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Abstract: Silicon nanowire (SiNW) field-effect transistors (FETs) have been developed as very sen-
sitive and label-free biomolecular sensors. The detection principle operating in a SiNW biosensor
is indirect. The biomolecules are detected by measuring the changes in the current through the
transistor. Those changes are produced by the electrical field created by the biomolecule. Here, we
have combined nanolithography, chemical functionalization, electrical measurements and molecular
recognition methods to correlate the current measured by the SiNW transistor with the presence of
specific molecular recognition events on the surface of the SiNW. Oxidation scanning probe lithog-
raphy (o-SPL) was applied to fabricate sub-12 nm SiNW field-effect transistors. The devices were
applied to detect very small concentrations of proteins (500 pM). Atomic force microscopy (AFM)
single-molecule force spectroscopy (SMFS) experiments allowed the identification of the protein
adsorption sites on the surface of the nanowire. We detected specific interactions between the biotin-
functionalized AFM tip and individual avidin molecules adsorbed to the SiNW. The measurements
confirmed that electrical current changes measured by the device were associated with the deposition
of avidin molecules.

Keywords: oxidation scanning probe lithography; silicon nanowire; field-effect transistor; single-
molecule force spectroscopy; AFM

1. Introduction

Different types of field-effect transistor were proposed to detect biomolecular pro-
cesses [1–5]. Among them, silicon nanowire FETs offered a genuine nanoscale platform
to detect biological molecules. Those devices have targeted different biomedical and bi-
ological applications as the specific detection of viruses, proteins, nucleic acids, cancer
biomarkers, and cells or monitoring the physiological responses of a specific therapeutic
treatment on cells or tissues [6–8].

Top-down approaches such as scanning probe lithography were applied to fabricated
SiNW devices [9–11]. In particular, oxidation scanning probe lithography (o-SPL) was
applied to fabricate biosensors [12]. Oxidation SPL combines the high-spatial resolution
capabilities of atomic force microscopy (AFM) for positioning with the capability to fabricate
nanoscale features [13,14]. It has been extensively applied in nanopatterning and for the
fabrication of a variety of nanoelectronics devices [10–29].

Here, oxidation SPL, silicon nanowire transistors and single-molecule force spec-
troscopy are combined to quantify the molecular recognition events happening on the
surface of a silicon nanowire biosensor. The SiNW field-effect transistor detected very low
concentrations of proteins (500 pM). We demonstrated the existence of specific biomolecule
interactions on the surface of the SiNW. Those interactions were associated with the pres-
ence of avidin molecules. The study aimed to bridge the gap between the indirect measure-
ments of biomolecular activity provided by nanoscale transistors and the direct measure-
ments provided by single-molecule force spectroscopy.
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2. Materials and Methods
2.1. Silicon Nanowires

The silicon nanowires were made by o-SPL on substrates from ultra-thin silicon on
insulator (SOI) wafer (MEMC/SunEdison, Belmont, CA, USA). The top (100)-oriented
Si layer is 12 nm thick, p-doped, has a nominal resistivity of 9–15 Ω cm and the buried
oxide layer (BOX) has 25 nm of thickness. The substrates were cleaned with a protocol that
involves three sonication cycles of 10 min each in a mixture of NH4OH–H2O2–H2O (1:1:5).
Then, the samples are sonicated for 5 min in deionized water.

Oxidation SPL was applied to generate ultrathin and narrow silicon oxide masks.
It was performed at a relative humidity of 45%. We have used n +-type doped silicon
cantilevers (NCHV-W, Bruker) with a force constant of about 42 N m−1 and a resonant
frequency of 320 kHz. The cantilever was excited at its resonant frequency. Typical voltage
pulses were of 21–27 V with 0.7–1 ms duration. General and detailed aspects about o-SPL
might be found elsewhere [14]. The SiNWs used here were 10–12 nm in thickness, 150 nm
in width and 5 µm in length.

In a later stage, the ultrathin oxide mask was removed by applying reactive ion
etching (NRE 300 RIE System de NANO-MASTER, Inc, Austin, TX, USA). The sample was
introduced in the RIE chamber and the pressure lowered to 10−5 Torr for 30 min. Then the
SF6–O2 gas mixture (10:5 sccm) was introduced and left to stabilize for 1 min at the specific
chamber pressure of the experiment (6.25 × 10−2 Torr). A 20 W radio frequency power was
applied for 45 s.

2.2. Microelectrodes

First, a layer of photoresist S1813 was deposited on the sample and centrifuged at
5000 rpm for 1 min. It was cured on a hot plate (115 ◦C) for 1 min. The microelectrodes were
patterned by UV photolithography. A UV mask was used to protect the transistor channel
from light exposure (8 s). Then, the sample was immersed in the developer (MF319) for
1 min, rinsed with deionized water and dried with N2. After that, the sample was treated
with oxygen plasma for 30 s to eliminate the resist residues. To make the microelectrodes, a
thin film Cr (5 nm)/Au (40 nm) was deposited by electron beam evaporation.

The electrodes were protected from the buffer by a thin film of polydimethylsiloxane
(PDMS). A solution of PDMS and hexane (1:100) was centrifuged at 3000 rpm for 30 s. The
resulting thickness was about 30 nm. The sample was cured on the hotplate for 30 min at
90 ◦C. In a later stage, the resist covering the channel was removed with acetone and rinsed
with isopropanol and water. An O2 plasma was used to remove the possible remains of
organic residues from the surface of the microfluidic channel. To generate the O2, a power
of 50 W was applied for 1 min in a chamber with a pressure of 0.5 mbar (0.37 Torr).

2.3. Chemicals

Phosphate-buffered saline (PBS) powder, ethanol, 30% hydrogen peroxide, 1 N (0.5 mol/L)
sulfuric acid, 3-aminopropyltriethoxysilane (APTES) 99%, trimethylamine ≥ 99% and
avidin from egg white ≥ 98% were purchased from Sigma-Aldrich (Madrid, Spain). The
N-Hydroxysuccinimid (NHS)-polyethylenglycol (PEG27) biotin linkers were purchased
from JKU Linz [30].

2.4. Samples Silanization with OTS

Before octadecyltrichlorosilane (OTS) functionalization, the samples were exposed
to an oxygen plasma. The conditions of the process were: 50 W, 0.4 mbar and 30 s. The
samples were immediately immersed in 99.5% anhydrous toluene. In a glove box with an
N2 atmosphere, the samples were passed from anhydrous toluene to a 5 mL solution of
anhydrous toluene at 99.9% with 3 µL of OTS for 105 s. Then, the sample was rinsed with
chloroform, ethanol and water, and dried with nitrogen. The sample with the OTS was
cured on a hot plate at 80 ◦C.
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2.5. Proteins

A freeze-dried avidin was dissolved in 1 mM NaCl to obtain a solution with an avidin
concentration of 500 pM. Then, 100 µL of the solution was deposited on the SiNW sample
for 1 min. Afterwards, the sample was rinsed carefully with 1 mM NaCl and subsequently
with 20 mM PBS.

2.6. Tip Functionalization with APTES

Silicon nitride cantilevers (MSCT, Bruker, Camarillo, CA, USA) were cleaned thor-
oughly using the RCA procedure. This procedure consisted of three subsequent baths in a
mixture of ammonia solution, hydrogen peroxide (30%) and ultrapure water (1:1:5 ratio in
volume). Then, the cantilevers were rinsed with ultrapure water and dried carefully using a
flow of N2. Afterwards, the cantilevers were exposed to oxygen plasma (Diener Electronic,
Ebhausen, Germany) for 1 min at a power of 100 W under a pressure of 0.4 bar. Next, the
cantilevers were transferred into a mixture of 3-aminopropyltriethoxysilane (APTES) and
ethanol (1:5000 ratio in volume) to functionalize the tips. After 45 min, the cantilevers were
rinsed with ethanol and ultrapure water and dried with N2. Finally, the cantilevers were
placed in a desiccator for 1 h.

2.7. Tip Functionalization with PEG-Biotin

The functionalization of the tips with NHS-PEG27-Biotin linkers followed a similar
protocol as described above. First, 1 mg of the NHS-PEG27-Biotin linkers was dissolved
in trichloromethane (0.5 mL). The obtained solution was transferred into a Teflon PTFE
chamber and 30 µL of tryethylamine were added as a catalyst. Then, the silanized tips were
immersed into the chamber. After an incubation time of 2 h, the cantilevers were removed
from the chamber, rinsed three times with trichloromethane and dried with N2.

2.8. Cantilever Calibration

Cantilevers of the types PPP-NCH-W (Si, NanoWorld) and MSCT-C (SiNx, Bruker)
were used for AFM imaging. For the SMFS experiments, we used MSCT-D cantilevers (SiNx,
Bruker). MSCT-D cantilevers were calibrated in liquid as follows: First, the inverse optical
lever sensitivity (invOLS) for the static detection, σ, was obtained from force-displacement
curves recorded on the gold electrodes. The invOLS σ was determined as the inverse of each
curve’s slope in the contact part and then averaged over 256 curves. Second, the cantilever’s
thermal noise spectrum (power spectral density, PSD) was recorded at about 15 µm above
the sample surface [31]. Then, the single harmonic oscillator (SHO) model was fitted to the
PSD around the peak of the first resonance frequency using the calculated invOLS of the
first mode, σ1 [32]. The fitting yields the force constant k1. The static force constant can
then be calculated by k0 = k1/1.03. The obtained values for the cantilevers used here were
k0 = 32 pN/nm (Experiment 1) and k0 = 39 pN/nm (Experiment 2). The calibration was
performed after the experiment to prevent tip damage during the calibration.

2.9. AFM Experiments

All the experiments were performed on a NanoWizard III AFM (JPK Instruments AG,
Berlin, Germany) equipped with an open liquid cell. The experiments were carried out in
10 mM PBS at pH 7.4 at a temperature of T = 302 K. First, the SiNW was localized by AFM
using an MSCT-C cantilever. Then, the position of the SiNW was marked in the optical
image from the camera, and the laser spot was moved to the MSCT-D cantilever on the
same chip. The new cantilever was then moved to the previously marked position and an
SMFS measurement was started without further imaging. This procedure was developed to
prevent damage of the tip functionalization due to AFM imaging. SMFS experiments were
performed in the force-volume mode [33]. This method enabled us to directly correlate the
obtained curves with the topography of the SiNW. The individual curves were acquired
by applying a periodic trapezoidal modulation to the cantilever base with an amplitude
of Ap = 150 nm. First, the cantilever base was brought towards the sample at a constant
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speed of 200 nm/s until a force of 140 pN was reached. This force value was chosen to
avoid damage of the biotin. At this extension, the piezo was held for 200 ms. Then, the
cantilever base was retracted at a constant pulling speed of vp = 1000 nm/s. FV images
were performed on different SiNWs and covered different areas. For experiment 1 (2), it
consisted of 20 × 40 (40 × 60) force curves in an area of 0.5 × 1.0 µm2 (1.0 × 1.5 µm2),
resulting in a total of 800 (2400) force curves.

2.10. Single-Molecule Force Spectroscopy (SMFS) Analysis

All force-displacement curves were transformed into force-distance curves by d = z +
F/k. To detect the specific unbinding events, a custom written code was used (MATLAB,
MathWorks, Natick, MA, USA) [34]. It fitted the retraction part of the SMFS curves with a
polynomial function of grade 7. Then, the minima of the polynomial were determined and
the algorithm searched in their vicinity for minima in the raw data. Minima with a force
value smaller than 1.5-fold of the baseline noise were disregarded to avoid spurious peaks.
Specific unbinding events were selected by applying general criteria for specificity [35,36].
Only events that showed rupture distances drup in the 5 to 17 nm range were considered.
The above distance range matched the length of the PEG27 linker (10 nm ± 5 nm for
the slightly shorter PEG24 [35]). In total, <2% of the retraction curves exhibited features
of specific unbinding events. Curves showing specific unbinding events were further
processed using the JPK Data Processing software. The software fitted a freely jointed chain
(FJC) model to each curve exhibiting an unbinding event.

d(F) = LC

[
coth

(
FlK
kBT

)
− kBT

FlK

]
(1)

where LC is the contour length, lK = 700 pm the Kuhn length, kB the Boltzmann constant
and T the absolute temperature [37,38]. Furthermore, for each individual unbinding event,
the software read out the unbinding force Fm and determined the loading rate r by fitting
the force versus time data just before the event.

3. Results and Discussion
3.1. Fabrication of a SiNW Biosensor

Figure 1 shows a scheme of the main steps to generate a SiNW field-effect transistor.
First, gold microelectrodes were patterned by photolithography on a silicon-on-insulator
sample (Figure 1a); o-SPL was applied to define a narrow and ultrathin silicon oxide mask
(Figure 1b). A second photolithography step was applied to deposit a thin Au film and to
close the gap between the microelectrodes and the o-SPL mask (Figure 1c). The next step
involved the etching of the unmasked silicon region by reactive ion etching. Finally, the
three electrodes of the back-gated device were connected to power sources (Figure 1d).

We developed a protocol for the selective deposition of the biomolecules on the SiNW
surface. The process was based on controlling the adhesion force between the different
surfaces and the proteins by using chemical functionalization and controlling the pH of
the buffer [39]. The Au electrodes of the SiNW transistor (Figure 2a) were coated with
a thin film of polydimethylsiloxane (Dow Corning’s Sylgard Elastomer 184, purchased
from Sigma Aldrich). This film was used to separate the Au electrodes from the solution
(Figure 2b). Then, an OTS monolayer was deposited over the whole device (Figure 2c). The
purpose of this layer was to avoid the unspecific binding of the proteins to the different
surfaces of the device. The OTS monolayer was later removed from the SiNW surface by
applying a large force with the AFM tip (~2 µN) (Figure 2d). Finally, the proteins (avidin)
were deposited (Figure 2e).
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Figure 1. Main steps in the fabrication of a SiNW field-effect transistor by o-SPL. (a) Gold electrodes
were defined by photolithography and electron beam evaporation. (b) Ultrathin and narrow oxide
mask made by o-SPL. (c) Second photolithography step to connect the Au electrodes and the ultrathin
oxide mask. (d) Reactive ion etching to remove the unprotected silicon regions. The etching also
removed the ultrathin oxide mask. The final result was a back-gated Si nanowire FET.
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Figure 2. Steps to develop a SiNW biosensor. (a) SiNW FET. (b) PDMS deposition to protect the Au
electrodes from the buffer solution. (c) Coating the device with an OTS layer. (d) Removal of the OTS
from the surface of the SiNW by the AFM tip. (e) Adsorption and detection of biomolecules.
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Amplitude modulation AFM images of the surface of a SiNW were acquired before
(Figure 3a) and after OTS functionalization and removal (Figure 3b). AFM phase images [33]
obtained after the deposition of avidin revealed that the proteins were deposited on or
near the SiNW surface (Figure 3c,d). From Figure 3d we were able to count the number of
avidins over the nanowire. On average, one avidin molecule was found every 5 nm along
the SiNW. An avidin molecule occupied approximately 30 nm2. In total, we estimated
10,000 molecules over the SiNW shown in Figure 3c.
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Figure 3. (a) AFM topographic image of a SiNW. (b) AFM topography of the same SiNW after OTS
functionalization and removal. (c) AFM phase image after avidin molecules were deposited on the
surface of the SiNW. (d) High resolution image of the area marked in (c). In this experiment, a 100 µL
drop containing avidin was deposited over the SiNW for 1 min. Afterwards, the sample was rinsed
with a 1 mM NaCl solution and, subsequently, with 0.02M PBS.

3.2. Electrical Characterization of SiNW

Figure 4a,b showed the output curves of a SiNW FET in air and after its immersion
in PBS (control measurements). The curves were very similar in both environments. This
experiment showed the stability of the device in a liquid environment. Figure 4c showed
the response of the same SiNW after a drop of a liquid containing avidin molecules was
drop-casted. A significant increase of the current was observed (Figure 4c) with respect
to the curves obtained in air or PBS. The increase of the current was consistent with the
positive charge carried by avidin (the pH of the buffer was 7.4 while the isoelectric point of
avidin was about 10). The corresponding transfer curves are shown in Figure 4d–f.
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3.3. Single-Molecule Force Spectroscopy on a SiNW

Figure 5a shows the topography maps obtained from the SMFS force volume image.
The image shows the SiNW in the center, surrounded by the OTS-covered substrate. Each
pixel corresponds to an individual force-distance curve. While most of the retraction
curves were featureless (Figure 5b), some curves exhibited a specific unbinding event.
The positions of these curves are marked in blue. Light and dark blue corresponds to the
OTS-covered substrate and the SiNW, respectively. Some example curves with specific
unbinding events are shown in Figure 5c,d.

In total, 14 out of 800 force-distance curves showed specific events, from which 12 were
located on the SiNW or right next to it. The SiNW had a width of approximately 6 pixels
in the image, and consequently covered an area equivalent to 240 pixels. Thus, 240 force-
distance curves were obtained on the SiNW. Hence, on the SiNW, the chance to obtain a
specific unbinding event was 5.0% (12/240), while on the surface covered by OTS it was
<0.4% (2/560). This result showed that the functionalization protocol significantly increased
the chance for a target molecule (avidin) to be deposited on the SiNW’s surface. The
overall rate of recognition (5.0%) was lower than some values reported elsewhere (around
27–29%) [30,40,41]. The difference might be explained by the degrees of immobilization
of the avidin. In previous works, the avidin was physisorbed to mica while here was
bound to the SiNW. The stronger binding resulted in a lower flexibility of the avidin and
hence reduced the probability that the biotin was bound to one of the avidin’s four binding
sites during the moment of contact. In any case, the key result here was that the binding
probability found on the SiNW was one order of magnitude larger than the one found
on the surfaces covered by OTS. A second experiment performed on a different SiNW
confirmed the above finding, albeit the selectivity was slightly lower (5.7% on the SiNW
versus 1.0% on the OTS-covered substrate).
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Figure 5. Detection of specific unbinding events on a silicon nanowire surrounded by an octadecyl-
trichlorosilane (OTS) layer. (a) AFM topography image obtained over the SiNW by force volume
imaging. Each pixel corresponds to an entire force-distance curve. Pixels where specific avidin-biotin
events were detected were marked in blue tones (blue: on the SiNW, light blue: next to the SiNW).
(b) Examples of force-distance curves without unbinding events. (c) Examples of force-distance
curves with specific unbinding events taken on the SiNW. (d) Force-distance curves with specific
unbinding events taken on the OTS layer.

Bell–Evans Model

In order to verify the specificity of the observed unbinding events we applied the
Bell–Evans model [42,43]. Figure 6a shows the overall distribution of force values. The
average measured force, Fm* = 60.8 pN, agreed well with reported data obtained with
cantilevers of similar stiffness [34,40].

A ligand–receptor system characterized by the presence of weak non-covalent bonds
exhibits a dependence of the rupture forces (bond strengths) on the loading rate at which
the force is applied [41]. The Bell–Evans theory provides the basic understanding of this
dependency [42,43]. With increasing loading rate r, the mean value of the rupture force
Frup increased according to:

Frup(r) = − kBT
xu

ln
(

rxu

koffkBT

)
(2)

where koff is the dissociation constant, xu the effective distance between the bound and
unbound states, T the absolute temperature and kB the Boltzmann constant. Figure 6b
showed the data from two experiments performed under similar conditions. The loading
rate r depended on both the pulling speed vp and the effective linker stiffness, keff according
to r = vp keff. The effective linker stiffness was related to the stiffness of the PEG-linker,
kPEG, and the cantilever stiffness, k0, by kPEG = k0keff

k0−keff
.
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parameters were xβ = (0.21 ± 0.06) nm and koff = (21.4 ± 14.1) s−1.

Although the experiments were performed using a constant pulling speed vp, the
loading rate covered a range of values for two reasons. First, the cantilevers used for the
two experiments had different stiffnesses k0. Second, the stochastic nature of the unbinding
process provided a range of rupture lengths, which, for a nonlinear spring, implied a
distribution in the PEG stiffness [37].

The measured average force values were represented by the red stars. In order to
increase the fit quality, it was useful to plot the individual data points instead of the average
ones [44–46]. Fitting all data points using Equation (2) described the data well (both the
average force values and the individual ones). The fit yielded xβ = (0.21 ± 0.06) nm and
koff = (21.4 ± 14.1) s −1 which was close to the values obtained previously for the inner
activation barrier [34,40].

Equation (2) was based on Hooke’s law, which implies an accuracy limit for its appli-
cation in AFM-based SMFS [47]. The validity of Equation (2) was verified by calculating
the frequency ratio χ by [34].

χ =
vp

f1xc-c
(3)

For the measurement conditions used here, we obtained χ = 1000 nm/s
3000 s−1 0.15 nm ≈ 2.2.

Such a value of χ implied that the dynamic terms were very small and neglecting them
led to an error of less than 1%. Hence, the unbinding data was described accurately by
Equation (2) (Bell–Evans model).

Altogether, it was concluded that the observed features were signatures of specific
biotin-avidin unbinding events. The above results confirmed that the functionalization
protocol of the SiNW provided a selective adsorption site for avidin molecules.

4. Conclusions

We aimed to correlate the indirect measurements of biomolecule concentrations ob-
tained by SiNW biosensors with the direct molecular recognition data provided by single-
molecule force spectroscopy. To that end, we applied oxidation nanolithography, surface
functionalization, electrical measurements and single-molecule force spectroscopy. A liquid
containing avidin molecules increased the current through the SiNW device with respect to
the control experiments. This was consistent with the positive charge carried by avidin. The
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SiNW field-effect transistor detected very low concentrations of avidin molecules (500 pM).
In a subsequent experiment, we demonstrated the existence of specific molecular recogni-
tion events associated with the presence of avidin on the surface of the SiNW biosensor.
Therefore, we confirmed that the nanoscale transistor measurements were correlated with
the presence of avidin biomolecules on the surface of the nanowire.
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