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Prediction of recurrence in early 
stage non-small cell lung cancer 
using computer extracted nuclear 
features from digital H&E images
Xiangxue Wang1, Andrew Janowczyk1, Yu Zhou1, Rajat Thawani1, Pingfu Fu1, Kurt Schalper3, 
Vamsidhar Velcheti2 & Anant Madabhushi1

Identification of patients with early stage non-small cell lung cancer (NSCLC) with high risk of recurrence 
could help identify patients who would receive additional benefit from adjuvant therapy. In this work, 
we present a computational histomorphometric image classifier using nuclear orientation, texture, 
shape, and tumor architecture to predict disease recurrence in early stage NSCLC from digitized H&E 
tissue microarray (TMA) slides. Using a retrospective cohort of early stage NSCLC patients (Cohort 
#1, n = 70), we constructed a supervised classification model involving the most predictive features 
associated with disease recurrence. This model was then validated on two independent sets of early 
stage NSCLC patients, Cohort #2 (n = 119) and Cohort #3 (n = 116). The model yielded an accuracy 
of 81% for prediction of recurrence in the training Cohort #1, 82% and 75% in the validation Cohorts 
#2 and #3 respectively. A multivariable Cox proportional hazard model of Cohort #2, incorporating 
gender and traditional prognostic variables such as nodal status and stage indicated that the computer 
extracted histomorphometric score was an independent prognostic factor (hazard ratio = 20.81, 95% CI: 
6.42–67.52, P < 0.001).

Lung cancer is the most common cause of cancer related mortality in the world1. Non-small cell lung cancer 
(NSCLC) accounts for approximately 80% of all lung malignancies. Early stage NSCLC (stage I-II) patients are 
typically treated with complete surgical resection of the tumor. However, even after the entire resection of the 
tumor, 30–55% of patients will develop disease recurrence within the first 5 years of surgery2.

The ability to identify patients with high risk for recurrence following surgical resection can help with surveil-
lance plans and potentially personalize adjuvant therapy for these patients3,4. There is, unfortunately, a paucity of 
validated predictive models and companion diagnostic assays for guiding treatment decisions regarding adjuvant 
chemotherapy in early stage NSCLC patients4–6.

Several clinic-pathological factors are known to be associated with recurrence in early stage NSCLC, such as 
tumor size (T-stage), nodal involvement (N-Stage), and smoking history7–9. Numerous studies have suggested the 
prognostic importance of nuclear morphometric features from Hematoxylin and Eosin (H&E) stained images 
in the context of various malignancies10–17. In NSCLC, malignant cells tend to have abnormally accelerated cell 
cycles and often manifest with large hyperchromatic nuclei and tend to grow invasively leading to irregular 
nuclear shapes. Benign cells which are globally regulated by the genetic code tend to be more circular and have 
a smaller variance in shape and size18. Additionally, the nuclear membrane of malignant cells tends to wrinkle in 
order to accommodate extra chromosomes (i.e., aneuploidy, or aneusomy) or chromatin content due to altered 
cell division. These changes could potentially be captured by mathematical measurements of nuclear texture 
(spatial pixel intensity and variation within nuclear area)19. Non-tumor cells lacking genetic and chromosomal 
aberrations differ from fast-duplicating malignant nuclei and display distinct textural patterns.

With the digitization of tissue slides, there has been recent interest in the role of computer assisted digital 
analysis of pathology specimens. Some research groups have applied computational imaging approaches to dig-
itized tissue slides of lung cancer to predict outcome. Yu et al. found that Zernike shape features of nuclei and 
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cytoplasm could stratify patients based on their risk of post-surgery recurrence in both stage I adenocarcinoma 
and squamous cell carcinoma17. They selected the densest image tiles from the whole slide histopathology image 
of NSCLC to conduct the image analysis and leveraged the machine-learning tools to classify each tile representa-
tion into either recurrence or non-recurrence. The authors first build a histomorphometric classifier using nuclear 
shape and texture features to distinguish the tumors into adenocarcinomas versus squamous cell carcinomas, 
the area under the receiver operating characteristic (ROC) curve (AUC) being 0.72. Then for each histologic 
subtype, nuclear morphometric classifiers were constructed to distinguish short-term and long-term survivors 
(log-rank test p value = 0.0023 for stage I adenocarcinoma, and log-rank test p value = 0.035 for squamous cell 
carcinoma)17.

While Yu et al. showed that nuclear shape and texture were clearly implicated in prediction of recurrence in 
early stage NSCLC, recent work by Friedl et al.20 suggests more aggressive tumor cells are prone to coordinate as 
a group and function as large cellular clusters. This, in turn, suggests that quantitative measurements of nuclear 
architecture and spatial arrangement might be different between low and high risk for disease recurrence in 
patients with early stage NSCLC. By considering each nucleus in the image as a vertex of a graph and connect-
ing the graph vertices with edges, one can construct different spatial maps (e.g., Voronoi, Delaunay, Minimum 
Spanning Tree) of nuclear arrangement. Quantitative measurements of nuclear arrangement such as inter-vertex 
distance or nuclear density can then be mined from these graphical representations. Doyle et al.21,22 have shown 
that such representations of nuclear architecture are useful in predicting breast cancer grade. These have also been 
used for predicting disease progression in p16+ oropharyngeal cancers10 and biochemical recurrence in prostate 
cancer11.

In this work, we employ histomorphometric analysis to extract quantitative measurements of nuclear archi-
tecture, texture, and shape of the tumor from digitized H&E tissue microarray (TMA) slides and then identify 
the association of these features with recurrence in early stage NSCLC. Specifically, we employ feature selection 
to identify the most predictive of the extracted features for identifying patients at high risk for recurrence using a 
learning cohort of early stage NSCLC patients (Cohort #1, n = 70). The most predictive features associated with 
disease recurrence are then used in conjunction with a machine learning classifier to build a predictive model 
for predicting recurrence. The machine learning model was then independently validated in a separate cohort 
of early stage NSCLC patients (Cohort #2, n = 119); histologic subtype (i.e. squamous or adenocarcinoma) was 
analyzed independently. Another validation set Cohort #3 (n = 116) of early stage NSCLC patients with two 
TMA spots for each patients was used to test the robustness of the model to tumor samples obtained from dif-
ferent locations within the resected specimen. A Cox proportional hazards prognostic model23 was employed in 
conjunction with the most predictive features identified on the training set to generate continuous risk scores of 
recurrence, to enable more continuous and granular categorization of patients into hazard groups.

Materials and Methods
Patients and Tissue Microarrays.  All experimental protocols in the study were approved by the University 
Hospitals Cleveland Medical Center (UHCMC) IRB (IRB# NHR-15–55) and were not classified as “human 
subject research” according to Federal Regulations and were considered HIPAA Exempt. This study included 
H&E stained sections from three independent retrospective cohorts of NSCLC patients in the form of tissue 
microarrays (TMA). The deidentified tissue samples were obtained under an existing IRB-approved protocol at 
the Cleveland Clinic (IRB# 14–562) with Dr. Vamsidhar Velcheti as the PI which allows the use of radiographic 
images, histologic slides, and archival tissue available at the Clinic since 01/01/1990.

Cohort #1 (total n = 350) was collected in Greece between 1991 and 2001. Cohort #2 (n = 202) was collected 
at Yale Pathology between 1988 and 2003. Cohort #3 (n = 189) was collected at Cleveland Clinic between 2004 
and 2014. In Cohort #3, two tissue punches from different physical locations of the same tumor sample were 
identified, prepared, and scanned. Additionally, the two tissue punches for each patient were prepared in separate 
batches (batch #1 and batch #2) at the time of the tissue acquisition. All the patients received definitive surgery, 
either lobectomy or pneumonectomy with lymph node dissection as the primary treatment. Clinical and patho-
logical variables of patients in both cohorts were extracted from clinical records and pathology reports. TMAs 
were produced by standard procedures via surgical specimens and digitally scanned at 20x, each sample of a 
single patient was represented by a 1500 pixel × 1500 pixel image. A pathologist, to exclude absence of tumor in 
the sample, visually inspected each image sample. Only stage I and stage II patients were included in this study. 
Figure 1 illustrates the criteria for patient selection.

Nuclear Segmentation.  A deep learning approach previously presented in refs24,25 was applied to accu-
rately segment individual nuclei in each of the TMA spots, both in the training and validation sets. We adapted 
popular convolutional neural networks (CNN) to an adaptive architecture resolution, which finds pixels at a low 
magnification are likely to be nuclei, and solely investigated those pixels at a high magnification, obviating the 
computational burden of examining all pixels at the high magnification24. The result of the nuclear segmentation 
algorithm was the centroid and boundary for each nucleus identified in each of the TMA spots. A watershed26 
based segmentation approach was also included as a comparison to the deep learning approach. The second 
segmentation approach enabled us to comprehensively study the effect of nuclear segmentation on the extracted 
features and the subsequent prognosis prediction.

Feature Extraction.  Two hundred forty two image features were extracted from only pixels corresponding 
to the nuclei identified in the TMA spots. The feature categories are described below:
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•	 Global graph features (51 descriptors) - Each nuclear centroid was designated as a graph node and then all 
the nodes in each TMA spot were connected to construct a variety of global nuclear graphs. Depending on 
the type of connectivity between the nodes, i.e. Voronoi diagram27, Delaunay triangulation28, or minimum 
spanning tree28, three different global graphs were constructed for each TMA spot. From each global graph, 
51 descriptors capturing the topology and spatial relation of nuclei were captured.

•	 Local Nuclear cluster graphs10,11 (26 descriptors) – This version of the nuclear graph involves first identifying 
clusters of nuclei and then subsequently identify the centroid of the cluster. A cluster is defined by a local 
aggregation of proximally located nuclei. Cluster centroids are then used to define the nodes of the cluster 
graph. A similar set of topological and spatial relationship attributes are then mined from each local cluster 
graph defined on each TMA spot11. Unlike the global graph that reflects the micro-level, granular architec-
ture of all individual nuclei in the spot, the local cluster graph appreciates more macro-level, coarser nuclear 
arrangement.

•	 Nuclei shape features (100 descriptors) – A series of nuclear shape features are extracted from the segmented 
boundary of each nucleus. These include nuclear area, perimeter, min/max radius and Fourier transform of 
the nuclear contour29.

•	 Nuclei orientation entropy14 (39 descriptors) – In ref.14 Lee et al. identified the entropy associated with the 
nuclear directionality in prostate cancer pathology images and showed that higher nuclear disorder in orien-
tations was associated with higher risk of biochemical recurrence following radical prostatectomy. The same 
approach is employed to measure the entropy and associated disorder of nuclear orientations, the assumption 
being that recurrent disease will have higher nuclear orientation disorder and associated entropy compared 
to non-recurrent disease. The directionality of each nucleus was determined by performing principal com-
ponent analysis on the Cartesian coordinate locations on the set of boundary points of each nucleus. Second 
order statistics are calculated (e.g., contrast energy, entropy) on the orientation of all nuclei within local clus-
ters. A total of 13 second-order nuclear orientation statistics are, thus, obtained for each nuclear cluster and 
the mean, median, and standard deviation measurements for each of these statistics aggregated across all the 
clusters in the TMA spot image.

•	 Nuclei texture (26 descriptors) – Gray level co-occurrence features which capture second order joint intensity 
statistics are employed to encode the textural heterogeneity of each nucleus. A total of 13-second order tex-
ture features are computed and for each feature, the corresponding mean and standard deviation values are 
measured for each TMA spot.

Details regarding the 242 feature descriptors are provided in supplementary material Table 1.
To alleviate the issue of batch effects [24], a term that refers to variances shared by a set of specimens undergo-

ing similar preparation steps (e.g., staining and digitization30), color normalization was applied to all the images 
using the non-linear spline mapping approach described in ref.31.

Feature Selection.  Feature selection was employed to identify a subset of features that were most discrim-
inating of patients who had early versus no disease recurrence from within the larger set of 242 total features. 
A variant of the Minimum redundancy maximum relevance (mRMR)32, a feature selection approach that uses 
mutual information as a similarity measure, was employed to find a subset of the most discriminative features. 
The process of feature selection was only applied to the cases within the training set (Cohort #1). mRMR aims 
to identify a combination of features which together could maximize the joint dependency for distinguishing 
binary classes (in this case recurrence vs. non-recurrence) while minimizing the redundancy within the feature 
combination. However, our implementation of mRMR involved using it to identify the top 3 most highly ranked 
features within each feature category. Across the 5 feature categories this yielded a total of 15 features. From 

Figure 1.  Inclusion and exclusion criteria for patient selection for the training and test sets.
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within this set of 15 features, the best combination (7 features out of 15) was finally determined via quadratic 
discriminant analysis (QDA). The QDA scheme was optimized across 100 iterations of 3-fold cross-validation 
on the training set.

Classifier construction.  The classifiers implemented in our study consisted of quadratic discriminant anal-
ysis (QDA), linear discriminant analysis (LDA), and support vector machine (SVM). We fed the identical subset 
of features identified as being most predictive of recurrence and non-recurrence in our feature selection step to 
construct the three different classifiers. 70 cases from Cohort #1 were used to train and lock down the 3 different 
classifiers.

Statistical Analysis.  The overall workflow for the construction and subsequent validation of the histomor-
phometric image based classifiers for early stage lung cancer is shown in Fig. 2. To validate the prediction models 
constructed during the training phase, the following series of steps were employed. First, each digitized TMA 
image in the test set is fed to the deep learning network for segmentation of the individual nuclei. Second, image 
features identified as most predictive of early versus no or late recurrence during the learning phase by mRMR 
are extracted.

Three different classifiers (QDA, LDA, SVM) were trained on the learning set and then subsequently evaluated 
in their ability to predict risk of recurrence on the test set. Area under the Receiver operator characteristic (ROC) 
curve (AUC) for each classifier was evaluated in distinguishing early versus no or late disease recurrence on the 
training and test sets. Additionally, the Kaplan-Meier method33 was used to correlate the recurrence-free survival 
(RFS) which was measured from the date of diagnosis to the date of death or the date of disease recurrence which-
ever occurred first and censored at the date of last seen for those still alive without recurrence with the best clas-
sification results. Difference of RFS among predicted categories was examined using a log-rank test. Associations 
between the true recurrence labels and major clinical categorical variables were found by Fisher exact test34. A 
Multivariable Cox proportional regression model35 was employed to test the independent predicting capability 
of the classifier on recurrence-free survival after taking major clinical parameters into account. A second Cox 
proportional hazards prognostic model23 was employed in conjunction with the image features identified on the 
training set. This model was used to generate continuous risk scores for patients in the validation set. The risk 
score is a weighted sum of the image features, where the weights are the regression coefficients. These risk scores 
are critical as they can enable categorization of patients into more granular hazard groups. Additionally, similar 
to Yu et al. in ref.17, we also developed and evaluated histologic subtype classifiers (i.e. adenocarcinomas and 
squamous cell carcinomas) to assess whether the features identified as prognostic were different between the two 
NSCLC subtypes. All tests were 2-sided and a 0.05 significance level was set for this study. Hazard ratio (HR) and 
its 95% confidence interval were reported. All statistical analyses were performed using MatLab.

Results
The 70 patients in Cohort #1 were employed for feature discovery and classifier training during the learning 
phase. The 119 patients in Cohort #2 were used for independent validation. The 116 patients in Cohort #3, two 
tissue punches from different physical locations of the same tumor sample, were used to quantitatively assess the 
ability of our approach to deal with intra-tumoral heterogeneity. The two major NSCLC subtypes, adenocarci-
noma and squamous cell carcinoma, comprised 17 and 44 in the learning Cohort #1, 51 and 21 cases in the valida-
tion Cohort #2, 54 and 20 cases in validation Cohort #3, respectively. Baseline characteristics of the 3 cohorts are 
summarized in Table 1. The median follow-up for patients was 40.91 months, 45.33 months, and 70.94 months for 
Cohort #1, Cohort #2 and Cohort #3, respectively. By the end of the study/follow-up, 34 out of 70 patients (48.6%) 
in Cohort #1, 54 of 119 (45.4%) in Cohort #2, and 38 out of 116 (32.8%) in Cohort #3 had developed recurrence. 

Training cohort  
(Cohort #1, N = 70)

Validation cohort  
(Cohort #2, N = 119)

Validation cohort  
(Cohort #3, N = 116)

Median age 62.4 65.4 66.8

Gender

        Male (%) 84.3 47.9 55.2

        Female (%) 15.7 52.1 44.8

Stage

        I (%) 64.3 81.1 66.4

        II (%) 35.7 18.9 33.6

T-Stage

        T1 (%) 19.1 51.3 51.7

        T2 (%) 80.9 48.7 48.3

N-Stage

        N0 (%) 74.3 53.8 79.3

        N1 (%) 25.7 46.2 20.7

Non-recurrence (%) 51.4 54.6 67.2

Recurrence (%) 48.6 45.4 32.8

Table 1.  Demographic and clinical characteristics of patients in Cohort #1, Cohort #2 and Cohort #3.
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Correlation between these clinic-pathological factors and patient outcome was calculated by the Fisher exact test 
and the results illustrated in Table 2.

The seven most predictive image features identified on the learning set were nuclear graph (2), shape (2), and 
texture (3) (Table 3 and Fig. 3). The top graph features included ratio of minimum and maximum area of polygons 
within the nuclear Voronoi graph and average number of nearest neighbors within a 40-pixel radius. Mean of 
Fourier shape descriptor 4 and min/max ratio of Fourier shape descriptor 8 were identified as the most discrimi-
nating shape features. The Haralick descriptors included standard deviation of contrast variance, contrast energy, 
and contrast inverse moment. The distribution of values for these seven features is included in supplementary 
material Fig. 1.

Figure 2.  Flowchart illustrating the procedure for training and validating the quantitative histomorphometric 
classifier for distinguishing early versus no/late recurrence in early stage lung cancer.

Characteristic

Cohort 
#2 = 119, 
N (%)

No-
Recurrence = 65, 
N (%)

Recurrence = 54, 
N (%) P

Cohort 
#3 = 116, 
N (%)

No-
Recurrence = 78, 
N (%)

Recurrence = 38, 
N (%) P

Gender

  Male 57(47.9) 30 (46.2) 27(50.0) 0.7151 64 44 20 0.8425

  Female 62(52.1) 35(53.8) 27(50.0) 52 34 18

T Pathological

  T1 61(51.3) 35(53.8) 26(48.1) 0.5834 60 43 17 0.3267

  T2 58(48.7) 30(46.2) 28(51.9) 56 35 21

N Pathological

  N0 64(53.8) 36(55.4) 28(51.9) 0.7159 92 63 29 0.6287

  N1 55(46.2) 29(44.6) 26 (48.1) 24 15 9

Table 2.  Statistical significance test by Fisher’s exact test between gender, major pathological characteristics and 
disease outcome of patients in Cohort #2 and Cohort #3 set. Tow-sided P < 0.05 was considered as statistically 
significant.

Feature category Description

Graph Voronoi: Area Ratio Minimum / Maximum

Graph Arch: Average Nearest Neighbors in a 40 Pixel 
Radius

Shape Min/max ratio of Fourier Descriptor 8

Shape Mean of Fourier Descriptor 4

Texture Haralick standard deviation intensity contrast 
variance

Texture Haralick standard deviation intensity contrast 
energy

Texture Haralick standard deviation intensity contrast 
inverse moment

Table 3.  A subset of 7 features selected from entire feature set.
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On both the training and validation sets, the QDA classifier was found to be the most predictive in terms of 
AUC (Fig. 4a~d). The QDA classifier yielded an AUC = 0.84, 0.74 and 0.77 and an accuracy of 82%, 75% and 75% 
in distinguishing between recurrent and non-recurrent early stage lung cancers in Cohort #2, Cohort #3 batch 
#1 and batch #2. Among the 54 recurrent patients within the validation set Cohort #2, our QDA classifier suc-
cessfully predicted 51 as recurrence; with a recall of 94.4% (only 3 recurrent patients were missed). Overall, the 
model predicted 70 cases as recurrence with 51 true positive cases, resulting in a positive predictive value (PPV) 
of 72.9% on Cohort #2. The details of model prediction are presented in the form of a confusion matrix (Table 4).

Figure 3.  Representative TMA tissue spots of recurrent (top row) and non-recurrent (bottom row) NSCLC 
with corresponding feature maps: Recurrence TMA with (a,e) nuclear shape feature, (b,f) texture feature map 
(Haralick standard deviation intensity correlation), (c,g) nuclear cluster graph feature map, and (d,h) nuclear 
orientation.

Figure 4.  ROC analysis of classifier predicting recurrence on (a) training set Cohort #1, (b) independent 
validation set Cohort #2, (c) independent validation set Cohort #3 batch #1 and (d) independent validation set 
Cohort #3 batch #2 show consistent predicting ability among different classifiers and among different tumor 
section.Kaplan-Meier survival analysis for (e) training set Cohort #1 and (f) validation set Cohort #2 (g,h) batch 
#1 and batch #2 from Cohort #3 show good visual separation and log-rank test indicates the two groups were 
statistically different (p-value ≪ 0.05).
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Kaplan-Meier survival curves of the QDA model were plotted for the training (Fig. 4e, log- rank p = 3.2e-8) 
and validation sets (Fig. 4f,g, log-rank p ≪ 0.05). In both the training and validation cohorts, patients predicted 
as being recurrent by the model had statistically significantly worse overall survival. A multivariable Cox pro-
portional hazard model was also employed in this study to validate the independence of the 7-feature model 
employed in the classifier after controlling for the effects of other prognostic co-variables (see Table 5). The esti-
mated hazard of having disease recurrence in classifier predicted recurrence group is 20.8 times of that in the 
predicted non-recurrence group for Cohort #2; that is a 20-fold increase of the recurrence risk after adjustment 
for the other variables. Moreover, the 95% confidence interval of hazard ratio ranged from 6.41 to 67.5, with a 
p-value less than 0.0001.

The monolithic prediction model trained on both ADCs and SCCs performed comparably to the models 
individually trained on ADCs and on SCCs (see supplementary material, Fig. 2). In prediction of recurrence in 
ADCs subtype, the model trained on combined subtypes achieved overall better prediction (AUC = 0.86, 0.90 
and 0.75 via QDA, SVM and LDA) on validation Cohort #2 compared to the model trained only on ADCs 
(AUC = 0.73, 0.75 and 0.76 via QDA, SVM and LDA). Additionally, improved prediction performance for SCCs 
was also observed when the model was trained using a combination of ADCs and SCCs (see supplementary 
material, Fig. 2b,d).

Training the Cox regression model with the same seven features used to develop the classification model 
gave us an opportunity to calculate the risk score23 for recurrence for each patient. Based on the risk score 
obtained for the 119 patients from the validation Cohort #2 via the Cox regression model, we further stratified 
validation Cohort #2 into 2 and 3 sub-sets respectively. This patient grouping into 2 and 3 different sub-groups 
was done based on the median and tertiles of the risk scores (see Supplementary Figure 3). The median and 
tertiles of risk scores were determined on the training and validation set separately (median = −2.5460, ter-
tiles = −2.8509; −2.1795 for training set Cohort #1 and median = −1.3787, tertiles = −2.0100; −0.8883 for vali-
dation set Cohort #2). The same risk scores and grouping experiments were also conducted on validation Cohort 
#3 batch #1 and batch #2 (median = −3.3249, tertiles = −3.7004; −2.8515 for validation Cohort #3 batch #1 
and median = −3.4624, tertiles = −3.7960; −2.9218 for validation Cohort #3 batch #2). We observed that the 
patients in the validation sets (Cohorts #2, #3) were stratified based off time to recurrence (early, intermediate and 
delayed) in a way that was statistically significantly different between the 3 risk (early, intermediate and delayed) 
groups, not just for the 2 risk (early and late) groups (see Supplementary Figure 3).

5-year recurrence
No 5-year 
recurrence

Classifier-recurrence, 
Cohort #2 51 19

Classifier-non-recurrence, 
Cohort #2 3 46

Classifier-recurrence, 
Cohort #3 batch #1 17 8

Classifier-non-recurrence, 
Cohort #3 batch #1 21 70

Classifier-recurrence, 
Cohort #3 batch #2 20 11

Classifier-non-recurrence, 
Cohort #3 batch #2 18 67

Table 4.  Classification results with real patient 5-year outcomes of validation set Cohort #2 and Cohort #3.

Characteristic hazard ratio (95% CI) P - value

Cohort #2

Gender (Male Vs. Female) 1.3046 (0.753, 2.26) 0.343

T Pathological (T1 vs. T2) 1.0737 (0.433, 2.664) 0.878

N Pathological (N0 vs. N1) 1.1961 (0.477, 3) 0.703

Classified (Non-Recurrence vs. Recurrence) 20.812 (6.415, 67.52) <0.0001

Cohort #3, batch #1

Gender (Male Vs. Female) 0.9274 (0.449, 1.916) 0.839

T Pathological (T1 vs. T2) 1.7725 (0.905, 3.473) 0.095

N Pathological (N0 vs. N1) 1.8686 (0.811, 4.307) 0.142

Classified (Non-Recurrence vs. Recurrence) 4.6532 (2.294, 9.44) <0.0001

Cohort #3, batch #2

Gender (Male Vs. Female) 0.7885 (0.385, 1.614) 0.516

T Pathological (T1 vs. T2) 1.4941 (0.768, 2.909) 0.237

N Pathological (N0 vs. N1) 1.8984 (0.842, 4.28) 0.122

Classified (Non-Recurrence vs. Recurrence) 2.9239 (1.476, 5.791) 0.002

Table 5.  Multivariable Cox proportional hazard model controlling for major pathological variables on 
validation set Cohort #2 and Cohort #3, batch #1 and batch #2. P-values in bold are statistically significant.

http://3
http://3
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In Cohort #3, the prediction model yielded similar classification results on batch #1 and batch #2: 0.74 vs 0.77 
respectively via a QDA classifier (see Supplementary Figure 4a). The differences were not statistically significantly 
different (p = 0.8551, by McNemar’s test) between batches #1 and 2, suggesting that the prediction model was 
robust to location of tumor sample from the resected specimen. Additionally, the Kaplan-Meier survivial analysis 
for both batch #1 and batch #2 showed significant separation of the different survival groups (p-value = 3.3e-06 
vs. 0.00043 for batch #1 and batch #2, see Fig. 4b and c in the Supplementary section).

Nuclei were segmented by the watershed approach described in ref.26 on Cohorts #1 and #2. All other param-
eters in the downstream feature extraction and training schemes remained unchanged. The classifier trained by 
the watershed algorithm was found to be comparable to the deep learning based approach (AUC = 0.82 vs 0.84, 
respectively, p-value = 0.2478 by McNemar’s test, see Figure 5 in the Supplementary section). Difference in the 
total number of nuclei identified by the two segmentation approaches was found to be small (see Figure 6 in 
Supplementary section).

Discussion
In this study, we developed a computer assisted histomorphometric classifier to predict risk of recurrence in 
early stage NSCLC based off digital TMA spots of surgically excised tissue specimens. The approach involved 
computerized extraction of nuclear shape, texture, and architecture features and then identifying the combina-
tion of features that were most predictive of recurrence in early stage NSCLC on a training set. The features were 
independently validated for their ability to distinguish recurrence in patients with early stage NSCLC patients, 
in conjunction with a machine learning classifier. Our results showed that the combination of nuclear shape, 
texture, and architectural features were predictive of recurrence in early stage NSCLC, independent of clinical 
parameters such as gender, cancer stages, and histologic subtype. Moreover, our results appear to suggest that 
the image classifier is able to predict disease outcome independent of the spatial location of where in the tumor 
block the tissue punch came from and independent of different nuclei segmentation methods as well. Continuous 
risk scores computed via the Cox proportional hazard model allowed for assigning individual patients into more 
specific risk groups based on computed individual hazard ratios.

Nuclear and quantitative histomorphometric analysis is gaining a great deal of interest in the context of risk 
stratification of a number of solid tumors14,36. Additionally there is increasing evidence of tumor behavior being 
a consequence of the coordinated activity and architecture of cell groups rather than individual cells37,38. Tumor 
cells, more so than healthy cells, tend to aggregate into clusters. This cluster behavior allows cancer cells to poten-
tially expand, progress, and metastasize37,38. As a result, it seems plausible that features that capture and charac-
terize this clustering property might enable differentiation of the high versus lower risk tumors. Consequently, 
in this work we decided to specifically focus on the role of nuclear graph features to model the arrangement of 
clusters of cancer cells, and, hence, predict tumor behavior in early stage NSCLC. The two most predictive nuclear 
graph features were determined to be (1) ratio of minimum and maximum area of polygons within the nuclear 
Voronoi diagram, and (2) average number of nearest neighbors within a 40 pixel radius of each node within 
the nuclei graph; features that reflect the variance in spatial proximity of cancer nuclei. These features might 
reflect the fact that lower risk tumors (i.e. no or delayed recurrence) have a more coherent nuclear architecture 
and organization when compared to higher risk, early recurrent tumors12,14. In addition to nuclear architecture, 
nuclear shape and nuclear texture features, previously implicated in recurrence of NSCLC17, were also validated 
to be prognostic.

Three popular classifiers (QDA, LDA, and SVM with polynomial kernel) were built upon the nuclear mor-
phologic features identified as most predictive on the training set. While the QDA classifier was found to be mar-
ginally superior compared to the SVM and LDA classifiers, all 3 classifiers were found to (1) be prognostic on the 
independent test set resulting in statistically significant separation between the recurrence and non-recurrence 
groups in Kaplan-Meier cumulative hazard analysis, and (2) superior compared to other current clinical or 
pathological parameters8. A classifier based off tumor stage (T1 versus T2) and nodal status (N0 versus N1) only 
resulted in predictive accuracy of 55.8% on the test set, significantly lower compared to the machine based clas-
sifiers (72%–82%). More importantly, the consistency in performance of the three different classifiers reaffirmed 
the prognostic accuracy of the nuclear morphologic features identified.

Multivariable cox proportional hazard model in conjunction with the 7 nuclear morphologic features sug-
gested a significant increase in the hazard ratio for patients identified with early recurrent disease (p < 0.0001). 
The features were found to be prognostic of recurrence, even after controlling for the effect of other clinical and 
pathological variables. No other clinic-pathological parameters were found to be prognostic in the multivariable 
analysis. Additionally, these results of the histomorphometric classifier were not found to be significantly different 
when controlling for the histologic subtype of the tumor (i.e. adenocarcinoma vs squamous tumor).

The closest related work to our study is that of Yu et al.17 and David H et al.8, both studies having explored 
the role of histomorphometric image analysis of tissue specimens for predicting disease outcomes for NSCLC 
patients. Yu et al. reported that the Zernike shape features of nuclei were predictive of recurrence in NSCLC 
adenocarcinoma and stage I squamous cell carcinoma. Our approach differs from that of Yu et al.17 and David 
H et al.8 in that apart from being fully automated for nuclear detection, segmentation and feature extraction, 
our approach also invoked additional features apart from the nuclear shape and texture features. Specifically, we 
employed four additional feature categories focused on quantitatively characterizing nuclear architecture and 
directionality; these features identified on our learning set were highly predictive of disease recurrence. Finally, 
our results on the independent validation suggest significantly higher accuracy in predicting disease recurrence 
(see Figure 7 in the Supplementary Section), both in terms of classifier accuracy and Kaplan-Meir curve analysis 
when compared to the results reported in refs8,17.

Our study did have its limitations. First, the analysis was performed using TMAs, which represent only a rel-
atively small portion of the tumor. However, it is noteworthy that the predictive power of the features is present 
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even in small TMA spots extracted from the larger surgical resections. Moreover, these features were able to 
accurately distinguish early and late/no recurrence patients after being surgically treated for early stage NSCLC. 
While, we found that the histologic subtype of the tumor did not appear to have a significant bearing on the 
classifier accuracy, we did not have access to the molecular subtypes of the tumors, PD-L1 expression or TILs 
abundance. Hence, we were unable to relate whether the better and worse prognostic cases were related to specific 
oncogenic mutations (e.g. EGFR, KRAS, ALK, and ROS1) or immune features. Future work will test our classifier 
in conventional whole slide images to capture and relate intra-tumoral heterogeneity to disease outcomes, and 
attempt to correlate the prognostic histomorphometric features with the underlying tumor biology.

Concluding Remarks
In summary, computer-extracted nuclear feature analyses of digitized slides of NSCLC biopsy specimen may ena-
ble objective and reproducible prediction of recurrence and disease outcome in patients with early stage NSCLC. 
With additional prospective/multi-site validation, this prognostic model could potentially serve as a predictive 
decision support tool for deciding the use of adjuvant treatment in early stage lung cancer.
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