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Improvement of obesity is important for increasing longevity. The characteristics, size, and
function of adipocytes are altered in patients with obesity. Adipose tissue is not only an
energy storage but also an endocrine organ. Alteration of endocrine activities in adipose
tissue, among them the functional decline of brown adipose tissue (BAT), is associated
with obesity. Periodontal disease is a risk factor for systemic diseases since endotoxemia
is caused by periodontal bacteria. However, the effect of periodontal disease on obesity
remains unclear. Thus, this study aimed to investigate the effect of endotoxemia due to
Porphyromonas gingivalis, a prominent cause of periodontal disease, on the BAT. Herein,
endotoxemia was induced in 12-week-old C57BL/6J mice through intravenous injection
of sonicated 108 CFU of P. gingivalis (Pg) or saline (control [Co]) once. Eighteen hours
later, despite no inflammatory M1 macrophage infiltration, inflammation-related genes
were upregulated exclusively in the BAT of Pg mice compared with Co mice. Although no
marked histological changes were observed in adipose tissues, expressions of genes
related to lipolysis, Lipe and Pnpla2 were downregulated after P. gingivalis injection in
BAT. Furthermore, expression of Pparg and Adipoq was downregulated only in the BAT
but not in the white adipose tissues, along with downregulation of Ucp1 and Cidea
expression, which are BAT-specific markers, in Pg mice. Microarray analysis of the BAT
showed 106 differentially expressed genes between Co and Pg mice. Gene set
enrichment analysis revealed that the cholesterol homeostasis gene set and PI3/Akt/
mTOR signaling gene set in BAT were downregulated, whereas the TGF-b signaling gene
set was enriched in Pg mice. Overall, intravenous injection of sonicated P. gingivalis
altered the endocrine functions of the BAT in mice. This study indicates that endotoxemia
by P. gingivalis potentially affects obesity by disrupting BAT function.
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INTRODUCTION

Obesity is a major public health concern worldwide and a risk
factor for type 2 diabetes (Ozcan et al., 2004), and is also
associated with multiple cancers (Key et al., 2003; MacInnis
and English, 2006; Li et al., 2009; Lichtman, 2010). Furthermore,
obesity itself increases mortality (Whitlock et al., 2009;
Berrington de Gonzalez et al., 2010). Adipocytes in the adipose
tissue produce various adipocytokines, including adiponectin
and inflammatory cytokines (Hotamisligil, 2006; Kadowaki
et al., 2006; Yoon et al., 2006), and play important roles in
metabolism. Therefore, adipose tissue is considered an
endocrine organ.

On the other hand, periodontal disease is also a global public
health concern with its high prevalence (Pihlstrom et al., 2005).
Periodontal disease results from chronic infections of
periodontal bacteria, including Porphyromonas gingivalis, and
leads to the destruction of bone and tissue around the teeth
(Nassar et al., 2007). Periodontal disease results in not only tooth
loss but also the aggravation of numerous types of systemic
diseases including type 2 diabetes, cardiovascular disease,
preterm low birth weight, and nonalcoholic fatty liver disease
(Komazaki et al., 2017; Figuero et al., 2020; Genco and
Borgnakke, 2020; Orlandi et al., 2020; Polak et al., 2020;
Schenkein et al., 2020).

The association between obesity and periodontal disease has
recently attracted increasing attention. Some studies reported
that the prevalence of periodontitis is higher among individuals
with obesity (Saito et al., 1998; Al-Zahrani et al., 2003; Katagiri
et al., 2010). In addition, we previously reported that intravenous
injections of sonicated P. gingivalis twice per week for 12 weeks
to mice fed high-fat diet caused an increase in body weight and
the accumulation of visceral and subcutaneous fat in mice
(Sasaki et al., 2018). However, the direct effects of P. gingivalis
on adipocytes remain unclear.

In this study, we investigated the effect of endotoxemia
resulting from periodontal disease on adipose tissue upon
intravenous injection of ultrasonicated P. gingivalis in mice,
followed by a comprehensive analysis of gene expression in the
brown adipose tissue (BAT).
MATERIALS AND METHODS

Animals
C57BL/6J male mice (12-week-old; Sankyo Laboratory, Tokyo,
Japan) were used in this study. The mice were provided ad
libitum access to food and water throughout the study and
housed under standard conditions on a 12-h light/dark (light:
8:00 to 20:00) cycle. Mice were randomly divided into two
groups: those intravenously injected with 108 CFU of sonicated
P. gingivalis suspended in 100 mL of saline (Pg group) and those
receiving only saline (control [Co] group). Visceral white adipose
tissue (eWAT), subcutaneous white adipose tissue (iWAT), and
BAT from interscapular fat were harvested 18 h after P. gingivalis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
injection. All protocols regarding animal use and euthanasia
were reviewed and approved by the Animal Care Committee of
the Experimental Animal Center at Tokyo Medical and Dental
University (A2020–054A).

P. gingivalis Culture
P. gingivalis (ATCC 33277) was cultured, as previously described
(Sasaki et al., 2018; Udagawa et al., 2018), on trypticase soy agar
(Difco Laboratories, Detroit, MI, USA) supplemented with 10%
defibrinated horse blood, hemin, and menadione at 37°C under
anaerobic conditions. After 48 h, P. gingivalis was inoculated in
trypticase soy broth under anaerobic conditions and cultured at
37°C under anaerobic conditions to the mid-log phase, and then
109 CFU/mL of the bacterial suspension was sonicated at an
amplitude of 20 kHz for 5 min on ice using a Qsonica Q700
sonicator (Waken Btech, Kyoto, Japan).

Quantitative Reverse-Transcription PCR
Analysis
Total RNAwas extracted from the eWAT, iWAT, and BAT (n = 7)
using Trizol reagent (Invitrogen, Carlsbad, CA, USA) and
NucleoSpin® RNA kit (TaKaRa Bio, Shiga, Japan) in accordance
with the manufacturer’s instructions. Five-hundred nanograms
total RNA was reverse-transcribed to cDNA, using the
PrimeScript™ RT Master Mix (TaKaRa Bio). Real-time PCR was
performed using the Thermal Cycler Dice® Real Time System II
(TaKaRaBio). PCRmixtureswerepreparedusingTBGreenPremix
Ex Taq™ II (TaKaRa Bio). PCRwas carried out in accordance with
the manufacturer’s instructions. Gene expression levels were
normalized to those of the reference gene, Rn18s. The PCR
primers used herein are listed in Supplementary Table S1.

Isolation of Stromal Vascular Fractions
From the BAT
Stromal vascular fractions (SVFs) were isolated from the eWAT,
iWAT, and BAT (n = 6) 18 h after P. gingivalis injection. Adipose
tissues were finely minced and digested with collagenase (Wako,
Osaka, Japan) with Krebs-Henseleit-HEPES buffer (pH 7.4)
supplemented with 1% BSA and 0.2% glucose at 37°C for
60 min. Thereafter, the samples were strained through a 100-
µm cell strainer and fractionated through centrifugation at 1,500
rpm for 5 min. The pellets were collected as cells in the SVF.

Flow Cytometry Analysis
Erythrocytes were depleted using ACK lysing buffer (Lonza,
Walkersville, MD, USA) for 5 min at room temperature. The
cells were incubated with anti-mouse CD16/32 (2.4G2) (TONBO
biosciences, San Diego, CA, USA) for 10 min and stained with
anti-CD11b (M1/70), anti-CD11c (N418), and anti-CD206
(MR6F3) antibodies (Invitrogen) for 30 min at 4°C. The cells
were analyzed using an Attune NxT flow cytometer (Thermo
Fisher Scientific, Waltham, MA, USA). The data were analyzed
using FlowJo software version 10.6.2 (BD Biosciences, San Jose,
CA, USA). M1 or M2 macrophages were identified according to
CD11b-positive/CD11c-positive/CD206-negative or CD11b-
January 2021 | Volume 10 | Article 580577
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positive/CD11c-negative/CD206-positive cells, respectively
(Fujisaka et al., 2009).

Histological Analysis in Adipose Tissue
eWAT, iWAT, and BAT (n = 4) were collected 18 h after P.
gingivalis injection and fixed in 4% paraformaldehyde in
phosphate-buffered saline for 24 h. The tissues were then
embedded in paraffin and then 5 µm sections were made.
Specimens were stained with hematoxylin and eosin (HE) and
examined under a light microscope (ECLIPSE Ni‐U, NIKON
Corp., Tokyo, Japan) at ×200 magnification.

Microarray Analysis
The Agilent Low Input Quick Amp Labeling kit (Agilent
Technologies, Santa Clara, CA, USA) was used, in accordance
with the manufacturer’s instructions, to generate complementary
RNA (cRNA) from 200 ng total RNA for single-color (Cy3)
microarray analysis (n = 4). Thereafter, cRNAs were analyzed
through hybridization onto an Agilent SurePrint G3 Unrestricted
Gene Expression 8 × 60 K Microarray (Agilent Technologies).
Fluorescence signals were detected using the Agilent Microarray
Scanner System (Agilent Technologies). Rawmicroarray datawere
extracted using Feature Extraction Software (ver. 11.0.1.1;
Agilent Technologies).

Statistical Analysis
Data distributions were analyzed using the Shapiro-Wilk test,
revealing all datasets were normally distributed. Unpaired t-test
was performed to compare the two groups. Data were analyzed
using R (ver. 3.6.0). Microarray data were quantile-normalized,
log2-transformed, and identified differentially expressed genes
(DEGs) by using R with the Limma Bioconductor package (ver.
3.40.6) (Ritchie et al., 2015). Benjamin and Hochberg’s false
discovery rate (FDR) was applied for multiple testing. DEGs were
defined in accordance with an FDR q <0.1 and a |fold-change|
>1.5. Overrepresentation enrichment analyses for DEGs were
performed using the WEB-based Gene SeT AnaLysis Toolkit
(http://www.webgestalt.org) (Wang et al., 2013) and the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) using the
Gene Ontology (GO) and KEGG pathway databases. Gene set
enrichment analysis (GSEA) (http://software.broadinstitute.org/
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
gsea/index.jsp) (Subramanian et al., 2005) was performed using
hallmark gene sets (Liberzon et al., 2015).
RESULTS

P. gingivalis Injection Increased
Inflammation-Related mRNA
Expression in the BAT
The mRNA expression levels of tumor necrosis factor-a (Tnfa),
monocyte chemotactic protein-1 (MCP-1) (Ccl2), and
interleukin 1 beta (Il1b) were not significantly altered in the
eWAT and iWAT following P. gingivalis injection. However, the
expression of Tnfa and Il1b was significantly upregulated in
the BAT in Pg mice compared to the Co mice (Figures 1A, B).
Interestingly, the mRNA expression level of Ccl2 was
dramatically increased only in the BAT following P. gingivalis
injection (Figure 1C).

No Alteration in Macrophage
Infiltration Was Observed in SVF
From Adipose Tissues
Macrophage infiltration in the SVF from the eWAT, iWAT, and
BAT was evaluated through flow cytometry, respectively. P.
gingivalis injection caused no significant changes in the
percentage of CD11b positive cells in the SVF from eWAT,
iWAT, and BAT (Figures 2A, B). Few M1 macrophages were
observed in eWAT, iWAT, and BAT of Co and Pg mice (Figure
2C). The percentage of M2 macrophages in CD11b+ cells was
28.7% and 33.1% in the SVF from eWAT of Co and Pg mice,
49.3% and 50.7% in the SVF from iWAT of Co and Pg mice, and
39.2% and 42.9% in the SVF from BAT of Co and Pg mice,
respectively. The percentage of M1 and M2 macrophages in
eWAT, iWAT, and BAT did not significantly differ between Co
and Pg mice (Figures 2D, E).

P. gingivalis Injection Downregulated
mRNA Expression of Genes Related to
Lipolysis and Metabolism in BAT
Although no marked histological changes were observed after P.
gingivalis injection in adipose tissues (Figures 3A, B), the
expression of lipase, hormone sensitive (Lipe) and patatin-like
A B C

FIGURE 1 | Quantitative reverse-transcription PCR analysis in the adipose tissues at 18 h after P. gingivalis injection (n = 7). (A) Tnfa, (B) Ccl2, (C) Il1b expression in
the adipose tissues (means ± SE). *P < 0.05.
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phospholipase domain containing 2 (Pnpla2) in the BAT of Pg
mice were significantly downregulated compared to those of Co
mice. Furthermore, the expression of fatty acid synthase (Fasn)
in the BAT tended to be decreased in Pg mice. There was no
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
significant difference in the expression of Lipe, Pnpla2, and Fasn
in eWAT and iWAT between Co and Pg mice (Figures 3C–E).

Peroxisome proliferator activated receptor gamma (Pparg)
and adiponectin (Adipoq) expression levels were not significantly
A B

D E

F G

C

FIGURE 3 | Evaluation of adipose tissues at 18 h after P. gingivalis injection. Representative HE staining of adipose tissues from (A) Co, (B) Pg mice (row
magnification × 200, black bar = 100 mm) (n = 4). Quantitative reverse-transcription PCR analysis in the adipose tissues at 18 h after P. gingivalis injection (n = 7).
(C) Lipe, (D) Pnpla2, (E) Fasn, (F) Pparg, (G) Adipoq expression in the adipose tissues (means ± SE). *P < 0.05.
A B

D E

C

FIGURE 2 | Flow cytometry analysis in cells from the SVF of adipose tissues at 18 h after P. gingivalis injection (n = 6). (A) Representative flow cytometry results.
Black; negative control. Blue; Co mice. Red; Pg mice. (B) The percentage of CD11b-positive cells in the cells at SVF from adipose tissues. (C) Representative results
of flow cytometry are shown. CD11b-positive/CD11c-positive/CD206-negative cells are defined as M1 macrophages. CD11b-positive/CD11c-negative/CD206-
positive cells are defined as M2 macrophages. (D) The percentage of M1 macrophage in the CD11b-positive cells at SVF from adipose tissues. (E) The percentage
of M2 macrophage in the CD11b-positive cells at SVF from adipose tissues.
January 2021 | Volume 10 | Article 580577
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altered in the eWAT and iWAT following P. gingivalis injection.
However, the mRNA expression of Pparg in the BAT of Pg mice
was significantly decreased compared to Co mice (Figure 3F).
Moreover, P. gingivalis injection significantly downregulated
Adipoq expression in BAT (Figure 3G).

P. gingivalis Injection Altered Gene
Expression Patterns in the BAT
To investigate changes in gene expression in the BAT at 18 h
after injection of sonicated P. gingivalis, microarray analysis was
performed to obtain a comprehensive overview of gene
expression profiles. All microarray data herein are available in
the Gene Expression Omnibus database (www.ncbi.nlm.nih.gov/
geo) under GSE 153516.

As shown in Figure 4A, among 106 DEGs (|fold change| > 1.5
and q < 0.1), 60 genes were upregulated, and 46 genes were
downregulated. Gene expression patterns substantially differed
between Co and Pg mice (Figure 4B).

P. gingivalis Injection Altered BAT
Metabolism
Gene ontology was assessed using GO slim for upregulated
(Figure 5A) and downregulated (Figure 5B) DEGs. Notably,
42% of upregulated DEGs with GO terms were classified
under “metabolic process” in the biological process category,
whereas 79% of downregulated DEGs were classified under
“metabolic process”.

In GO analysis, genes were extracted in accordance with the
GO term “lipid metabolic process” or “glucose metabolic
process” from all detectable genes through microarray analysis.
In total, 615 genes were identified under the GO term “lipid
metabolic process” (Figure 6A), and 100 genes contained GO
term “glucose metabolic process” (Figure 6B). As shown in
Figure 6, Co and Pg mice presented markedly different gene
expression patterns for lipid metabolic process and glucose
metabolic process.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
GSEA was performed using hallmark gene sets to evaluate the
differences in mRNA expression patterns in the BAT between Co
and Pg mice. Upregulated gene sets with an FDR q < 0.15 are
listed in Table 1. Several inflammation-related gene sets were
enriched in the BAT of Pg mice, including the TNFa signaling
via NFkB gene set (Figure 7A; normalized enrichment score
(NES) = 1.73, q = 0.013), IL6/JAK/STAT3 signaling gene set
(Figure 7B; NES = 1.71, q = 0.013) (Figure 7B), and
inflammatory response gene set (Figure 7C; NES = 1.69, q =
0.014). Furthermore, TGF beta; signaling gene set was also
enriched (Figure 7D; NES = 1.43, q = 0.066). However, only 3
downregulated gene sets with an FDR q < 0.15 were identified
(Table 2). The cholesterol homeostasis gene set (Figure 8A;
NES = −1.56, q = 0.110) and PI3K/Akt/mTOR signaling gene set
(Figure 8B; NES = −1.49, q = 0.149) in BAT was downregulated
in Pg mice.
P. gingivalis Injection Downregulated the
Transcript Levels of Several Relevant BAT
Marker Genes and Endocrine-Derived
Factors from BAT
The expression levels of uncoupling protein 1 (Ucp1) and cell
death-inducing DNA fragmentation factor, alpha subunit-like
effector A (Cidea), which are BAT markers, were significantly
downregulated in the BAT of Pg mice compared to those in Co
mice, although the expression levels of fatty acid desaturase 3
(Fads3), a white adipocyte tissue marker, was comparable
between Co and Pg mice (Figure 9A). Interleukin 6 (Il6)
expression in the BAT of Pg mice tended to be increased in Pg
mice. The expression of fibroblast growth factor 21 (Fgf21) and
ceramide synthase 3 (T3) (Cers3) was not significantly altered in
the BAT after P. gingivalis injection. However, chemokine (C-X-
C motif) ligand 14 (Cxcl14) and neuregulin 4 (Nrg4) expression
were significantly downregulated in the BAT of Pg mice
compared to those of Co mice (Figure 9B).
A B

FIGURE 4 | Microarray analysis in the brown adipose tissue between Co and Pg mice at 18 h after P. gingivalis injection (n = 4). (A) Volcano plot; red plots show
genes with FDR q < 0.1 and |fold change| > 1.5. (B) Principal component analysis.
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DISCUSSION

A previous epidemiological study showed an association between
periodontal disease and obesity in 1998 (Saito et al., 1998). In
addition, another paper showed the causal effects of P. gingivalis
infection that increased body weight in mice (Yoneda et al.,
2012). We also reported that multiple intravenous injections of
sonicated P. gingivalis increased body weight and the
accumulation of visceral and subcutaneous fats in mice fed
high-fat diet (Sasaki et al., 2018). However, the mechanisms,
especially the direct effects of P. gingivalis infection on adipocytes
still remained unclear, and this study was conducted to address
this issue.

In this study, endotoxemia was induced through an
intravenous injection of ultrasonicated P. gingivalis to simulate
endotoxemia by periodontal disease. Endotoxemia occurs in
patients with severe periodontal diseases (Ide et al., 2004;
Forner et al., 2006; Tonetti et al., 2007). P. gingivalis is a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
representative periodontal pathogen and contains various
virulence factors including lipopolysaccharide, fimbriae, and
enzymes (Kolenbrander et al., 2002). In addition, we have
recently reported that only P. gingivalis infection, but not other
periodontopathic bacteria including Aggregatibacter
actinomycetemcomitans and Fusobacterium nucleatum, is
significantly associated with intramuscular adipose tissue
content in the lumbar muscles (Watanabe et al., 2020). Based
on the above results, we focused on P. gingivalis infection.
Although only a single oral administration of periodontal
pathogen could not cause periodontitis in mice (Lalla et al.,
1998; Lalla et al., 2000), the purpose of this study was to observe
the differences in gene expression due to endotoxemia induced
by P. gingivalis in adipocytes. Thus, we used mice fed normal
chow and performed only a single injection of P. gingivalis.

Interscapular fat is different from other adipose tissues, such
as visceral and subcutaneous adipose tissues. Interscapular fat is
rich in brown adipocytes; whereas, visceral and subcutaneous
A

B

FIGURE 5 | Microarray analysis in the brown adipose tissue between Co and Pg mice (n = 4). Gene Ontology analysis in (A) upregulated DEGs and
(B) downregulated DEGs.
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adipose tissues are rich in white adipocytes (Wang and Seale,
2016). BAT differs from white adipose tissue which works as an
energy storage, and BAT can generate heat and expend energy by
consuming glucose and fatty acid. (Nedergaard and Cannon,
2010). Since several reports have shown that BAT is present in
adult humans (Cypess et al., 2009; Saito et al., 2009), numerous
studies have been performed to prevent and improve obesity and
metabolic diseases by focusing on the BAT (van der Lans et al.,
2013; Yoneshiro et al., 2013; Hiraike et al., 2017).

Macrophages themselves produce inflammatory cytokines
including TNF-a and CCL2. M1 macrophages produce
inflammatory cytokines whereas M2 macrophages suppress
inflammation (Lumeng et al., 2007). Interestingly, Tnfa and
Ccl2 expression were upregulated exclusively in the BAT after
P. gingivalis injection without infiltration of inflammatory M1
macrophages, which suggests that P. gingivalis injection altered
adipocytokine production in non-macrophage cells from the
BAT, potentially brown adipocytes. The downregulation of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Lipe and Pnpla2 expression in the BAT suggested that P.
gingivalis injection altered lipid metabolism in BAT. However,
only a single P. gingivalis injection did not alter adipocyte size,
although there is a possibility that multiple and long-term P.
gingivalis injections can cause hypertrophy of adipocytes in BAT.
Adipoq and Pparg expression in BAT were downregulated by P.
gingivalis injection, even though there was no significant
difference in the expression of Adipoq and Pparg in eWAT and
iWAT between Co and Pg mice. Adiponectin is an adipocyte-
derived hormone that improves dyslipidemia and insulin
resistance (Yamauchi et al., 2001), and activation of the
adiponectin receptor can improve obesity-related diseases
(Okada-Iwabu et al., 2013). Pparg regulates glucose and lipid
metabolism (Berger and Moller, 2002) and directly regulates
numerous genes involved in the functions of adipocytes, lipid
transport, insulin signaling, and adipokine production (Lehrke
and Lazar, 2005). Agonist PPARg ligands are already used for the
treatment of type 2 diabetes (Lehmann et al., 1995).
A B

FIGURE 6 | Comprehensive evaluation of gene expression in brown adipose tissue between Co and Pg mice at 18 h after P. gingivalis injection. (A) Heatmap of
genes extracted according to the GO term including “lipid metabolic process”, (B) Heatmap of genes extracted according to the GO term including “glucose
metabolic process”.
TABLE 1 | Gene sets enriched in Pg mice at 18 h after P. gingivalis injection.

Gene set Size NES normal p-value FDR q-value

allograft rejection 94 2.29 <0.001 <0.001
interferon alpha response 65 2.14 <0.001 <0.001
interferon gamma response 129 1.98 <0.001 0.001
TNFa signaling via NFkB 121 1.73 <0.001 0.013
IL6/JAK/STAT3 signaling 44 1.71 0.004 0.013
inflammatory response 96 1.69 0.002 0.014
coagulation 75 1.68 0.002 0.013
IL2-STAT5 signaling 114 1.68 0.002 0.011
apical junction 112 1.55 0.002 0.035
epithelial mesenchymal transition 117 1.49 0.013 0.051
KRAS signaling up 120 1.45 0.014 0.063
TGF beta signaling 31 1.43 0.042 0.066
estrogen response late 108 1.38 0.045 0.093
complement 115 1.37 0.039 0.093
angiogenesis 16 1.35 0.150 0.098
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Furthermore, adiponectin expression is controlled by PPARg. In
obesity, inflammation is known to inhibit PPARg expression and
function, thus inhibiting its direct targets such as adiponectin
(Guilherme et al., 2008). Therefore, our result about
downregulation of Adipoq could be an indirect effect of
downregulation in Pparg expression.

Microarray analysis also revealed the possibility of alterations
in glucose and lipid metabolisms. GSEA supports these results
since the “cholesterol homeostasis” and “PI3K/Akt/mTOR” gene
sets were downregulated. Downregulation of PI3K/Akt/mTOR
signaling gene set indicates downregulation of insulin signaling
(Taniguchi et al., 2006). As previously reported, BAT is also
associated with glucose homeostasis and insulin sensitivity.
Therefore, this result suggests that P. gingivalis injection may
cause a decrease in glucose homeostasis and insulin sensitivity in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
brown adipocytes (Stanford et al., 2013). Cholesterol imbalance
has been recognized as a feature of obese adipocytes (Yu et al.,
2010). Downregulation of cholesterol homeostasis gene set
suggested that this can be extrapolated to obese mice. As
previously reported, TGF-b levels correlate with obesity in
mice (Samad et al., 1997; Samad et al., 1999) and humans
(Alessi et al., 2000; Fain et al., 2005; Lin et al., 2009).
Moreover, systemic blockade of TGF-b signaling protected
mice from obesity, diabetes, and hepatic steatosis in a previous
study (Yadav et al., 2011). Thus, upregulation of TGF-b signaling
also indicates that the BAT in Pg mice may be the similar state to
that in obese mice. In addition, we showed differential gene
expression patterns for lipid metabolic process and glucose
metabolic process between Co and Pg mice, and the percentage
of downregulated “metabolic process” DEGs in the biological
A B

DC

FIGURE 7 | Gene sets enriched in Pg mice at 18 h after P. gingivalis injection (n = 4). Gene sets about (A) TNFa signaling via NFkB, (B) IL6/JAK/STAT3 signaling,
(C) Inflammatory response, and (D) TGF-b signaling. A heatmap provided illustrating gene expression levels for each gene in the core enrichment subset (blue: low,
red: high). NES, normalized enrichment score.
TABLE 2 | Gene sets downregulated in Pg mice at 18 h after P. gingivalis injection.

Gene set Size NES normal p-value FDR q-value

KRAS signaling dn 74 −1.66 0.004 0.086
cholesterol homeostasis 46 −1.56 0.010 0.110
PI3K/Akt/mTOR signaling 61 −1.49 0.020 0.149
January 2021 | Volume 10 |
 Article 580577

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Hatasa et al. Porphyromonas gingivalis Alters BAT Endocrine
process category were larger than upregulated DEGs. These
results suggested that metabolic function in the BAT was
altered by P. gingivalis injection. On the other hand,
inflammation-related gene sets, TNF-a signaling via NF-kB
gene set, IL6/JAK/STAT3 signaling gene set, and inflammatory
response gene set, were enriched in the BAT, concurrent with the
results of quantitative PCR, and supported evidence regarding
inflammation in the BAT after P. gingivalis injection.

Surprisingly, just a single intravenous injection of P. gingivalis
downregulated the expression of Ucp1 and Cidea in the BAT.
UCP1 is specific and responsible for heat production in the BAT
and is involved in ATP synthesis (Nedergaard et al., 2005). Loss
of UCP1 function enhanced obesity in mice on a high-fat diet
(Feldmann et al., 2009). In addition, Cidea is a specific and
important gene in BAT that regulates adipocyte differentiation
and tight coupling of lipolysis and lipogenesis (Wang and Seale,
2016). CIDEA, a lipid droplet protein, and UCP1 are regulated
by PPARg (Berger and Moller, 2002; Puri et al., 2008). Based on
these results and the fact that BAT consumes high amount of
glucose (Shibata et al., 1989; Liu et al., 1994), we suggest that the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
intravenous injection of sonicated P. gingivalis downregulated
the expression of Pparg followed by Ucp1 and Cidea, potentially
altering glucose and lipid metabolism. In this study, Il6
expression tended to be increased in BAT from Pg mice. IL-6
is widely recognized as a batokine, it is a BAT-derived secretable
factor with pleiotropic actions, mediating glucose homeostasis,
insulin sensitivity, and thermogenesis in BAT (Stanford et al.,
2013; Villarroya et al., 2017), which is against classic
inflammation-mediated effects and performs relevant metabolic
functions by increasing insulin sensitivity in the muscle,
promoting browning of WAT and M2 macrophage
polarization (Mauer et al., 2014) or more recently, mediating
stress responses and liver gluconeogenesis (Qing et al., 2020). In
addition, just a single intravenous injection of P. gingivalis
downregulated the expression of Cxcl14 and Nrg4 in the BAT.
These endocrine-derived factors from BAT can affect distant
organs. CXCL14 from BAT appears to influence the recruitment
of M2 macrophages to subcutaneous WAT. In addition, a lack of
CXCL14 in BAT correlated with an impairment of BAT function
(Cereijo et al., 2018). Nrg4 from BAT acts on the liver to
attenuate hepatic lipogenic signaling (Wang et al., 2014). Our
results support the previous report that P. gingivalis infection
promoted liver steatosis in mice (Sasaki et al., 2018). These
results suggested that endotoxemia due to P. gingivalis directly
affects the endocrine function in the BAT.

We previously reported that intravenous injections of
sonicated P. gingivalis; twice per week for 12 weeks, increased
visceral and subcutaneous fat, impaired glucose tolerance and
insulin resistance, and resulted in liver steatosis and
inflammation in mice administered a high-fat diet (Sasaki
et al., 2018). In addition, a few other studies have reported the
effect of P. gingivalis on adipocytes. Adiponectin was significantly
downregulated in 3T3-L1 adipocytes treated with P. gingivalis
LPS rather than with Escherichia coli LPS (Le Sage et al., 2017).
Furthermore, successful periodontal treatment increased serum
adiponectin levels in patients with type 2 diabetes (Bharti et al.,
2013). Although the main contributor of systemic adiponectin
level is the WATs, not the BAT (Giralt et al., 2016), in our results
and from previous reports may indicate circulation levels of
adiponectin may be different between Co and Pg mice. However,
we feel it is difficult to detect differences in only one time point
experiment at 18 h after P. gingivalis injection. Thus, further
studies, especially long term and with multiple P. gingivalis
A B

FIGURE 8 | Gene sets downregulated in Pg mice compared to Co mice at
18 h after P. gingivalis injection (n = 4). Gene sets about (A) cholesterol
homeostasis, and (B) PI3K/Akt/mTOR signaling. A heatmap provided
illustrating gene expression levels for each gene in the core enrichment
subset (blue: low, red: high). NES, normalized enrichment score.
A B

FIGURE 9 | Quantitative reverse-transcription PCR analysis in the brown adipose tissues at 18 h after P. gingivalis injection (n = 7). (A) Ucp1, Cidea, Fads, (B) Il6,
Fgf21, Cers3, Cxcl14, Nrg4 expression in the brown adipose tissues (means ± SE). *P < 0.05.
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injections evaluating systemic effects by altering BAT
metabolism are required to determine the effect of periodontal
infection on adipose tissues. In addition, BAT function is mainly
controlled by brown adipose tissues, but also is controlled by
several other cells including preadipocyes, endothelial cells,
immune cells, and sympathetic neurons (Cannon and
Nedergaard, 2010; Villarroya et al., 2018). Therefore, it is
unclear whether our results are direct effects of P. gingivalis
endotoxemia on brown adipocytes. Further in vitro studies are
required to determine the specific pathways of P. gingivalis
endotoxemia on isolated brown adipocytes.

In conclusion, endotoxemia due to sonicated P. gingivalismay
directly affect the endocrine function in the BAT. Moreover,
periodontal bacterial infections potentially cause alterations in
BAT functional markers and immunometabolic characteristics.
To our knowledge, this is the first study to comprehensively
evaluate gene expression profiles in BAT after endotoxemia-
induction through P. gingivalis injection in mice. The present
results suggest that endotoxemia by P. gingivalis affects obesity by
disrupting adipocyte function.
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