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Statistical guidelines for quality control of
next-generation sequencing techniques
Maximilian Sprang , Matteo Krüger, Miguel A Andrade-Navarro , Jean-Fred Fontaine

More and more next-generation sequencing (NGS) data are made
available every day. However, the quality of this data is not always
guaranteed. Available quality control tools require profound
knowledge to correctly interpret the multiplicity of quality features.
Moreover, it is usually difficult to know if quality features are
relevant in all experimental conditions. Therefore, theNGS community
would highly benefit from condition-specific data-driven guidelines
derived from many publicly available experiments, which reflect
routinely generated NGS data. In this work, we have characterized
well-known quality guidelines and related features in big datasets
and concluded that they are too limited for assessing the quality of
a given NGS file accurately. Therefore, we present new data-driven
guidelines derived from the statistical analysis of many public
datasets using quality features calculated by common bioinformatics
tools. Thanks to this approach, we confirm the high relevance of
genome mapping statistics to assess the quality of the data, and we
demonstrate the limited scope of some quality features that are not
relevant in all conditions. Our guidelines are available at https://
cbdm.uni-mainz.de/ngs-guidelines.
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Introduction

Next-generation sequencing (NGS)–based analyses of regulatory
functions of the genome are widely used in clinical and biological
applications and have gained a key role in research in recent years.
Many different assays have been developed reaching from the
classical sequencing to gene expression quantification (RNA-seq),
identifying epigenetic modifications (ChIP-Seq, Bisulfite Sequencing)
and measuring chromatin accessibility (DNAse-seq, MNAse-seq, and
ATAC-seq).

NGS experiments require stepwise data analysis, to gain infor-
mation from short reads, which first need to be assembled or
aligned to a reference genome. It is crucial to filter out low-quality
data as early as possible to prevent negative impact on down-
stream analysis (1, 2). Especially in the clinical context, misinter-
pretation of data due to faulty samples can have dire consequences

for patients, such as false diagnosis or wrong therapy approaches.
We could show in a previous work that the systematic removal of
lower quality samples within RNA-seq datasets improves the clus-
tering of disease and control samples (3).

There are a variety of tools that can be used to compute features
holding information about the quality of NGS data. Classical quality
control (QC) tools analyze raw data exported from the machine
performing the assay. The raw data are stored in FastQ files, which
contain the sequence of the read and a corresponding quality score
Q, encoded in ASCII characters. The score Q is an integermapping of
the probability P that a base call is incorrect (4). Manual inter-
pretation of these scores is not possible because each base of each
read must be taken into account.

The most popular tool for quality control of FastQ files is FastQC
(5), which can be used to get multiple features that hold information
on the quality of the raw data. Examples are position-dependent
biases, sequencing adapter contamination and DNA over-amplification.
Downstream analysis can also provide insight on the quality of the
givendata. For example, genomemapping statistics include thenumber
of reads mapped to a unique position or unmapped reads, which are
significant with respect to the quality of the input data (6, 7, 8, 9). While
raw quality score and mapping statistics can be used in combination
with any NGS-sequencing data, for some applications additional
steps can be taken to complement the quality analysis of the data.
For chromatin and protein-DNA interaction assays, such as DNAse-seq,
ATAC-seq and Chip-seq, it may be of interest for quality evaluation
to use the genomic locations and the distribution of reads near
transcription start sites (TSSs), which are of interest in these assays
anyway (10, 11, 12, 13).

Applying all thesemethods and using their features to determine
the quality of a new sample can be complicated. The information
about quality held by some features could substantially vary
depending on the assay as shown by the popular experiment
guidelines from the ENCODE project (14). For example, these
guidelines recommend a minimal number of uniquely mapped
reads to evaluate DNA-seq sequencing files, while the number of
useable fragments should be considered for ChIP-seq with dif-
ferent thresholds for narrow-peak or broad-peak experiments.
Given in addition to specific good wet-laboratory practices, those
threshold values alone may not be able to accurately classify
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Figure 1. Distribution of low- and high-quality files for different experimental parameters in the dataset.
(A, B, C) Distribution of files by organism, biological sample type, and assay in the dataset. (D, E, F) Distribution of files by ChIP protein, ChIP antibody and biological
sample (only the 10 files with the biggest difference between high- and low-quality are shown). (G, H, I) Distribution of files by ChIP protein, ChIP antibody and biological
sample (only 10 most frequent annotations in low-quality files shown). There was a total of 269 proteins, 349 antibodies and 212 biological sample types.
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sequencing files by quality, and unfortunately there are no guidelines
for specific experimental conditions, such as RNA-seq in liver cells or
CTCF ChIP-seq in blood cells. Other large-scale repositories of NGS
files may propose their own guidelines, such as the Cistrome project,
which defines thresholds for six quality features to differentiate
low- and high-quality files. Yet, in the Cistrome data portal (15), the
relevance of the features under specific conditions and the best
combination of features to make a final decision remain unclear.

Taken together, using all available tools and guidelines, it remains
challenging or impossible to know the relevance of each quality
feature under different experimental conditions and to know what
combination of features and threshold values would provide an
accurate classification of files by quality.

To better define the relevance and scope of application of quality
features, we have used the ENCODE repository, which contains a
large number of high- and low-quality NGS data that have been
labelled as released or revoked, respectively (16, 17). The ENCODE
curators manually decided the quality of submitted files after
reviewing multiple quality features (18, 19). We used 2,098 curated
files and focused our work on four types of features: a first set from
the analysis of raw quality scores, a second set from genome
mapping statistics, and two more sets from downstream analysis
tools that call peaks in the mapped data (genomic localization and
TSS-relative position). As the files have been generated using
common sequencing protocols in various laboratories, they reflect
routinely produced data. More specific protocols are not included
in this work although theymay be relevant to study quality (e.g., recent
PCR-free methods). After the evaluation of the current ENCODE and
Cistrome guidelines, we studied the relevance of the selected quality
features by deriving their discriminative and classifying power. Finally,
we derived machine learning–based decision trees and created a
public web interface to explore our data-driven guidelines.

Results

Assessment of available quality information

ENCODE
As part of its general NGS guidelines, the ENCODE project has published
some numerical guidelines for the release of NGS experiments in their
repository. They are defined as a minimal number of uniquely mapped
reads, aligned reads, or useable fragments in different assays. To assess
the relevance of these guidelines, we compared them with actual

quality features derived from many ENCODE data files in relation to
the manually annotated quality status of those files (see Fig 1 for an
overview of the data, Fig 2 for the pipeline that derives quality
features and Fig 3 for the comparison).

The distributions of aligned reads are depicted for H3K9me3
ChIP-Seq and RNA-Seq files in Fig 3A. For H3K9me3, the low-quality
files do have in general smaller numbers of aligned reads, but half
of the high-quality files do not reach the given guideline of at least
45 million reads (blue dashed line). For RNA-seq, the guideline at 30
million reads (red dashed line) cannot differentiate between high-
and low-quality files, as more than 75% of each type of files is above
the value.

For DNase-Seq, ENCODE provides aminimumof 20million uniquely
mapped reads as a guideline for good quality (orange dashed line
in Fig 3B). Low- and high-quality files have similar distributions of
uniquely mapped reads and the guideline matches the median
value. Hence, the number of uniquely mapped reads does not
seem to offer reliable information about the quality of the files.

The distributions of the number of useable fragments for good
and bad quality ChIP-seq files display more differences for files
related to broad peak experiments than for files related to narrow
peak experiments (Fig 3C). Whatever the file quality, ENCODE
guidelines are either seldom met (broad peak data) or always met
(narrow peak data).

Overall, the numerical ENCODE guidelines alone cannot be seen
as a reliable measurement for quality. Yet, the features they are
based on may be more useful if integrated in specific classification
algorithms or if applied to data subsets defining particular experi-
mental conditions.

Assessment of available quality information

Cistrome
Another source of NGS data with quality information is the Cistrome
database, which gathers NGS data for DNA–protein interaction and
chromatin accessibility assays (15). Cistrome computes six quality
features using their own quality control pipeline (20) and defines
six corresponding threshold values, considered here as guidelines,
to flag good or bad quality files if the feature is greater or lower than
the threshold, respectively.

The distributions of the feature values depending on the number
of low-quality flags found for the other features are shown in Fig 4A
for the complete set of available data files in Cistrome. We can
observe that guideline values, in general, poorly separate low- and

Figure 2. Methods to identify features of possible
importance towards assessing the quality of a file.
High- and low-quality files are defined using their label
in ENCODE (released and revoked, respectively). The raw
FastQ files are used as input for FastQC and Bowtie2
tools, respectively returning RAW and MAP feature sets.
The mapped reads from Bowtie2 are used as input for
ChIPseeker and ChIPpeakAnno packages, returning
the LOC and MAP feature sets, respectively.
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high-quality files. Yet, the uniquely mapped ratio seems to have
some discriminative power for files associated with four bad flags.

In addition to comparing distributions, we computed pairwise
Pearson’s correlation coefficients between the features (Fig 4B) and
Pearson’s, Spearman's and Kendall's correlation coefficients be-
tween the features and the number of additional bad flags (Fig 4C).
Pairwise correlation (Fig 4B) indicates that the three more com-
plex features, which correspond to peak analysis, correlate posi-
tively with each other. The strongest correlation (r = 0.54) between
fraction of reads in peak (FRiP) and PeaksFoldChangeAbove10 could
be expected because a high FRiPs is likely to lead to more peaks
with high fold change. Regarding the correlation of features with
number of low-quality flags of the other features (Fig 4C), for an

informative feature, we would expect a negative coefficient. Al-
though coefficients were negative, they were moderate in absolute
value (<0.33). Stronger correlation coefficients were associated with
the more complex features. PCR bottleneck coefficient (PBC) showed
virtually no correlation.

Taken together, Cistrome’s guidelines do not offer a powerful
solution to differentiate low- and high-quality data files: related
quality features are mostly inconsistent with each other (no strong
correlation with the number of bad flags from other features) and
features with highest potential are partly redundant with each other.

Relevance of quality features in experimental conditions

According to the ENCODE metadata of a total of 2,098 files, high-
level subsets that grouped files by organism, assay, and run type
could be highly biased towards a few biological samples or, for
ChIP-seq, a few protein or antibody targets (e.g., see subset mouse
single-end control Chip-seq on page 16 of Supplementary_trees.pdf
file [Supplemental Data 1]). Therefore, to define more practical
guidelines that would take into account possible differences be-
tween experimental conditions, we focused our analysis on lower
level subsets and derived 47 quality features (see Fig 1 and Table S1)
from the related NGS files to study their ability to differentiate low-
and high-quality files.

We defined subsets of data files in three groups by unique
combinations of the following parameters from the metadata:

• Group A: subsets defined by assay title, organism, run type and
biological sample.

• Group B: subsets defined by assay title, organism, run type and
protein target.

• Group C: subsets defined by assay title, organism, run type,
protein target and antibody.

The number of all subsets is 436 for subset group A, 354 for B and
461 for C. We focused our analysis on subsets with at least 10 files: 38
subsets in group A, 41 in B and 33 in C. We could not study a group
gathering all parameters of groups A and B or C because it resulted
in only one subset with at least 10 files.

Within each of the three groups of subsets and considering a
given feature, differences could be observed between subsets. For
example, in group A, for subsets related to mouse paired-ended
(PE) DNAse-seq, the percentage of reads located between +4,000
and +5,000 bp relative to TSSs (TSS_+4500) was significant for brain
tissues but not for limbs (Table S2); in group B, for subsets related to
mouse single-ended (SE) histone ChIP-seq, the percentage of reads
that could be mapped to the reference genome (MAP_MI_over-
all_mapping) was significant for all histone marks but not for
H3K36me3 (Table S3); in group C for subsets related to CTCF mouse
SE ChIP-seq, the percentage of reads that were mapped to multiple
locations of the reference genome (MAP_MI_multiple_mapping)
was significant for antibody ENCAB210NHK but not for antibody
ENCAB000AFQ (Table S4).

To enable observation of quality features for any experimental
condition in our dataset, we have implemented an interactive dash-
board publicly available at https://cbdm.uni-mainz.de/ngs-guidelines.
From this web interface, users can select specific experimental

Figure 3. Comparison of themanually curated quality and the guidelines given
by ENCODE for high-quality files.
Horizontal dashed lines are minimal values given as guidelines. Guidelines as
well as files are all from ENCODE version 3 (2013–2018). (A) Number of aligned
reads for H3K9me3, ChIP-Seq, and RNA-Seq. The blue dashed line denotes 45
million reads given as minimal guideline for H3K9me3 ChIP-Seq and the red line
denotes 30 million reads given as minimal guideline for RNA-Seq. (B) Uniquely
mapped reads for DNAse-Seq data. The orange dashed line indicates the
ENCODE guideline of 20 million reads. (C) Useable fragments for narrow and
broad peak ChIP-Seq. The blue dashed line is at 45million and the red dashed line
at 20 million, indicating ENCODEs guidelines for broad and narrow peak data,
respectively.
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conditions to reproduce our subsets or to visualize statistics for
custom higher- and also lower-level subsets (Fig 5). The three tabs in
the web interface, from left to right, are dedicated to detailed
statistics on each feature, assay and antibody, respectively. The
first tab was used to create Fig 5 and is especially suited to assess
a file’s quality using selected features. The assay tab gives an
overview of the quality features and the underlying data of user-
defined subsets. The antibody tab is not only useable for quality
classification, but can also be used to search for antibodies that
have been used for a target of interest; if there is information
about multiple antibodies a user can pick the one with the best
performance (see Fig S1).

Power of each quality feature

To assess the power of each quality feature in each data subset, we
first performed statistical tests to know if average feature values
per quality are significantly different. We also calculated areas
under Receiver Operating Characteristic curves (auROC) to assess
classification power of the features in the data subsets.

Results of the statistical tests are summarized in Fig 6, which
shows the number of subsets in which each feature was found to be

significant to differentiate files by quality for the three groups of
subsets and three different false discovery rate (FDR) thresholds.
The genome mapping features set (MAP) dominate the plot for all
FDR thresholds. Raw reads statistical features (RAW) are also
frequently found, especially for the lowest FDR threshold. Overall, 21
of the 47 features appear in the top 10 selected for each group and
the three FDR thresholds. FDR values computed for each subset and
each quality feature can be seen in the interactive online dashboard.
At the bottom of the view, there is a table containing subsets ordered
by descriptive parameters and respective FDRs.

Table 1 shows the average auROC value for each feature, cal-
culated across each subset containing at least 10 files in the same
group. The confidence of the classification based on one feature
differed greatly depending on the subsets.

Most notably, the mapping features have all high predictive
power with auROC values up to 0.86. Interestingly, many of FastQCs
features have low predictive power or are even close to random
(auROC = 0.50), such as sequence length distribution statistics. The
difference in classification power of paired-end features for the
mapping statistics (MAP_PE) between subsets from group A and
the others, is likely due to the fact that more than half paired-end
files are DNAse-Seq files, which are only found in group A.

Figure 4. Six features used for quality assessment in the Cistrome database.
(A) From left to right: FastQC’s raw sequence median quality score (5), uniquely mapped reads ratio of BWA’s mapping (7), PCR bottleneck coefficient (PBC), fraction of
reads in peaks (FRiP) (17), proportion of the 500most significant peaks overlapping with a union of DNase-seq peaks derived from ENCODE files (PeaksUnionDHSRatio) (20,
34), and number of peaks called by MACS2 with a fold change above 10 (PeaksFoldChangeAbove10). The thresholds for the features are: 0.25, 0.6, 0.8, 0.01, 0.7, and 500,
respectively. The x-axis shows how many quality flags were indicating low quality excluding the flag of feature being represented. Boxplots do not show outlier points.
(B) Pairwise Pearson’s correlation coefficients of Cistrome’s features. (C) Pearson’s, Spearman’s and Kendall’s correlation coefficients of each Cistrome’s feature with the
number of low-quality flags of the other features.
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Contrary to statistical tests, the auROC calculations do not take into
account the sample size and variance. Therefore, the reliability of indi-
vidual values is limited for the many small-sized subsets in this analysis
but median values as shown in this summary may be seen as a more
robust evaluation. This robustness is suggestedby theagreementwith the
statistical tests, which also find MAP features the most powerful. Results
for higher level subsets are available as Supplementary information (see
Fig S2 and Table S5 for group 1 and Fig S3 and Table S6 for group 2).

Decision trees as practical guidelines

We derived practical guidelines for NGS scientists by using decision
trees combining multiple features for classifying files by quality in
our data subsets (Supplementary_trees.pdf [Supplemental Data 1]).
These trees can be used for a more illustrated view on how to use
our features as guidelines. Fig 7 shows two examples built during
the learning phase of a CART decision tree (21). A first example tree

Figure 5. Comparing features in custom subsets using the dashboard.
The data were filtered for polyA plus RNA-seq files, a higher level data subset compared to subsets defined for groups A, B, and C. Two example features were selected:
per sequence quality score (top row) andmultiplemapping (bottom row). On the left-hand side, boxplots show the distributions of values for high- (blue) and low-quality
(orange) files for the respective features. On the right-hand side, the histograms of values are shown. Yet, using the dashboard, we can conclude that themultiple mapping
feature is more powerful than per sequence quality score to differentiate files by quality.
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Figure 6. Top features most often significant to differentiate files by quality in each of the three subset groups.
For each of the three subset groups (A, B, and C), the number of subsets (y-axis) in which a quality feature is significant is shown. Subsets have aminimum of 10 files and
the P-value cutoff for significance is defined as either 0.01 (top row), 0.001 (middle row) or 0.0001 (bottom row). The total number of subsets in each subset group is 436 for
subset group A, 354 for B and 461 for C. The number of subsets with at least 10 files in each subset group is 38 for subset group A, 41 for B and 33 for C.
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related to human single-end H3K4me1 ChIP-seq needs the maxi-
mum depth of three splits to perfectly classify the files (accuracy =
100%). The tree first splits the data at a value of 15.68% for
the percentage of multiply mapped reads (MAP_SE_multiple) by
checking which files have values that are smaller or equal to the
threshold (top node). This holds true for nine files, which are mostly
of low quality (left branch). The next split on the left branch uses the
percentage of reads located in non-first introns (LOC_Other_Intron)
at a value of 34.072%; this time, all seven files below the threshold
are of low-quality (first leaf from the left) and the other files of high-
quality (second leaf). From 21 files on the right branch, 13 high-
quality files (last leaf) have a percentage equal or <2.466% of reads
located between +2,000 and +3,000 bp of TSS regions (TSS_+2500).
The remaining eight files are further divided in either five low-
quality files that are associated with a percentage equal or <3.701%
of reads located between +0 and +1,000 bp of TSS regions
(TSS_+500), or three high-quality files otherwise. A second example
tree related to human single-end CTCF ChIP-seq on Fig 7 needs only
two splits to also perfectly classify the files (accuracy = 100%). The
performance of all the trees on their training set is summarized in
Table S7. Results for higher level subsets as well as trees for all
subsets, including many trees that require only one split node to
achieve 100% accuracy, are given in the supplementary material:
Supplementary_trees.pdf (Supplemental Data 1).

Discussion

Although next-generation sequencing has been in use for years,
certainty in quality control can still not be achieved (22). We assessed
existing quality guidelines (15, 18) and implemented data-driven
approach with a set of features derived from different common
QC and analysis tools because existing guidelines could not be used
to safely distinguish high- from low-quality NGS files. The popular
ENCODE guidelines offer a standard to guide the production of new
results, but do not accurately represent the curated labels provided
by the ENCODE’s internal quality control procedure (Fig 3), which
were used as quality classes for this work. Cistrome is another
valuable repository of functional genomics data that also provides
some features that give information about quality. However, they

Table 1. Average classification performance of the quality features in
each subset group.

Quality feature Group A Group B Group C

RAW_Basic_Statistics 0.500 0.500 0.500

RAW_Per_base_sequence_quality 0.681 0.738 0.747

RAW_Per_tile_sequence_quality 0.645 0.668 0.658

RAW_Per_sequence_quality_scores 0.693 0.738 0.754

RAW_Per_base_sequence_content 0.650 0.622 0.632

RAW_Per_sequence_GC_content 0.684 0.686 0.652

RAW_Per_base_N_content 0.674 0.732 0.745

RAW_Sequence_Length_Distribution 0.502 0.523 0.511

RAW_Sequence_Duplication_Levels 0.606 0.586 0.602

RAW_Overrepresented_sequences 0.771 0.763 0.740

RAW_Adapter_Content 0.551 0.526 0.538

RAW_Kmer_Content 0.559 0.574 0.549

MAP_SE_no_mapping 0.840 0.817 0.841

MAP_SE_uniquely 0.829 0.821 0.850

MAP_SE_multiple 0.860 0.805 0.859

MAP_SE_overall 0.840 0.817 0.841

MAP_MI_no_mapping 0.837 0.809 0.825

MAP_MI_uniquely 0.839 0.817 0.841

MAP_MI_multiple 0.847 0.798 0.841

MAP_MI_overall 0.846 0.810 0.827

LOC_Promoter 0.719 0.717 0.717

LOC_5_UTR 0.706 0.692 0.687

LOC_3_UTR 0.745 0.711 0.725

LOC_1st_Exon 0.699 0.688 0.702

LOC_Other_Exon 0.733 0.724 0.733

LOC_1st_Intron 0.687 0.716 0.705

LOC_Other_Intron 0.686 0.717 0.697

LOC_Downstream 0.681 0.688 0.697

LOC_Distal_Intergenic 0.727 0.719 0.710

TSS_−4500 0.690 0.692 0.676

TSS_−3500 0.696 0.707 0.710

TSS_−2500 0.682 0.694 0.699

TSS_−1500 0.702 0.685 0.708

TSS_−500 0.703 0.731 0.723

TSS_+500 0.706 0.718 0.718

TSS_+1500 0.686 0.702 0.724

TSS_+2500 0.691 0.709 0.722

TSS_+3500 0.677 0.703 0.712

TSS_+4500 0.691 0.692 0.701

MAP_PE_con_no_mapping 0.833 0.711 0.711

MAP_PE_con_uniquely 0.852 0.772 0.772

MAP_PE_con_multiple 0.830 0.708 0.708

(Continued on following page)

Table 1. Continued

Quality feature Group A Group B Group C

MAP_PE_dis_uniquely 0.771 0.676 0.676

MAP_PE_cod_no_mapping 0.837 0.626 0.626

MAP_PE_cod_uniquely 0.773 0.673 0.673

MAP_PE_cod_multiple 0.849 0.655 0.655

MAP_PE_overall 0.853 0.724 0.724

Classification performance is measured as area under Receiver Operating
Characteristic curve (auROC) from 0.5 for a random classification and 1.0 for a
perfect classification. MAP features perform best over all three groups. The
RAW features that perform well do so over all three groups. For LOC and TSS
only some of the features show good performance on average; however, these
still can be more important for some of the subsets in each group.
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proved not to be practical enough (Fig 4). Moreover, guidelines
derived from either ENCODE or Cistrome do not take into account
potential differences between cell types or ChIP protein and anti-
body targets that could have an impact on quality metrics. Therefore,
we derived data-driven guidelines by studying 47 selected features in
high- and low-level subsets of 2,098 manually labelled data files,
covering experiments specific to particular biological samples, ChIP
protein targets or antibodies. We observed that in higher levels of the
data, when dividing the data only by organism, runtype and assay,
good classification results should be carefully checked against
possible biases in data composition (e.g., over-representation of a
few cell types). Therefore, we divided our dataset further into smaller
less-biased subsets and found that some features differ significantly
in their discriminative powerwhendifferent cell types or ChIP protein
and antibody targets are taken into account.

Our guidelines can be viewed in the form of decision trees,
available as supplementary material, and together with an interactive
web interface on our website under the following link: https://cbdm.
uni-mainz.de/ngs-guidelines. They can be used as a reference to classify
the quality of a file. In the interactive view, a user can choose to filter for
particular experimental conditions such as ChIP targets and evaluate the
relevance of the quality features by comparing all files with the same
targets. In addition, it is possible to observe which antibodies were used
to target a protein, which in turn canbehelpful to choose anantibody for
a new experiment. Each of the 47 studied features, except the basic
statistics from FastQC (RAW_Basic_statistics), can hold valuable quality
information depending on the NGS experimental settings (e.g., assay,

biological sample or ChIP protein target). This is supported by the
presence of a great variety of features in the different top 10 rankings
in Fig 6 (21 out of 47 features). Some features do perform better
overall although, especially the genome mapping (MAP) features,
which are high-performing in statistical tests and were often selected
to split nodes in the decision trees (Fig 6 and Table 1). Interestingly,
there weremultiple biological samples that were difficult to discriminate
by quality using statistical tests. For example, in human paired-end
transcription-factor ChIP-seq of HEK293 or HepG2 cells, none of the
47 features were significant (FDR > 0.05). Also, for human transcription-
factor ChIP-seq, files related to HepG2 cells had no significant features
for the PE files but four features were significant for SE files. All quality
features used in this study can be derived on new files using publicly
available bioinformatics software (3, 5, 6, 19, 23).

The main limitations of our study are related to the relatively low
number of available manually annotated low-quality files (n = 1,049),
the imperfect matching of high-quality files in various subsets (only
matched by organism, run type and assay), and the use of only one
source of data, which is ENCODE. Because a perfectly balanced
dataset may not substantially increase the number of studied data
subsets or reduce observed biases, future work should focus on
comprehensiveness of the guidelines in terms of metadata (e.g.,
species, assay, biological samples and ChIP protein and antibody
targets). Because other resources such as Cistrome do not clearly
classify their files for quality (e.g., offering a binary classification),
they were not used to derive guidelines in this study. However,
provided manual or accurate automatic processing, multiple online

Figure 7. Decision trees derived with the CART algorithm.
The Gini-criterion is used and amaximum depth of three was set. The two decision trees are related to human single-ended (SE) H3K4me1 ChIP-seq (left-hand side; p58
in Supplemental Data 1) and human SE CTCF ChIP-seq (right-hand side, p64 in Supplementary trees file [Supplemental Data 1]) and achieve 100% accuracy to classify
related files by quality. Every split node contains the number of files in the node (samples) and the files’ true classification of quality (samples by class = [high-quality files,
low-quality files]), as well as the prediction for this node (predicted class). At the bottom of every node, the quality feature that will be used for the split and the
corresponding threshold are given. MAP_SE_multiple: percentage of reads that are mapped to multiple genomic locations in a SE experiment; LOC_Other_Intron:
percentage of reads in non-first intron regions; TSS_+2500 and TSS_+500: percentage of reads in [2,000, 3,000] or [0, 1,000] bp region, respectively, relative to transcription
start sites; MAP_SE_no_mapping: percentage of reads that could not be mapped to reference genome in a SE experiment; LOC_Distal_Intergenic: Percentage of reads in
distal intergenic regions.

Statistical NGS quality control guidelines Sprang et al. https://doi.org/10.26508/lsa.202101113 vol 4 | no 11 | e202101113 9 of 13

https://cbdm.uni-mainz.de/ngs-guidelines
https://cbdm.uni-mainz.de/ngs-guidelines
https://doi.org/10.26508/lsa.202101113


resources may prove valuable in the future to extend the quality
guidelines (15, 24, 25, 26).

Our study is also limited to functional genomics assays and to
our selection of quality features, which were still able to dis-
criminate accurately files by quality in various data subsets using
decision trees or, in a previous work, more advanced machine-
learning algorithms (3). Thus, additional assay-specific features
may not contribute significantly to classification performance for
those assays but may be instrumental for other NGS applications
such as molecular diagnosis and variant detection (27, 28, 29).
Compared to more advanced algorithms such as Random Forest,
decision trees have the advantage of comprehensibility that is
required here for offering practical guidelines, but the disadvan-
tage to be unstable by high sensitivity to small changes in the
training data or changes in the parameters (30). Therefore, our
guidelines only offer one solution among others for the classifi-
cation of a given set of NGS files. Selecting the most appropriate or
representative tree may be achieved by a multi-criteria decision
analysis–based process (31). Importantly, we enabled the estimation of
the reliability of our results by providing statistics related to sample
size, compositional bias, and also P-values for statistical tests.

Several considerations should be taken into account when using
our guidelines. The low number of files of some of our subsets limits
the reliability of related decision trees and statistical tests, al-
though we tried to account for this by restricting our analyses to
subsets with a minimum number of files. Large biases in the com-
position of the data subsets towards a single or few cell types or ChIP
targets may call into question the guidelines, affecting the results of
some statistical tests and decision trees. Biases can also prevent
statistical tests from finding true differences between low- and high-
quality files. Nevertheless, some decision trees may split the data
explaining biases into dedicated branches. It should be mentioned
that even if many of the trees could correctly divide the subsets by
quality with only one feature, a user should always consider to observe
the detailed distribution of values of the feature using the interactive
dashboard and also consider other features. The most reliable results
will be generated from data subsets where low- or high-quality files
represent homogeneously a large variety of experimental conditions.

In the future, it will be interesting to build a database or augment
an existing one with the possibility to label the data by quality. This
could be done with manual and/or machine-learning algorithms
and would help to overcome the current biases in the labelled sets
of NGS experiments leading to newly derived guidelines. However,
this will require careful manual work to ensure the highest stan-
dard of the derived guidelines. We cannot stress enough that an
important contribution to this effort should be the deposition in the
databases of low-quality data annotated as such by the labora-
tories that produce them.

As conclusion, we provided guidelines for the community to
assess the quality of NGS data files and to better understand
differences and relevance of quality features in specific experi-
mental conditions. These guidelines can be used to evaluate al-
ready available but unlabeled data files as well as newly created
ones. They can also be used for the planning of a new NGS ex-
periment because they allow the identification of antibodies that
have shown bad performance in the past. To allow further im-
provements of such guidelines, we recommend researchers to

release publicly low-quality data and negative results. Publishers,
databases, and funding agencies should think of mechanisms to
encourage and reward such an activity, which is counter-intuitively
beneficial for scientific development.

Materials and Methods

ENCODE dataset and quality features

Ourmain dataset was downloaded from ENCODE and contains 1,049
low-quality files found as of 21 November 2019, and 1,049 high-
quality files randomly selected from the database to match low-
quality files by assay category (RNA-seq, ChIP-seq, and DNase-seq),
organism (human and mouse) and run type (SE- and PE) to ensure
an overall balanced dataset (Fig 1A). Lower levels of details are not
balanced (Fig 1B–I). ENCODE manually labels these files as either
revoked or released, respectively. We derived four feature sets from
different QC- or analysis tools (Fig 2 and Table S1).

Because FastQC is the most commonly used QC tool for NGS, we
used its summary statistics in which 11 quality features are flagged
as either pass, warning or fail. These featureswith their respectiveflags
were used to define our first feature set RAW (raw-read statistics).

While these features are computed from the raw data, others
require mapping the reads to a reference genome first. A tool
commonly used for mapping is Bowtie2, which was chosen for its
popularity and applicability to different assays. To derive biologi-
cally meaningful insights other mapping tools could work better.
For example, splice-aware mappers such as HISAT2 or STAR (8, 23)
would be a better choice for RNA-seq. Bowtie2 aligns reads to
long reference genomes using an index method based on the
Burrows–Wheeler Transform (6). The mapping statistics are used as
quality features and describe the percentage of unmapped reads,
as well as uniquely or multiply mapped reads and the overall
mapping rate. These features are denoted as MAP (mapping-
statistics features). In case of SE or PE files, those features are
referred to as MAP_SE or MAP_PE, respectively. To allow specific
comparison of single- and PE files, we created a set of MAP features
called MAP_MI (mix between SE and PE). For single- or PE files,
MAP_MI features are equal to either MAP_SE features or MAP_PE of
concordant reads, respectively.

ChIPseeker implements a function to associate mapped reads
with genomic features and is used to extract the third feature set,
denoted as LOC (genomic localization features) (32). It is composed
of nine features describing the distribution of reads mapped within
promoter regions, first and following introns, 59UTRs, first and
following exons, 39UTRs, distal intergenic regions and regions
downstream proximal to the 39UTR. ChipPeakAnno is used for the
fourth feature set TSS, describing the distributions of reads near
TSSs in the genome (33). Reads were counted in 10 bins defined
within the 5 kb region up- and downstream of all TSS regions,
resulting in 10 features identified by bin central relative coordinates
(e.g., TSS_-4500 denoted the genomic region from −5 to −4 kb relative
to the TSS regions).

To reduce RAM memory requirements during calculations, LOC
and TSS features were computed from 1 million randomly sampled
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mapped reads in each FastQ file. For paired-end files, the RAW
features were derived independently for each of the two mate files,
whereasMAP, LOC, and TSS features were derived for the pair ofmate
files itself. To reduce redundancy in the dataset, we filtered out the
RAW features for the second mate of each pair. The largest files that
were created in this step of data preprocessing are the FastQ and
BAM files that have a summed size of 5.6 TB and 2 TB, respectively.

The data subsets

The ENCODE dataset was divided into subsets of files organized in
five groups (1, 2, A, B, and C) according to their experimental pa-
rameters. Groups 1 and 2 represent high-level subsets and are
described in supplementary files, whereas lower level subsets (A, B,
and C) are analyzed in the main text. Group 1 divides the data by
organism (mouse or human), assay (e.g., ChIP-seq), and run type
(single- or paired-end), resulting in six subsets, whereas group 2
uses assay title (e.g., histone ChIP-seq) instead of assay and results
in 14 subsets. In the other groups, the total number of subsets in
each subset group is 436 for subset group A, 354 for B, and 461 for C.
There are 38 subsets each with at least 10 files in group A, ap-
portioned by organism, run type, assay title, and biological sample.
For example, one subset in group A contains 34 files all related to
human paired-end DNase-seq in the thyroid gland. Group B con-
sists of 41 subsets each with at least 10 files, apportioned by or-
ganism, run type, assay title and ChIP protein target. For example, a
subset in group B contains 24 files all related to mouse single-end
histone ChIP-seq of H3K4me3. The third group C adds the antibody
to the criteria of group B and has 33 subsets of at least 10 files. For
example, a subset in group C contains 16 files all related to mouse
single-end transcription factor ChIP-seq of CTCF targeted with the
antibody ENCAB210NHK (ENCODE antibody identifier). The full list of
subsets is available in supplementary material: Supplementary_
trees.pdf (Supplemental Data 1).

Cistrome

We obtained the data for 47,201 files in the Cistrome database as of
November 2020. Files were considered to be outliers if they had a
FastQC sequence median quality score higher than 100 or a uniquely
mapped reads ratio >1. A total of 235 outliers were identified and
discarded, resulting in a dataset of 46,966 files. The quality features
for all these files are provided by the Cistrome database as a csv file.

The following Cistrome’s quality features denote high-quality
files if the associated metrics are above the thresholds given as
defined below:

- FASTQC: FastQCs raw sequence median quality score is >25%.
- UniquelyMappedRatio: The uniquelymapped read ratio computed
with BWA is >60% (7).

- PBC: The PCR bottleneck coefficient, which is the number of locations
with exactly one uniquely mapped read divided by the number of
unique locations, is >80%.

- FRiP: The FRiP score, which is the fraction of uniquely mapped
reads from autosomal chromosomes that are overlapping with
MACS2 peaks, is >1% (19).

- PeaksUnionDHSRatio: The union DHS (DNase I hypersensitive
sites) overlap, which is the proportion of the 5,000 most signif-
icant peaks that overlap with a union of DNase-seq peaks (de-
rived by merging all DNAse-Seq data from ENCODE) is >70% (34).

- PeaksFoldChangeAbove10: Number of confident peaks (fold
change >10) called by MACS2 is >500 (threshold derived from a
plot on Cistrome’s website) (34).

Statistical analysis

Because we have both ordinal and quantitative features, and some
of the quantitative features are not normally distributed (according
to a Shapiro–Wilk test), we performed a Wilcoxon–Mann–Whitney
test to assess the significance of the difference in the values of a
feature between high- and low-quality files within each subset of
files. To account for multiple testing, we calculated the FDR with the
Benjamini–Hochberg method (35) within each group of subsets.

We also assessed the features’ classification power by the area
under Receiver Operating Characteristic curve (auROC). The feature
values are used as predictors for the quality class and set against
the true as well as the inverted quality vector. The greater of the two
resulting auROCs is used as the classification power of the re-
spective feature. Decision trees were computed using scikit-learn’s
CART algorithm.

Plotting

All plots were produced in Python, with the help of the pandas,
matplotlib, graphviz, and Seaborn packages (36, 37, 38, 39). Decision
trees are part of the scikit-learn package (40).

Data Availability

Public data are used in this study and available at the ENCODE
project’s website: https://www.encodeproject.org.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101113.
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