic functions in the absence of real-world hardware to evaluate

performance on.

Designing novel algorithms to execute on quantum devices requires deep expert knowledge

of the devices, quantum information science, and quantum software stacks. However, there

are a few classes of ubiquitous problems that are readily solvable using tools built into many

widely available software packages. The Binary Quadratic Model (BQM) is perhaps the most

archetypal example and can be found at the core of many familiar problems such as the Ising

model [38,39]. The energy of a BQM can be described by a Hamiltonian with the general form

H ¼
X

i

hiqi þ
X

j

X

k<j

Jjkqjqk ð1Þ
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where qi, qj, and qk represent the values of the qubits, which can either be {0, 1} or {-1, 1} for

binary or spin representations, respectively, hi are the one-body terms, and Jjk are the two-

body interactions. For the Ising model, h represents the physical spins and J represents the

energy of the interactions between the spins.

The methods section below shows that the codon optimization problem can be mathemati-

cally formulated as a BQM and thus implemented on a variety of competing quantum comput-

ing platforms. This representation requires translating the scoring function used in traditional

approaches into a quadratic Hamiltonian where the eigenstates represent nucleotide sequences

and the eigenenergies represent the scores. Implementing this program on the D-Wave

Advantage 1.1 QA shows that it identifies high quality solutions that are competitive with a

basic implementation of a genetic algorithm programmed with an equivalent scoring function.

Implementing a version of this program for IBM Q devices, while successful, shows that

modelling practical systems requires too many qubits to be run on even the most advanced

gate-based devices available (e.g. IBM’s 65-qubit Hummingbird device) [40]. However, execut-

ing the model on an IBM noisy simulator [41] demonstrates the potential of the algorithm.

Finally, we comment on the potential usability of the BQM approach on current and future

generations of quantum computers.

Results

Codon optimization was implemented as a BQM on quantum devices with a Hamiltonian

designed to optimize GC-content (the fraction of G and C bases), minimize sequentially

repeated nucleotides, and optimize codon-usage bias (see Eq (15) in Methods for details).

Quantum devices use qubits to store data, which decode digitally to 0’s and 1’s upon measure-

ment, but which also may be in a superposition of 0 and 1 during the calculation. A one-hot

encoding scheme is used to encode classical genetic data into a quantum device; every possible

codon that can map to the target polypeptide sequence is required to be explicitly represented

by a physical qubit. The qubits which return “1” upon measurement represent the codons

selected at each position in the polypeptide sequence. Therefore, only 1 qubit (codon) for each

position in the polypeptide sequence can be in a “1” state, and the rest must return “0” upon

measurement (Fig 1a). This scheme is enforced by constructing a 2-body penalty matrix which

adds infinite energy to pairs of codons that map to the same position in the polypeptide

sequence (Fig 1b). The final sequence is determined by recording the values of the qubits and

concatenating the corresponding codons of the qubits in the “1” state (Fig 1c).

QA accuracy and quality of scores

The goal of the optimization is to find the combination of codons that minimizes the Hamilto-

nian (or the objective function for the GA). In theory, QA should be able to find the ground

state of the input Hamiltonian. However, due to thermal fluctuations and limited quantum

processing unit (QPU) time, low energy solutions that are near, but not equal to the ground

state are expected. Furthermore, as the size of the problem increases, the probability of anneal-

ing to an optimal eigenvalue decreases (see the “BQM challenges and limitations” section in

the Supplementary Information for further discussion of technical challenges specific to

heavily constrained problems such as codon optimization).

While it is not possible to calculate the true ground state for large problems, comparisons

can be made to other approximate methods, e.g., GA approaches, to contextualize the results

and performance of the QA approach. Additionally, D-Wave offers hybrid solvers that aug-

ment the QA with classical methods to optimize the results. Direct programming of the QA
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yielded excessively noisy results with high variance in the estimation of the ground state. The

hybrid solver was thus selected to more reliably optimize the input Hamiltonian.

Peptides of length 20. The baseline performance of the QA implementation of codon

optimization was evaluated using 63 peptide fragments of length 20 derived from the human

severe acute respiratory syndrome coronavirus 2 (2019-nCoV, SARS-CoV-2) spike glycopro-

tein sequence (UniProtKB–P0DTC2) and compared with a conventional single-threaded GA

implementation. See the Genetic Algorithm Validation section in the Supplementary Informa-

tion for performance metrics. The results of running the quantum annealer and the GA 20

times each are reported in Fig 2. There is an approximately linear relationship between the

optimization scores, with an average ratio close to 1:1. The minimum eigenvalue identified by

QA matched the minimum score obtained by the GA to machine precision in 77% of the pep-

tide fragments that were considered. In the remaining cases, the GA identified a lower score

than QA. The quantum annealer was programmed to run for a total of 6.0 s including prepro-

cessing and communication between the classical and quantum components; it is unknown

exactly how much of this time was spent on the QPU. The average execution time for the GA

was 1.09 s with a standard deviation of 0.06 s.

Full-length proteins. The Leap Hybrid solver is capable of solving codon optimization

problems expressed as a BQM with up to ~1,000 amino acids. A selection of full-length

sequences (see Test Applications in Methods) was run on both the quantum annealer and the

GA (Fig 3). The hybrid solver was given 50 s to perform the optimization task for each

sequence, however, it is unknown exactly how much of this time was spent on the QPU. The

GA was run for 6000 generations, determined through testing to be the point at which the sys-

tems asymptotically converged to a solution (see Genetic Algorithm Validation in the Supple-

mentary Information). The average execution time for the GA was 10.6 minutes with a

standard deviation of 0.9 minutes.

Relationship between scoring function and scalability on quantum hardware. The

choice of scoring function can have a dramatic impact on the size of the model. For example,

Fig 1. (a) Example mapping of each possible codon for the amino acid Glycine (gray oval labeled “G”) to qubits. Gray boxes represent qubits labeled q0. . .q3, and the

codon assigned to each qubit is shown next to the qubit label. (b) A penalty matrix is constructed to add infinite energy to cases where more than one codon is in the

“1” state. In this example, qubit q2 is in the “1” state and the rest are in the “0” state, which returns an energetic penalty equal to 0. (c) Example mapping of codons for

protein sequence GSK. . . to qubits. One codon is selected for each position in the sequence, highlighted in orange.

https://doi.org/10.1371/journal.pone.0259101.g001
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the Hamiltonian representing GC-content requires explicit calculation of all off-diagonal ele-

ments of the two-body interaction matrix. In other words, all logical qubits must be fully con-

nected. The D-Wave Advantage system is state-of-the-art in terms of number of qubits and

connectivity, described by a P16 Pegasus graph [42], and the best minor embedding scheme for

a fully connected graph of logical qubits was heuristically found to support a maximum of 180

logical qubits when interfacing directly with the QPU. However, there are two-body Hamilto-

nians that do not require couplers between all logical qubits. The Hamiltonian penalizing

sequentially repeated nucleotides only requires couplers between qubits mapping to neighbor-

ing sequence positions. In this case, the task of minor embedding is straightforward and would

only require a few additional physical qubits to represent the required logical qubits on the

D-Wave Advantage system.

Gate-based simulator results

The gate-based approach was simulated using the IBM Qasm noisy simulator, which can simu-

late up to 24 fully connected qubits. The BQM implementation was identical to the scheme

described by the QA (Fig 1), and the optimization was carried out using QAOA [37]. The

codon optimization simulation was run on 313 peptides of length four and one peptide of

length three, each requiring between 7–24 logical qubits with full connectivity. In the most

resource-intensive scenario, there could be four amino acids in a row that each map to six

qubits, and the algorithm is tasked with finding the ground state out of 64 = 1296 possible

states using 24 qubits (the maximum supported by the simulator). The task is therefore small

Fig 2. Eigenvalues measured by QA vs GA scores. Lower scores indicate higher probability of expression. Dashed

line represents y = x. Error bars represent the standard deviation of 20 trials and are shown in blue.

https://doi.org/10.1371/journal.pone.0259101.g002
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enough to compute the exact result with the NumPyMinimumEigensolver exact solver, negat-

ing the need to compare the performance to a classical GA.

The simulated scores vs the exact scores are shown in Fig 4a. The quantum algorithm iden-

tified the exact solution for 59 peptides, and overall, 84% of the trials yielded valid results.

Fig 3. QA vs GA for 10 full-length proteins. Dashed line represents y = x. Lower scores indicate higher probability of

expression. Point labels indicate number of amino acids.

https://doi.org/10.1371/journal.pone.0259101.g003

Fig 4. (a) QAOA simulated scores vs exact scores. Each point represents a single run of the simulator for each peptide

fragment. Lower scores indicate higher quality results. Trials that returned solutions with invalid mapping between

codons and amino acids were excluded. Inset shows a histogram of the QAOA score to exact score ratios where it can

be seen that the majority of the ratios are close to 1. (b) Number of qubits required to simulate each of the 313 peptide

fragments of length 4.

https://doi.org/10.1371/journal.pone.0259101.g004
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However, there were 51 cases where the quantum algorithm returned results which had an

invalid mapping between codons and qubits. In each of the invalid trials there was at least one

amino acid position lacking a selected codon. This type of error was more common in cases

where more qubits were required to run the simulation (minimum 16 qubits), and therefore

the optimization task was more difficult. The success of the calculation was dependent on the

random seed used for the noisy simulator; rerunning trials that failed to return valid results

with different random seeds changed the outcome and, in each case, a valid result was eventu-

ally found. The instability of the simulation and its dependence on the number of qubits

required to run the simulation is an artifact not just of the simulated noise but also an inherent

consequence of the variational algorithm employed by the simulator, which is not guaranteed

to converge every time. See the “BQM challenges and limitations” section in the Supplemen-

tary Information for discussion about the exponentially small subset of valid solutions in the

total possible solution space as the number of required qubits is increased. These results imply

that it may be impossible to effectively optimize polypeptides of biological relevance on NISQ

devices. Further studies are required to determine if this behavior could be improved by mak-

ing use of alternative variational optimization algorithms or whether fundamental improve-

ments in error correction are needed at the hardware level.

Discussion

Codon optimization is a classic example of a biological problem with exponential scaling in

solution space. While there exist classical machine learning and artificial intelligence methods

that improve sampling, quantum technology may offer an alternative or complimentary

approach to enhance the ability to identify optimal samples from these distributions. Current

generations of quantum hardware are mature enough to test ideas for novel algorithmic

approaches to problems in life sciences but are not yet capable of outperforming classical

devices. In this study codon optimization is reformulated to be readily implementable on

quantum devices and the viability of the method is demonstrated on both adiabatic and gate-

based quantum computers.

The D-Wave Systems Advantage 1.1 system was heuristically determined to be capable of

solving codon optimization problems programmed directly into the QPU up to approximately

180 codons with scoring functions requiring all logical qubits to be fully connected, which

maps to 30 amino acids in the most resource intensive cases. If a scoring function is selected

that does not require full connectivity, such as the Hamiltonian describing repeated nucleo-

tides, then nearly all the logical qubits could map directly to physical qubits and the system size

could theoretically be scaled to accommodate sequences of up to ~1,000 amino acids. Such an

objective function would be appropriate if global sequence properties (e.g., GC-content) are

not required in the study.

There is likely significant room for performance improvements in the quantum, hybrid,

and classical methods. As quantum annealing hardware matures it will be possible to address

questions of scalability for larger sequences and critically assess the potential for quantum

technology to surpass classical techniques.

The IBM Experience provides free access to small quantum devices and noisy simulators.

The largest quantum device freely available at the time of writing, Melbourne, contains 15

qubits, with each qubit coupled to no more than three others. The BQM presented in this

study requires full connectivity between the logical qubits. Melbourne is therefore able to rep-

resent a select set of 2-amino acid systems in which each amino acid maps to one or two

codons. Meanwhile the IBM Qasm simulator allows up to 24 fully connected simulated qubits,

which is generally limited to 4 amino acids. This simulation approach is sufficient to use
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QAOA to solve small proof of concept problems, but realistically thousands of qubits with

high connectivity are required to run biologically relevant sequences. Given IBM’s current

public Roadmap for Scaling Quantum Technology [40], devices with this capacity are not

expected to be available to the public before 2024. Utilizing the simulator, the QAOA algo-

rithm had variable performance, identifying the true ground state solution in nearly 20% of

the trials, and failing to identify a valid solution in 16% of the trials. As noted above the success

of the calculation was dependent on the random seed used for the noisy simulator; valid results

for each failed run can be obtained by rerunning with different random seeds until a valid

result is found. Further investigation on physical devices is required to determine the limit of

the accuracy and precision of the method.

There is a vast body of literature discussing codon optimization techniques for protein

expression. This study contributes to the field by offering a novel approach to sampling the

vast solution space with an emerging technology. The considerations that went into the con-

struction of the Hamiltonian were designed to highlight some of the implementational

nuances associated with common scoring functions. For example, the expression for measur-

ing optimality of GC-content requires full connectivity between qubits. However, counting

repeated nucleotides between neighbors only requires some qubits to be coupled. Codon usage

bias can be factored into the Hamiltonian using one-body terms, but one could imagine a

more thorough approach which compares the distribution of codons selected in the sequence

compared to the reference distribution, which would require two-body terms. Similarly,

implementing the popular “one amino acid-one codon” strategy would require codons from

each type of amino acid to be coupled [18,21,43], adding many two-body terms but not as

many as optimization of GC-content. Thus, the particular Hamiltonian studied here serves as

a demonstration of the efficacy of the method at evaluating a realistically complicated objective

function.

Further studies are required to evaluate these samples beyond simple numerical scores to

determine the value this approach could add to the field of protein expression using future

generations of quantum hardware. Current quantum hardware is subject to high levels of

noise and is therefore not competitive with classical techniques in most practical applications.

However, quantum hardware and techniques are advancing exponentially in terms of both

scale and tolerance to noise. This rapid advancement coupled with the expectation that scaling

with problem size is significantly reduced on quantum hardware compared with classical

methods implies that future quantum approaches could provide a significant performance

advantage for optimization of NP problems in life sciences.

Methods

Codon optimization algorithm

Classical scoring functions can be reinterpreted as a Hamiltonian by separating one- and two-

body interaction terms. There is considerable research and ongoing debate of the proper way

to score nucleotide sequences for expression [5,8,10–21,24–27,43], as well as arguments

against the use of codon optimization in some cases [5]. The purpose of this study is not to

contribute to the discussion of whether or not codon optimization is an appropriate tool for

any given context or the optimal way in which it should be performed but rather to investigate

a novel method of sampling the vast solution space. The optimization task is therefore

restricted to three considerations that capture simple countable properties from the sequences

themselves. This includes discussion of how to formulate energetic terms in the Hamiltonian

that serve to minimize:

PLOS ONE Codon optimization with quantum computers

PLOS ONE | https://doi.org/10.1371/journal.pone.0259101 October 29, 2021 8 / 16

https://doi.org/10.1371/journal.pone.0259101


1. Codon usage bias.

2. The difference between GC-content and a target value.

3. The number of sequentially repeated nucleotides.

Energetic terms can be combined into one Hamiltonian or used on their own, just like a

scoring function in a GA. Furthermore, the Hamiltonian could be extended using any type of

scoring function that can be broken down into one- and two- body interaction terms. The fol-

lowing sections outline the mathematical representations of these optimization tasks and show

how they naturally map to a Hamiltonian with a form compatible with a BQM.

Two additional constraints are imposed to add energetic penalties to combinations of

codons that do not translate to the query sequence. The first constraint adds a small linear shift

to the one-body term of each qubit. Shifting the potentials increases the energetic favorability

of including more codons in the sequence. Similarly, the other constraint adds a significant

energetic penalty to codons mapping to the same position in the amino acid sequence. The

combination of these two potentials optimizes the energetic score of valid combinations of

codons compared to invalid combinations.

Incorporating codon usage bias. Codon usage frequency varies by host system [44].

Therefore, the scoring function is tailored to match the expression system. For this study,

codon usage frequencies for e. coli are imported from the python-codon-tables 0.1.10 library

[45]. Let Ci represent the frequency of finding codon C at position i. The potential is thus

designed to return a large penalty for rare codons (where Ci is small) and incur a negligible

penalty for codons readily available to the system (where Ci is large). One such function is the

logarithm. This function yields the desired behavior of adding large penalties to rare codons

and adding small penalties to accessible codons. However, the function is undefined at Ci = 0.

If a host system truly does not have access to a given codon, then any sequence containing the

codon is not expressible, and the probability of expression would be zero. An infinitesimal

value, εf, is added to the frequencies to avoid evaluating the logarithm at an undefined point.

For a system containing N possible codons, the Hamiltonian is given by:

Hf ¼ cf
XN

i

log½Ci þ εf � qi ¼ cf
XN

i

Biqi; ð2Þ

where cf is a tunable constant, qi 2 {0,1} is the value of the qubit, and z is a vector containing

the values of the log inverse codon usage frequencies. Given the binary qi values, the Hamilto-

nian only penalizes codons that are “selected”, represented by qubits with value qi = 1.

Optimize target GC concentration. To optimize the GC concentration of a nucleotide

sequence, ρGC, a cost function Δ must be introduced to minimize the difference between ρGC
and the target GC concentration, ρT. The simplest objective function satisfying this constraint

is a quadratic function,

D ¼ cGCðrGC � rTÞ
2
; ð3Þ

where cGC is a tunable constant. The GC content is calculated by summing the number of G’s

and C’s in the sequence of length N and normalizing by the number of nucleotides in the

sequence

rGC ¼
1

N

XN

i

siqi; ð4Þ

where si is an integer representing the number of G’s and C’s in codon i, and qi represents the
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value of qubit i. By expanding Eq (3), a form similar to a Binary Quadratic Model (BQM) for-

mulation becomes apparent:

HGC / ðrGC � rTÞ
2
¼

1

N2

XN

i

XN

j

ðsO sÞijqiqj �
2rT

N

XN

i

siqi þ r
2

T ð5Þ

The matrix represented in the double sum needs to be restricted to a sum over the upper tri-

angular elements, consistent with Eq (1). By decomposing the sum into the trace and a term

that sums the contributions of the off-diagonal elements, the sum can be restricted to the

upper triangular elements. The trace requires a single summation over si2. Since qubits map to

binary values, they are idempotent with themselves and therefore qi2 = qi.

Tr
XN

i

XN

j

ðsO sÞijqiqjÞ

" #

¼
XN

i

s2

i qi ð6Þ

Since the matrix is symmetric, all off-diagonal terms are accounted for in an upper triangu-

lar form by multiplying by 2. Thus,

HGC ¼
2cGC
N2

XN

i

XN

j<i

sisjqiqj þ
cGC
N2

XN

i

s2

i qi �
2rTcGC

N

XN

i

siqi þ cGCr
2

T ð7Þ

recapitulates the quadratic cost function (Eq (3)) in a form consistent with a BQM (Eq (1)).

See the GC-Content Derivation section in the Supplementary Information for a full

derivation.

Minimize sequentially repeated nucleotides. To minimize the number of repeated

nucleotides in a sequence, all codons mapping to sequential positions in the amino acid

sequence are compared. Let r(Ci, Cj) represent a quadratic function that returns the maximum

number of repeated sequential nucleotides between codons Ci and Cj, shifted to the origin for

null cases by subtracting one. For example,

rðATA;TCGÞ ¼ 12 � 1 ¼ 0

rðATA;ACGÞ ¼ 22 � 1 ¼ 3

rðCGG;GGGÞ ¼ 52 � 1 ¼ 24

Repeated nucleotide penalties are stored in a matrix R,

Rij ¼ rðCi;CjÞkij; ð8Þ

where the kappa-function returns 1 if the codons map to sequential positions and 0 otherwise.

kij ¼

1 if i and j map to sequential

positions in sequence

0 otherwise

8
><

>:
ð9Þ

S1 Fig in S1 File shows the result of applying this function to the system in Fig 1. The total
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repeated nucleotide penalty for a given nucleotide sequence is given by

HR ¼
XN

i

XN

j

Rijqiqj: ð10Þ

Matrix R is upper triangular, so the pairwise sum can be restricted to upper triangular ele-

ments without changing the result, making it compatible with the BQM model (Eq (1)). A tun-

able constant, cR, is introduced to weight the contribution in the Hamiltonian, resulting in the

form:

HR ¼ cR
XN

i

XN

j<i

Rijqiqj: ð11Þ

Additional constraints to the Hamiltonian. The energetic terms described above are

designed to add penalties to particular sequence properties. As formulated, the ground state of

this type of objective function, without constraints, is the state which selects zero codons.

However, the Hamiltonian needs to be formulated so that the ground state corresponds to the

sequence of codons that both translates to the input polypeptide sequence and minimizes the

constraint penalties. To achieve this, a constant factor, ε, is subtracted from the one-body term

of each codon, thereby increasing the energetic favorability of introducing codons to the sys-

tem. This effectively moves the origin so that the ground state must include codons. The abso-

lute value of the constant must exceed the largest value in the one-body vector h (Eq (1)).

To negate the possibility of assigning more than one codon to a given position, a site-spe-

cific function is introduced that applies an effectively infinite penalty to pairs of codons

assigned to the same position.

tij ¼

1 if i and j map to same

position in sequence

0 otherwise

8
><

>:
ð12Þ

In practice, a specific value must be chosen to represent infinity. This value must be large

enough to skew the energy surface such that it serves as an effective barrier in the optimization,

however, if it is too large then it will decrease the resolution of the programmable fields in the

D-Wave device. Therefore, the value was heuristically set to 50 effective h-units (the solver

rescales the input values to program the magnetic fields), which satisfied this balance. S2 Fig in

S1 File shows the result of applying Eq (12) to the example system referenced in Fig 1. For a

system with N possible codons, the Hamiltonian is modified by adding the following terms:

HP ¼ �
XN

i

εþ
XN

i

XN

j<i

tijqiqj: ð13Þ

Implementation of objective function. The Hamiltonian representing the total “energy”

of a nucleotide sequence is computed by summing the contributions of the expressions defined

in the previous sections.

H ¼ Hf þHGC þHR þHP: ð14Þ
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Expanding and rearranging the terms gives the form in Eq (15):

H ¼
XN

i

cf Bi �
2rTcGC

N
si þ

cGC
N2

s2

i � ε

#

qi þ
XN

i

XN

j<i

2cGC
N2

sij þ cRRij þ tij

� �

qiqj þ cGCr
2

T: ð15Þ

"

This form is consistent with the BQM formalism (Eq (1)) and can be directly implemented

into BQM frameworks.

Algorithm implementations

The current approach to performing calculations on quantum devices requires the interaction

terms to be precomputed on classical devices and read into the quantum devices via specialized

APIs. The one- and two-body interaction terms from Eq (15) were precomputed in python 3.7

using standard libraries and numpy [46] arrays. The numpy arrays were converted to dictio-

naries in accordance with the expected input for the quantum device libraries.

The execution of the BQM was carried out using libraries described in the following sec-

tions. Each calculation was run 20 times for small peptide fragments (<100 residues), and full-

length proteins were only run one time due to QPU resource constraints. Table 1 provides the

values of the constants used in the objective function. The eigenstate returned by the quantum

devices was converted back to a nucleotide sequence and translated to a polypeptide sequence

to verify the validity of the result. Furthermore, the nucleotide sequence was scored using the

classical scoring function used by the GA, and the result was compared to the eigenvalue

returned by the quantum devices. Eigenvalues and classical scores agreed to 8 decimal places.

D-Wave Advantage 1.1. The codon optimization BQM was implemented on the D-Wave

Advantage System 1.1 utilizing the Leap Hybrid Solver. This adiabatic quantum device con-

tains more than 5,000 superconducting qubits. Each qubit is connected to 15 others described

by a Pegasus P16 graph [42]. The Advantage system was accessed through the D-Wave Leap

web interface, which serves as an access point to QPU hardware as well as an integrated devel-

oper environment with built-in support for the full D-Wave API.

The program was constructed and executed using python libraries provided by D-Wave

systems. The BinaryQuadraticModel class in the dimod 0.9.10 python library was used to con-

struct the model from the classically prepared data and convert it to a data structure compati-

ble with the quantum device. The one- and two-body interaction terms were precomputed,

stored in numpy arrays, and passed into the BinaryQuadraticModel instance along with an off-

set of 0.0 and the dimod.BINARY representation. The model was executed using the LeapHy-

bridSampler classes in the dwave.system python library. The solver was allotted 6.0 s of

execution time for small cases (< 100 qubits) and 50.0 s for larger cases (> 100 qubits). The

Leap system does not provide a detailed report of how much computation was handled by the

QPU. The eigenstate with the lowest associated eigenvalue was chosen to represent the result

of the simulation.

Qiskit Qasm simulator. The BQM was implemented in qiskit through the IBM Experi-

ence web interface. This interface provides access to IBM Q hardware and an integrated

Table 1. Constants used in Eq (15).

cf 0.1

cGC 1

cR 0.1

ε 1

ρT 0.5

https://doi.org/10.1371/journal.pone.0259101.t001

PLOS ONE Codon optimization with quantum computers

PLOS ONE | https://doi.org/10.1371/journal.pone.0259101 October 29, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0259101.t001
https://doi.org/10.1371/journal.pone.0259101


developer environment served by Jupyter Notebooks with all fundamental Qiskit 0.16.4

python libraries installed [41]. The IBM Experience provides limited free access to quantum

devices, but the available devices were too small (<= 15 qubits) to sample the codon optimiza-

tion BQM problem, so a noisy simulator hosted by the IBM Experience on classical hardware

was used in its place.

The program was constructed and executed using python libraries provided by IBM Qiskit.

The core of the implementation builds on the QuadraticProgram base class from the qiskit.

optimization library. The codons were appended to the model as binary variables, physically

represented by qubits. The objective function was constructed as a minimization with the one-

and two-body precomputed terms and an offset of 0.0. The model was simulated using the Aer

class with the qasm_simulator backend and FakeVigo noise data, both from the Qiskit library,

and the simulator was converted to an executable Quadratic Unconstrained Binary Optimiza-

tion (QUBO) model with the MinimumEigenOptimizer from the qiskit.optimization.algo-

rithms library. Finally, the combinatorial optimization was carried out with QAOA [37] from

the qiskit.aqua.algorithms library. The program was run with default values where possible.

Classic genetic algorithm. A basic single-threaded genetic algorithm with an objective

function mathematically equivalent to Eq (15) was implemented in Python 3.7 using standard

libraries and BioPython 1.78 [47]. For polypeptide fragments (<= 20 residues), the simulations

were run for 100 iterations (generations), with each generation procreating 50 times. For full-

length sequences (> 100 residues), the number of iterations was increased to 6000. The calcu-

lations were run on the Leap web interface to provide an accurate execution time comparison

to the QA calculations. See the Genetic Algorithm Validation section in the Supplementary

Information for performance metrics.

Test applications. Sample peptide sequences were obtained by splitting the human severe

acute respiratory syndrome coronavirus 2 (2019-nCoV, SARS-CoV-2) spike glycoprotein

sequence (UniProtKB–P0DTC2) into shorter peptide fragments for simulation on the

resource-constrained systems. The sample preparation for the D-Wave system yielded 62 pep-

tides of length 20 and one additional peptide of length 15. The IBM Qasm simulator was simu-

lated with 313 peptides of length 4 and one additional peptide of length 3. Additionally, 10

full-length proteins associated with SARS-CoV-2 studies were scored using the QA and the

GA approaches for comparison. See the Sequences section of the Supplementary Information

for the full list.

Supporting information

S1 File. Contains additional information and derivations for GC-content derivation, BQM

challenges and limitations, Genetic Algorithm Validation, S1-S4 Figs and the protein

sequences used.
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