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Abstract

Background: Protein-protein interactions (PPIs) are central to a lot of biological processes. Many algorithms and
methods have been developed to predict PPIs and protein interaction networks. However, the application of most
existing methods is limited since they are difficult to compute and rely on a large number of homologous proteins
and interaction marks of protein partners. In this paper, we propose a novel sequence-based approach with
multivariate mutual information (MMI) of protein feature representation, for predicting PPIs via Random Forest (RF).

Methods: Our method constructs a 638-dimentional vector to represent each pair of proteins. First, we cluster
twenty standard amino acids into seven function groups and transform protein sequences into encoding sequences.
Then, we use a novel multivariate mutual information feature representation scheme, combined with normalized
Moreau-Broto Autocorrelation, to extract features from protein sequence information. Finally, we feed the feature
vectors into a Random Forest model to distinguish interaction pairs from non-interaction pairs.

Results: To evaluate the performance of our new method, we conduct several comprehensive tests for predicting
PPIs. Experiments show that our method achieves better results than other outstanding methods for sequence-based
PPIs prediction. Our method is applied to the S.cerevisiae PPIs dataset, and achieves 95.01 % accuracy and 92.67 %
sensitivity repectively. For the H.pylori PPIs dataset, our method achieves 87.59 % accuracy and 86.81 % sensitivity
respectively. In addition, we test our method on other three important PPIs networks: the one-core network, the

multiple-core network, and the crossover network.

Conclusions: Compared to the Conjoint Triad method, accuracies of our method are increased by 6.25,2.06 and
18.75 %, respectively. Our proposed method is a useful tool for future proteomics studies.

Keywords: Protein-protein interactions, Protein sequence, Feature extraction, Conjoint amino acids, Multivariate

mutual information

Background

Identification of protein-protein interactions (PPIs) is
important to elucidate protein functions and identify bio-
logical processes in a cell. The knowledge of PPIs can help
people better understand disease mechanisms and drug
designs. In the past several years, a large number of tech-
nologies have been developed for the large-scale analysis
of PPIs. In general, there are three categories of methods
for detecting PPIs: methods based on the information of
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evolution, methods based on natural language processing,
and methods based on features of amino acid sequence.
A large number of past studies have made clear that the
protein-protein interaction has a co-evolution trend [1].
The evolution information is extracted from multiple
sequence alignment of homologous proteins. Tree sim-
ilarity is used as a simple linear correlation between
distance matrices of two protein families, as a proxy of
their phylogenetic trees [2]. MirrorTree [3-5] evaluates
the relationship between tree similarities and physical or
functional interactions. It is possible to predict PPIs on a
genomic scale with higher correlations indicating a higher
probability of protein-protein interaction. Carlo et al. [6]
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presented a log-likelihood score for protein-protein inter-
action. Direct Coupling Analysis (DCA) has been used
to predict response regulator (RR) interaction partners
for orphan histidine sensor kinase (SK) proteins in bacte-
rial two-component signal transduction systems [7]. They
also presented a protein-protein interaction score, which
is based on improved efficiency of multivariate gaussian
approach [8]. However, since these methods need a large
number of homologous proteins and interaction marks of
protein partners, they are very difficult to compute and
their applications are limited.

Many methods have been developed to find the evi-
dence for PPIs from PubMed abstracts based on Natural
Language Processing (NLP) [9]. According to a certain
semantic model, these methods automatically extract rel-
evant pieces of information from texts, since a large num-
ber of known PPIs are stored in the scientific literature of
biology and medicine. Daraselia et al. [10] used a method,
called MedScan, to extract more than one million pieces
of data from PubMed. They obtained accuracy rates of up
to 91 %, compared with the BIND and DIP databases [11].
The problem of this approach is that some PPIs informa-
tion may be missing from literature, thus the prediction
may not be complete.

It might be possible to predict PPIs accurately by
using only protein sequence information with meth-
ods based on machine learning algorithms and fea-
tures of amino acids. To use machine learning methods
in this task, one of the most important computational
challenges is to extract useful features from protein
sequences. Generally, there are several kinds of fea-
ture representation methods including Auto Covariance
(AC) [12], Auto Cross Covariance (ACC) [12], Conjoint
Triad (CT) [13], Local Protein Sequence Descriptors (LD)
[14, 15], Multi-scale Continuous and Discontinuous fea-
ture set(MCD) [16], Physicochemical Property Response
Matrix combined with Local Phase Quantization descrip-
tor (PR-LPQ) [17], Multi-scale Local Feature Descriptors
(MLD) [18], as well as Substitution Matrix Representation
(SMR) [19].

AC and ACC [12] use seven physicochemical prop-
erties of amino acids to reflect their interaction modes
whenever possible. After being represented by these seven
descriptors, a pair of proteins could be converted into a
420-dimensional vector by AC, and 2940-dimension by
ACC. CT [13] considers the properties of each amino
acid and its vicinal neighbors and regards the three
contiguous amino acids as a unit. The PPIs information of
protein sequences can be projected into a homogeneous
vector space by counting the frequency of each type. The
20 amino acids are clustered into seven groups accord-
ing to dipoles and volumes of side chains. The descriptor
of proteins were concatenated into a 686-dimensional
vector by CT.

Page 2 0f 13

Similar to CT, LD [14, 15] clusters twenty standard
amino acids into seven functional groups. It splits the
protein sequence into ten local regions of varying length
to describe multiple overlapping continuous and discon-
tinuous interaction patterns within a protein sequence.
For each local region, three local descriptors—composition
(C), transition (T) and distribution (D)-are calculated. A
1260-dimentional vector is constructed to represent each
protein pair by LD. MLD [18] uses a multi-scale decompo-
sition technique to divide protein sequence into multiple
sequence segments of varying length to describe over-
lapping local regions. A binary coding scheme is then
adopted to construct a set of continuous regions on the
basis of the above partition. A 1134-dimentional vector
is constructed to represent each protein pair by MLD.
MCD [16] is similar to MLD, except that it constructs a
1764-dimentional vector for each protein pair. Indeed, LD,
MCD and MLD can be categorized as the same type of
methods.

PR-LPQ [17] adopts the physicochemical property
response matrix method to transform the amino acids
sequence into a matrix and then employs the local phase
quantization-based texture descriptor to extract local
phrase information in the matrix. SMR is based on BLO-
SUMBG62, which is considered to be powerful for detecting
weak protein similarities. Huang et al. [19] used BLO-
SUMBS62 to construct a new matrix representation from a
protein sequence. Then, the matrix is lossy compressed by
Discrete Cosine Transform(DCT) and a 400-dimensional
feature vector is extracted from the compressed matrix.
Each pair of protein sequences forms an 800-dimensional
feature vector, which is fed into the Weighted Sparse
Representation based Classifier(WSRC) for predicting
PPIs.

In this paper, we propose a novel sequence-based
approach with a k-gram feature representation calcu-
lated as Multivariate Mutual Information (MMI). Com-
bined with normalized Moreau-Broto Autocorrelation
(NMBAC), we predict PPIs via Random Forest (RF), which
is an ensemble learning method for classification, regres-
sion and other tasks. For the performance evaluation, our
method is applied to the S.cerevisiae PPIs dataset. Our
method achieves 95.01 % accuracy and 92.67 % sensitiv-
ity. Compared with the existing best method, the accuracy
is increased by 0.29 %. To further demonstrate the effec-
tiveness of our method, we also test it on the H.pylori
PPIs dataset. Our method achieves 87.59 % accuracy and
86.81 % sensitivity. On the humangis1 PPIs dataset, our
method achieves 97.56 % accuracy and 96.57 % sensitivity.
In addition, we use S.cerevisiae PPIs dataset to construct
a model to predict five other independent species PPIs
datasets. Compared with the state-of-the-art methods,
the accuracy is increased 2.42 % on average. We also test
our method on two special PPIs datasets [20]. On the yeast
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dataset, our method achieves 82, 82,62 and 61 % AUROC
on four different test classes (typical Cross-Validated (CV)
and distinct test classes C1, C2 and C3). On the human
dataset, our method achieves 82, 82,60 and 57 % AUROC
on four different test classes. Finally, we test our method
on three important PPIs networks: the one-core network
(CD9) [21], the multiple-core network (Ras-Raf-Mek-Erk-
Elk-Srf pathway) [22], and the crossover network (Wnt-
related Network) [23]. Compared to the Conjoint Triad
(CT) method [13], accuracies of our method are increased
by 6.25,2.06 and 18.75 %, respectively.

Methods

In our method for predicting protein-protein inter-
action based on protein sequence information, first
we extract features from protein sequence informa-
tion. The feature vector represents the characteristic
on one pair of proteins. We use k-gram feature repre-
sentation calculated as Multivariate Mutual Information
(MMI) and extract additional feature by normalized
Moreau-Broto Autocorrelation (NMBAC) from protein
sequences. These two approaches are employed to trans-
form the protein sequence into feature vectors. Then,
we feed the feature vectors into a specific classifier
for identifying interaction pairs and non-interaction
pairs.

Multivariate mutual information

Inspired by previous work [13, 24, 25] for extracting
features from protein sequences, we propose a novel
method to fully describe key information of protein-
protein interaction. There exist many technologies using
the k-gram feature representation, which is commonly
used for protein sequence classification [26, 27]. Here
k represents the number of conjoint amino acids. For
example, CT [13] used the 3-gram feature representation.
Shen et al. [13] indicated that methods without con-
sidering local environment are usually not reliable and
robust, so they produced a conjoint triad method to con-
sider properties of amino acids and their proximate amino
acids.

To continue the usage of k-gram feature representa-
tion and to enhance classification accuracy, we utilize
MMI [28] for deeply extracting conjoint information of
amino acids in protein sequences.

Classifying amino acids

The protein-protein interaction can be dominated by
dipoles and volumes of diverse amino acids, which reflect
electrostatic and hydrophobic properties. All 20 stan-
dard amino acid types are assigned to seven functional
groups [13], as shown in Table 1. For each pair of proteins,
we extract conjoint information based on these amino
acid categories.
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Table 1 Division of 20 amino acid types, based on dipoles and
volumes of side chains

No. Group Dipolescale Volumescale
C AGV Dipole < 1.0 Volume< 50
G C 1.0 < Dipole < 2.0 (form disulphide bonds) Volume> 50
G DE Dipole > 3.0 (opposite orientation) Volume> 50
G FILP Dipole < 1.0 Volume> 50
C4 H,N,QW 20 <dipole < 3.0 Volume> 50
Cs KR Dipole> 3.0 Volume> 50
Cs M,ST,Y 10 <dipole <20 Volume> 50

Calculating multivariate mutual information

Considering the neighbours of each amino acid, we regard
any three contiguous amino acids as a unit. We use a
sliding window of a length of 3 amino acids to parse the
protein sequence. For each window, categories of three
amino acids are used to label the type of this unit. Instead
of considering the order of the three amino acids, we
only consider the basic ingredient of the unit. We define
different types of 3-gram feature representation, such as
'Co, Co, Cs' Co, Co, C4, ..., Co, Ce, Cy;. Similarly, we also
define different types of 2-gram feature representation,
such as 'Cp, C;),/ Co, Cy, . ..," Cs, C;. We count each type
of 3-gram feature and 2-gram feature on one protein
sequence by a sliding window, as shown in Fig. 1.

At some point in the ensuing discussion of mutual infor-
mation, we state the logarithmic base as e. In contrast to
the standard mutual information approach, our mutual
information and entropy method refer to single event on
one protein sequence, whereas standard mutual informa-
tion refers to overall possible events. We calculate the
multivariate mutual information for each type of 3-gram
feature, defined as follows:

I(a,b,c) = I(a,b) — I(a, b|c) (1)

where 4,b and ¢ are categories of three conjoint amino
acids in one unit.

C={A.G,V}

C={C} [VTATSDCWWQYK] The original sequence

C~{D.E

Cjz)lF,l,IiP ) . l Transform to number encode

Ce={H,N.Q,W} [CdCeCoCelCsCoCICACaCACCs|  Re-encoding sequence

C={K.R}

Ce={MS,T,Y}

Seven function groups 3gram: (Co,Co,Ceil) 2-gram:  (Co,Cq:3)

(Co,C,Ce:2) (€L
(C2,C6Ce1) (€Ll

Fig. 1 3-gram or 2-gram feature representation
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We then define the mutual information for one type of
2-gram feature as I(a, b), which can be counted by a 2-
length sliding window:

2)

I(a,b) =f(a,b)ln f(ﬂ’b))

(@)f (b)

where f (a, b) is the frequency of categories a and b appear-
ing in 2-gram feature on a protein, and f(a) is the fre-
quency of category a appearing on a protein, respectively.

In addition, we define the conditional mutual informa-
tion as I(a, b|c).

I(a,b|c) = H(a|c) — H(alb,c) (3)

where H(a|c) and H(a|b, c¢) are the conditional entropy as
follows.

H(alc) = —f(alc)in(f (alc)) (4)
and
H(alb,c) = —f(a|b, o)In(f (a|b, c)) (5)

where f(alc) is the frequency of category a appearing
while category c exists in 2-gram feature on a protein, and
f(alb,c) is the frequency of category a appearing while
categories b and c exist in 3-gram feature on a protein.

H(a|c) and H(a|b, c¢) can be approximately calculated as
follows:

f(a, 0 <f(a,6))
H = l 6
(alc) 70 n 70 (6)
and
_ _f@by), (flab,c)
H@lbo =245 l”(f(b,a ) ?

where f(a, b, c) is the frequency of categories 4,b and c
appearing in 3-gram feature on a protein.

To avoid the values of I(a, b, ¢) and I(a, b) being infinity,
we calculate the frequency as follows:

ng+1
L+1

fla) = (8)

where 1, is the occurrence number of category a appear-
ing on a protein and L is the length of this protein
sequence. We also use similar formulas to calculate f(a, b)
and f(a, b, ¢).

We can get 84 multivariate mutual information val-
ues of I(a, b, c) (3-tuples MI) and 28 mutual information
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values of I(a, b) (2-tuples MI) from one protein. We also
compute the frequency of the seven amino acid categories
appearing on this protein. A protein sequence is repre-
sented as 84 + 28 + 7 = 119 features. Finally, we combine
the descriptors of two proteins to build a 238-dimensional
vector for representing each pair of proteins.

Normalized moreau-broto autocorrelation

It is well known that PPIs include four interaction modes,
usually expressed as electrostatic interaction, hydropho-
bic interaction, steric interaction and hydrogen bond.
Feng et al. [29] introduced an autocorrelation function
combining physicochemical properties of amino acids to
propose a feature representation method, which is used
to predict the types of membrane proteins. Inspired by
this method, we use the NMBAC to extract features from
protein sequences.

Six physicochemical properties of amino acid

The physicochemical properties we consider are
hydrophobicity (H), volumes of side chains of amino acids
(VSQ), polarity (P1), polarizability (P2), solvent-accessible
surface area (SASA) and net charge index of side chains
(NCISC) of amino acid.

Values of these six physicochemical properties for each
amino acid are listed in Table 2 [30]. They are first nor-
malized to zero mean and unit standard deviation (SD) as
follows:

’ Pi,j — P]' , .

P = T(z =12..,20j=12,...,6) (9
where P;; is the value of descriptor j for amino acid type
i, P; is the mean over 20 amino acids of descriptor value j,
and §; is the corresponding SD.

Each protein can be translated into six vectors with
each amino acid represented by normalized values of six
descriptors. So, NMBAC [29] can be computed as follows:

n—lag

Z Xij X Xitlag)(i=1,2,...,
i=1

1

A = G~ lag)

n—lag;j=12,...,6.)
(10)

where j represents one descriptor of six descriptor, i is the
position in protein sequence X, # is the length of the pro-
tein sequence and lag is the sequential distance between
one residue and another, a certain number of residues
away (lag = 1,2, ...,1g), and lg is a parameter determined
by an optimization procedure to be described.

Inspired by AC [12], we select the optimal value of lag
from 1 to 30. We can get 30 x 6 = 180 dimensional vector.
We also compute the frequency of 20 amino acids appear-
ing on this sequence. As a result, a protein sequence is
represented as 30 x 6 + 20 = 200 features. Finally, we
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Table 2 Original values of six physicochemical properties of 20
amino acid types

Amino acid H VSC P1 P2 SASA NCISC

A 0.62 275 8.1 0.046 1.181 0.007187
@ 0.29 44.6 55 0.128 1.461 -0.03661

D -0.9 40 13 0.105 1.587 -0.02382
E -0.74 62 123 0.151 1.862 0.006802
F 119 115.5 5.2 0.29 2.228 0.037552
G 048 0 9 0 0.881 0.179052
H -04 79 104 0.23 2.025 -0.01069
I 1.38 935 5.2 0.186 1.81 0.021631
K -1.5 100 1.3 0.219 2.258 0.017708
L 1.06 935 49 0.186 1.931 0.051672
M 0.64 94.1 5.7 0.221 2034 0.002683
N -0.78 587 116 0.134 1.655 0.005392
p 0.12 419 8 0.131 1.468 0.239531
Q -0.85 80.7 10.5 0.18 1.932 0.049211
R -2.53 105 105 0.291 2.56 0.043587
S -0.18 293 9.2 0.062 1.298 0.004627
T -0.05 513 8.6 0.108 1.525 0.003352
\% 1.08 715 59 0.14 1.645 0.057004
W 0.81 145.5 54 0.409 2.663 0.037977
Y 0.26 117.3 6.2 0.298 2.368 0.023599

combine descriptors of two proteins, and build a 400-
dimensional vector to represent each pair of proteins by
NMBAC.

Random forest classifier

RF is an algorithm for classification developed by Leo
Breiman [31], which uses an ensemble of classification
trees. Each classification tree is built by using a bootstrap
sample of training data, and each split candidate set is a
random subset of variables. RF uses both bagging (boot-
strap aggregation) and random variable selection for tree
building. Each classification tree is unpruned to obtain
low-bias trees. The bagging and random variable selection
can cause low correlation of individual trees. Therefore,
RF has excellent performance in classification tasks.

In this paper, the feature space of each pair of proteins is
composed of MMI and NMBAC. Totally, there are 238 +
400 = 638 features to be encoded to represent each pair
of proteins. We define a 638-dimentional feature vector
F = (x1,%2,...,%638) as the input data of RF model. The
class label ¢ of interacting pair or non-interacting pair is
set as 1 or —1, respectively. If the number of cases in the
training set is N, the sample is built by randomly choosing
N cases from the original data, but with replacement. This
sample will be the training set for growing the tree. There
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are M input variables, a number m < M is specified such
that at each node, m variables are selected at random out
of M and the best split on these m is used to split the node.
The value of m is held constant during the forest growing.
Each tree is grown to the largest extent possible without
pruning. For the new test sample, the classification result
can be obtained by a voting method on these trees.

Results

We test our method on several different PPIs
datasets to evaluate the performance of our proposed
approach, including S.cerevisiae, H.pylori, humangiei,
C.elegans, E.coli, humanya1o and M.musculus dataset.
First, we independently analyze the performance of two
protein representations, such as MMI and NMBAC.
Second, we compare our method with some outstanding
methods on the S.cerevisiae, H.pylori and humang;e;
datasets. Then, we use the S.cerevisiae PPIs dataset to
construct a model to predict other five independent
species PPIs datasets. Our proposed method achieves
a high performance on the S.cerevisiae, H.pylori and
humangie) datasets, so we evaluate the prediction perfor-
mance of our model on five independent testing datasets.
Our experiments suggest that experimentally identified
interactions in one organism are able to predict interac-
tions in other organisms. We also test our method on
two special yeast and human PPIs datasets. In addition,
we test our method on three important PPIs networks,
and compare it with the state-of-the-art methods. We
use our primary experimental information to predict
real PPIs network, which is assembled by pairwise PPIs
data.

PPIs datasets

The first PPIs dataset, described by You et al. [16], is
downloaded from yeast S.cerevisiae core subset in the
Database of Interacting Proteins (DIP) [11]. A protein
with fewer than 50 residues or having more than 40 per-
cent sequence identity are removed, and the remaining
5594 pairs of proteins formed the golden standard positive
dataset (GSP). Non-interacting pairs are selected uni-
formly at random from the set of all interacting pairs that
are not known to interact. Interacting pairs with the same
subcellular localization information are then excluded.
Finally, the golden standard negative dataset (GSN) is
consisted of 5594 protein pairs, and their subcellular local-
ization are different. The GSP and GSN datasets contain a
total of 11188 protein pairs (half from the positive dataset
and half from the negative dataset).

The second PPIs dataset, described by Martin et al. [32],
is composed of 2916 H.pylori protein pairs (1458 interact-
ing pairs and 1458 non-interacting pairs). The third PPIs
dataset is collected from the Human Protein References
Database (HPRD) as described by Huang et al. [19]. Huang
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Table 3 Analyze the performance of 2-tuples and 3-tuples Ml on S.cerevisiae dataset

Feature Classifier ACC(%) SN(%) Spec(%) PPV (%) NPV (%) F1(%) MCC(%)
2-tuples Ml RF 93.56£0.23 89.98+0.51 97.41£0.64 97.38+0.58 90.06£0.45 93.54+0.41 87.42+0.83
3-tuples MI RF 93.88+0.25 90.25+0.42 97.301+0.50 96.941+0.44 91.35+0.55 93.474+0.39 87.92+0.77
MMI RF 94.23+0.36 91.01+045 97.444+0.40 97.271+0.38 91.55+0.48 94.03+0.35 88.63+0.71

et al. constructed the humangie1 dataset by 8161 pro-
tein pairs (3899 interacting pairs and 4262 non-interacting
pairs).

The C.elegans(4013 interacting pairs), E.coli(6954
interacting pairs), humanis12(1412 interacting pairs),
M.musculus(313 interacting pairs), and H.pylori(1420
interacting pairs) datasets are mentioned by Zhou
et al. [14]. These species-specific PPIs datasets are
employed in our experiment to verify the effectiveness of
our proposed method.

Evaluation measurements

To test the robustness of our method, we repeat the
process of random selection of the training and test
sets, model-building and model-evaluating. This process
is five-fold cross validation. There are seven parame-
ters: overall prediction accuracy (ACC), sensitivity (SN),
specificity (Spec), positive predictive value (PPV), nega-
tive predictive value (NPV), weighted average of the PPV
and sensitivity (F score), Matthew’s correlation coefficient
(MCC). These parameters are defined as follows:

TP+ TN
ACC = + (11a)
TP+ FP+ TN + FN
TP
SN=—— 11b
TP + FN ( )
S = N (11¢)
PEC= TN + EP ¢
TP
PPV = —— (11d)
TP + FP
TN
NPV = — (11e)
TN + FN
SN x PPV
Fseore =2 % o0 5py (119
McC TP x TN — FP x FN

=~ J(TP+EN) x (TN + EP) x (TP 1 EP) x (IN + EN)
(11g)

where true positive (TP) is the number of true PPIs that
are predicted correctly; false negative (FN) is the number
of true PPIs that are predicted to be non-interacting pairs;
false positive(FP) is the number of true non-interacting
pairs that are predicted to be PPIs, and true negative(TN)
is the number of true non-interacting pairs that are pre-
dicted correctly.

Experimental environment

In this paper, our proposed sequence-based PPIs pre-
dictor is implemented using C++ and MATLAB. All
experiements are carried out on a computer with 2.5 GHz
6-core CPU, 32 GB memory and Windows operating sys-
tem. Two RF parameters, the number of decision trees and
split are 500 and 25.

Performance of PPIs prediction

We use eight different datasets to evaluate the per-
formance of our proposed method. The proposed
approach is compared with other methods on the
S.cerevisiae, H.pylori and humang;e; datasets. Then, we
test our method on the humanya12, M.musculus, H.pylori,
C.elegans, and E.coli datasets for PPIs prediction.

S.cerevisiae dataset
We use the first PPIs dataset used in You et al. [16] to
evaluate the performance of our model.

Analyzing 2-tuples and 3-tuples MI To analyze the per-
formance of the 2-tuples and 3-tuples MI features by
testing the S.cerevisiae dataset. The results of prediction
for the 2-tuples and 3-tuples MI are shown in Table 3.
The accuracies for 2-tuples MI, 3-tuples MI and MMI are
93.56,93.88 and 94.23 %, respectively. Obviously, the com-
binatorial approach of MMI achieves better performance
than either 2-tuples MI or 3-tuples MI.

©
»
©

Average Accuracy(%)
© [<e] © [<e] © o ©
© M N N N N N N
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Fig. 2 Accuracy of our method with NMBAC on different values of lag
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Table 4 Analyze the performance of MMI and NMBAC on S.cerevisiae dataset by RF Classifier

Feature ACC(%) SN(%) Spec(%) PPV (%) NPV (%) F1(%) MCC(%)
MMI 94.23£0.36 91.01£0.45 97.44+£0.40 97.27+0.38 91.55+£048 94.03£0.35 88.63£0.71
NMBAC 92.76£0.35 90.99+0.59 94.53+0.50 94.34+0.37 91.30+0.68 92.63£0.26 85.57£0.70
MMI+NMBAC(A-B order) 95.01£046 92.67£0.50 97.31£0.61 97.16£0.55 93.06+0.48 94.26£1.18 90.10£0.92
MMI+NMBAC(B-A order) 94.90+0.24 92.60+047 97.22+0.58 97.10+0.44 92.89+0.55 94.79+0.78 89.91£1.1

Selecting optimal lag The large value of lag =
1,2,...,lg will result in more variables that account
for residue contacts with large distances apart in the
sequence. The maximal possible g is the length of the
shortest sequence (50 amino acids) in the dataset. To
obtain the best lg, we test nine different values of lg(lg =
5,10, 15,20, 25, 30, 35,40, 45). The results of these nine
values of [g on S.cerevisiae dataset are shown in Fig. 2.
As seen from the curve, the prediction accuracy increases
when Ig increases from 5 to 30. However, it slightly
declines when Ig increases from 30 up to 45. The best
prediction accuracy is 92.76 %, when [g is 30 amino
acids. NMBAC with g less than 30 would lose some use-
ful features of protein sequences and larger values could
introduce noise instead of improving the prediction per-
formance. So, we select the optimal lag as 30 in our
study.

Analyzing MMI and NMBAC In order to understand
the contribution of different feature representations, we
evaluate the performance of MMI and NMBAC for PPIs
prediction. We use the S.cerevisiae dataset, which is ran-
domly partitioned into training and independent testing
sets via a five-fold cross validation. Each of the five sub-
sets acts as an independent holdout testing dataset for
the model trained with rest four subsets. The cross vali-
dation can minimize the impact of data dependency and
the reliability of experimental results can be improved.
The prediction result is showed in Table 4. The accura-
cies for MMI, NMBAC and ensemble representation are
94.23,92.76 and 95.01 %, respectively. Obviously, MMI
has better performance than NMBAC. Using ensemble
representation, accuracy can be raised 0.78 %.

To consider the asymmetric of proteins, the forward
vector of one PPI is composed of two interacting proteins

(protein A and protein B), and the backward vector is
composed of reverse two interacting proteins (protein B
and protein A). Accuracies on forward and backward vec-
tors for PPIs prediction are 95.01 and 94.90 %, and the
prediction result is less changed.

5-fold cross-validation The prediction result of our
method on S.cerevisiae dataset is shown in Table 5. We
predict PPIs of S.cerevisiae dataset, and obtain accuracy,
precision, sensitivity, and MCC of 95.01, 97.31,92.67, and
90.1 %, respectively. Standard deviations of these crite-
ria values are 0.46, 0.61, 0.5, and 0.92 %, respectively. High
accuracies and low standard deviations of these criterion
values show that our proposed model is effective and
stable for predicting PPIs.

Comparison with existing methods We compare the
prediction performance of our proposed method with
other existing methods on the S.cerevisiae dataset, as
showed in Table 6. It can be observed that high prediction
accuracy of 95.01 % is obtained from our proposed model.
We use the same S.cerevisiae PPIs dataset, and compare
our experimental result with methods proposed by You
et al. [16, 18, 30], Wong et al. [17], Guo et al. [12], Zhou
et al. [14] and Yang et al. [15], where Random Forest (RF),
Ensemble Extreme Learning Machines (EELM), Support
Vector Machine (SVM), Rotation Forest, Support Vector
Machine (SVM), or k-Nearest Neighbor (KNN) is per-
formed with MLD, AC+CT + LD+MAC, MCD, PR-LPQ,
AC, ACC, or LD scheme as input feature vectors, respec-
tively. Their prediction accuracies are 94.72+0.43, 87.00+
0.29,91.36 £+ 0.36,93.92 + 0.36,89.33 £ 2.67,87.36 £
1.38,88.56+0.33, and 86.15+1.17 %, respectively, whereas
our prediction accuracy is 95.01£0.46 %. Our method has

Table 5 5-fold cross-validation result obtained by using our proposed method on S.cerevisiae dataset

Testing set ACC(%) SN(%) Spec(%) PPV (%) NPV (%) F1(%) MCC (%)

1 9541 93.15 97.60 97.46 93.54 9226 90.88

2 94.99 9203 97.82 97.57 92.80 94.72 90.11

3 9428 9231 96.29 96.23 9244 9423 88.64

4 94.95 9269 97.22 97.10 9297 94.84 89.99

5 95.40 93.15 97.60 97.46 9354 9526 90.88
Average 9501046 9267405 9731061 97.16£0.55 93.06+048 9426+1.18 90.1£0.92
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Table 6 Comparison of the prediction performance between our proposed method and other state-of-the-art works on S.cerevisiae

dataset

Method Feature Classifier ACC(%) SN(%) PPV (%) MCC(%)
Our method MMI+NMBAC RF 95.01£0.46 92.67+0.50 97.16+0.55 90.10+0.92
You's work [18] MLD RF 94.72+£043 94.34£0.49 98.91+0.33 85.99+0.89
You's work [30] AC+CT+LD+MAC E-ELM 87.00£0.29 86.15+£043 87.59£0.32 77.36+044
You's work [16] MCD SVM 91.36£0.36 90.67£0.69 91.94+0.62 84.21£0.59
Wong's work [17] PR-LPQ Rotation Forest 93.924+0.36 91.104+0.31 96.4540.45 88.5640.63
Guo's work [12] ACC SVM 89.33+£2.67 89.93+3.68 88.87+6.16 N/A2

Guo's work [12] AC SVM 87.36+1.38 87.30+4.68 87.82+4.33 N/A®
Zhou's work [14] LD SYM 88.56+0.33 87.37£0.22 89.50£0.60 77.15+0.68
Yang's work [15] LD KNN 86.15£1.17 81.03£1.74 90.24+1.34 N/A2

2N/A means not available

the highest prediction accuracy on the S.cerevisiae PPls
dataset, compared to all above methods. Our method has
the best performance in other criteria as well. The sen-
sitivity is 92.67 + 0.5 %, and the Matthew’s correlation
coefficient is 90.140.92 % in our result. On the S.cerevisiae
dataset, the MCC of our method is better than other
existing methods.

H.pylori dataset

In order to highlight the advantage of our method, we
also test it on the H.pylori dataset, which is described
by Martin et al. [32]. We compare the prediction per-
formance of our proposed method with other previ-
ous works including AC+CT+LD+MAC [30], MCD [16]
DCT+SMR [19], phylogenetic bootstrap [33], signature
products [32], HKNN [24], ensemble of HKNN [25] and
boosting. In Table 7, we can see that the average predic-
tion performance of our method, such as sensitivity, PPV,

Table 7 Comparison of the prediction performance between
our proposed method and other different methods on H.pylori
dataset

Methods ACC(%) SN(%) PPV (%) MCC(%)
Our method(MMI-+NMBAC) 87.59 86.81 88.23 7524
Our method(MMI) 85.42 8522 87.70 70.71
Our method(NMBAC) 85.59 8333 8953 71.35
You's work(AC+CT+LD+MAC) [30]  87.50 8895 86.15 7813
You's work(MCD)[16] 84.91 8324 86.12 74.40
Huang's work(DCT+SMR) [19] 86.74 8643 87.01 76.99
Phylogenetic bootstrap [33] 75.80 69.80 80.20 N/A2
HKNN [24] 84.00 86.00 8400  N/A?
Signature products [32] 83.40 79.90 8570 N/A®
Ensemble of HKNN [25] 86.60 86.70  85.00 N/A2
Boosting 79.52 8037 81.69 70.64

#N/A means not available

accuracy and MCC are 87.59, 86.81,88.23 and 75.24 %,
respectively. On the H.pylori dataset, the accuracy of our
method is better than all other methods tested. It is shown
that our method deeply extracts the contiguous amino
acid information from protein sequence. Furthermore,
our method combining MMI and NMBAC can increase
the prediction performance. The accuracies for MMI,
NMBAC and ensemble representation are 85.42,85.59
and 87.59 %, respectively. The accuracy can be increased
by at least 2.00 % on the H.pylori dataset.

humang,¢, dataset

We also test our method on a humangie; dataset,
which is used by Huang et al. [19]. We compare the
prediction performance between our proposed method
and Huang’s work [19] on this dataset, as showed in
Table 8. Our method achieves 97.56 % accuracy, 96.57 %
sensitivity and 95.13 % MCC. However, Huang’s work
achieved 96.30 % accuracy, 92.63 % sensitivity and 92.82 %
MCC. Our method obtains better prediction result than
Huang’s work on humang;e1 dataset. Particularly, accura-
cies for MMI, NMBAC and ensemble representation are
97.56,96.08 and 95.59 %, respectively. The accuracy can
be raised 1.48 % on humangie1 dataset.

PPIs identification on independent across species dataset
If large number of physically interacting proteins in
one organism exist “co-evolved” relationship, their

Table 8 Comparison of the prediction performance between
our proposed method and other different methods on
humangyg1 dataset

Methods ACC(%)  SN(%)  PPV(%)  MCC(%)
Our method(MMI+NMBAC) 97.56 96.57 98.30 95.13
Our method(MMI) 96.08 95.05 96.97 92.17
Our method(NMBAC) 95.59 94.06 96.94 91.21
Huang's work(DCT4+SMR) [19]  96.30 9263 99.59 92.82
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Table 9 Prediction results on five independent species by our proposed method, based on S.cerevisiae dataset as the training set

) ) ) ACC(%)
Species Testing pairs
MMI+-NMBAC MMI NMBAC You's work [18] Huang's work [19] Zhou's work [14]

E.coli 6954 92.80 89.01 90.13 89.30 66.08 71.24
C.elegans 4013 92.16 88.54 86.72 87.71 81.19 7573
humani41 1412 94.33 91.31 90.23 94.19 82.22 76.27
H.pylori 1420 91.13 90.28 90.34 90.99 82.18 N/A2
M.musculus 313 95.85 92.01 91.37 91.96 79.87 76.68

2N/A means not available

respective orthologs in other organisms interact as
well. In this section, we use all 11,188 samples of the
S.cerevisiae dataset as the training set and other species
datasets (E.coli, C.elegans, humanyaio, H.pylori  and
M.musculus) as the test sets. The performance of these
five experiments is summarized in Table 9. The accu-
racies are 92.80,92.16,94.33,91.13, and 95.85 % on the
E.coli, C.elegans, humaniaiz, H.pylori and M.musculus
datasets, respectively. The result of our method is better
than other methods [14, 18, 19]. Overall, the accuracy
of ensemble representation is raised by 2.79 % than
single representation (MMI and NMBAC) on these five
independent species.

Two special PPIs datasets

Yungki Park and Edward M. Marcotte [20] proposed two
PPIs datasets to evaluate pair-input computational predic-
tions, including yeast and human data sets. We compare
the performance of our method with seven methods (M; -
M37) of pair-input computational predictions on the two
PPIs datasets: M, a signature products-based method
proposed by Martin et al. [32] and classified by SVM;
My, a protein sequence is described as in M, and the
feature vector for a protein pair is formed by apply-
ing the metric learning pairwise kernel and classified by

SVM; M3, the SVM-based method of CT feature devel-
oped by Shen et al. [13]; My, the SVM-based method of
AC feature developed by Guo et al. [12]; M5, the PPIs
feature is same as My, and the classifier is the random for-
est; Mg, a method developed by Pitre et al. [34]; M7, a
method originally developed for protein-RNA interaction
prediction [35]. We use the typical cross-validated (CV)
predictive performances for three distinct test classes
(C1,C2,C3). The performance of each method is sum-
marized as the average area under the receiver operating
characteristic curve (AUROC) = its standard deviation
and the corresponding average area under the precision-
recall curve (AUPRC) = its standard deviation.

Prediction results are shown in Tables 10 and 11. On the
yeast PPIs dataset, our method achieves 0.82,0.82,0.62
and 0.61 AUROC values on CV, C1, C2, and C3, respec-
tively. Moreover, AUROC values on CV,C1,C2, and C3
are 0.82,0.82,0.60 and 0.57 on the human dataset, respec-
tively. Our method obtains better prediction result than
M1-M7 on yeast and human datasets.

Yungki Park and Edward M. Marcotte [20] also con-
structed new yeast and human PPIs datasets by suppress-
ing the representational bias-driven learning. Prediction
results are shown in Table 12 and Table 13. On new
yeast PPIs dataset, our method achieves 0.65,0.66,0.60

Table 10 Comparison of prediction performance between our proposed method and other seven methods on the yeast dataset

Method AUROC AUPRC
v @ Q2 a v al (@] a3

MMI+NMBAC 0.8240.02 0.82+0.01 0.6240.02 0.6140.02 0.84£0.01 0.8440.01 0.6440.02 0.62£0.02
MMI 0.8240.01 0.8240.01 0.6240.02 0.6040.02 0.84£0.02 0.8440.01 0.6440.02 0.61£0.02
NMBAC 0.8240.01 0.8240.01 0.61£0.02 0.604+0.03 0.83£0.01 0.834+0.01 0.63+0.03 0.6040.03
M1 0.8240.01 0.82+0.01 0.61£0.02 0.584+0.03 0.83£0.02 0.8340.01 0.624+0.02 0.574+0.03
M2 0.83£0.01 0.84+£0.01 0.60£0.02 0.59+0.03 0.84+£0.02 0.84+£0.01 0.61£0.02 0.58+0.03
M3 0.61£0.01 0.61£0.01 0.53£0.01 0.50£0.01 0.65£0.02 0.65+0.02 0.56£0.03 0.53£0.07
M4 0.76£0.02 0.76£0.02 0.57£0.02 0.54£0.03 0.76£0.02 0.76£0.02 0.58+0.02 0.54+£0.03
M5 0.8040.02 0.80£0.01 0.5840.01 0.5540.02 0.78£0.02 0.7840.01 0.574£0.02 0.5440.02
Mé 0.7540.02 0.75£0.02 0.59£0.04 0.524+0.04 0.75£0.02 0.76£0.02 0.6040.05 0.4740.07
M7 0.5840.02 0.58+0.01 0.5440.02 0.524+0.03 0.60£0.02 0.60£0.02 0.554+0.02 0.53+0.02
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Table 11 Comparison of prediction performance between our proposed method and other seven methods on the human dataset

Method AUROC AUPRC
v @ 2 c3 cv (@ 2 3

MMI+NMBAC 0.82+0.01 0.82+0.01 0.60£0.01 0.57£0.02 0.83£0.01 0.83£0.01 0.6040.01 0.56%0.02
MMI 0.81£0.01 0.8140.01 0.5940.01 0.56£0.02 0.8240.01 0.8340.01 0.5940.01 0.5540.01
NMBAC 0.81£0.01 0.8240.01 0.6040.01 0.57£0.02 0.83+0.01 0.8340.01 0.6040.01 0.56£0.02
M1 0.81£0.01 0.8140.01 0.6140.01 0.584+0.03 0.8240.01 0.8240.01 0.6040.01 0.57£0.03
M2 0.8540.01 0.8540.01 0.6040.01 0.5840.02 0.85£0.00 0.8540.01 0.6010.01 0.56+0.02
M3 0.63£0.01 0.6440.01 0.5540.01 0.5040.00 0.6740.01 0.6740.01 0.5740.02 0.52+0.05
M4 0.77£0.01 0.77£0.01 0.57£0.02 0.53£0.02 0.77£0.01 0.77£0.01 0.56£0.01 0.53£0.02
M5 0.81£0.01 0.81£0.01 0.59+0.01 0.54+£0.02 0.82+0.01 0.82+0.01 0.59+£0.01 0.54+0.02
M6 0.76£0.01 0.77£0.01 0.64£0.01 0.59+0.02 0.79+£0.01 0.79+£0.01 0.67£0.01 0.59£0.02
M7 0.56%0.01 0.5640.01 0.5340.01 0.5440.02 0.56%0.01 0.5640.01 0.534+0.01 0.54£0.02

and 0.55 AUROC on CV, C1, C2, and C3, respectively. On
average, our method obtains better prediction result than
M;-M7; on new yeast dataset. On new human dataset,
our proposed method achieves 0.61,0.62,0.57 and 0.53
AUROC on CV,(C1,C2, and C3, respectively. On aver-
age, our result is also better than Mj-M7, but does not
outperform M; on the new human dataset.

PPIs networks prediction

The useful application of PPIs prediction method is the
capability of predicting PPIs networks. Our method pre-
dicts three important PPI networks assembled by PPIs
pairwise. The one-core network of CD9 is the simplest
network, which is an important tetraspanin protein [21].
The result reveals that 14 of all 16 PPIs could be identified
by our method, and accuracy is 87.50 %. Comparing to
Shen’s work [13], accuracy of our method is raised 6.25 %.
Results are shown in Fig. 3, and the dark blue lines are true
prediction, and red lines are false prediction.

The Ras-Raf-Mek-Erk-Elk-Srf pathway is a multiple-
core network that has been implicated in a variety of
cellular processes [22]. There are 189 PPIs in this net-
work, 174 PPIs are predicted correctly by our method.
Comparing to Shen’s work, accuracy is raised 2.06 %. The
prediction result and Ras-Raf-Mek-Erk-Elk-Srf pathway
are shown in Fig. 4. The dark blue lines are true prediction,
and red lines are false prediction.

The Wnt-related network is a typical crossover network,
and its related pathway is essential in signal transduction.
Ulrich et al. [23] has demonstrated the protein interaction
topology of Wnt-related network. Shen et al. [13] have
tested their method on the network. The accuracy of their
method is 76.04 % in the network: there are 96 PPIs in
this network, and 73 PPIs are predicted correctly by their
method. We also try to predict PPIs in the Wnt-related
network. The prediction result shows that 91 PPIs among
all 96 PPIs in the network are discovered by our method,
and the accuracy is 94.79 %, which is better than Shen’s

Table 12 Comparison of prediction performance between our proposed method and other seven methods on new yeast dataset,

suppressing representation bias-driven learning

Method AUROC AUPRC
v al Q2 G v Cl 2 a

MMI+NMBAC 0.65£0.02 0.66+0.02 0.6040.02 0.55£0.02 0.67£0.02 0.68+0.02 0.6040.02 0.55£0.02
MMI 0.64£0.02 0.6540.01 0.60+0.02 0.55£0.02 0.66+0.02 0.6840.01 0.6040.02 0.5440.02
NMBAC 0.63£0.02 0.6440.02 0.594+0.02 0.54+0.03 0.654+0.02 0.664+0.02 0.5940.02 0.5440.02
M1 0.64+£0.01 0.64+£0.01 0.62+0.02 0.57£0.04 0.65+0.01 0.65+0.01 0.61£0.02 0.56+0.03
M2 0.61+£0.01 0.61£0.02 0.62+0.02 0.58+0.03 0.61£0.01 0.61£0.02 0.62£0.02 0.57£0.03
M3 0.54£0.01 0.55£0.01 0.53£0.01 0.50£0.01 0.60£0.02 0.60£0.01 0.56£0.03 0.53£0.07
M4 0.55£0.02 0.55£0.02 0.5440.02 0.51£0.02 0.53£0.02 0.5340.01 0.534+0.02 0.51£0.02
M5 0.60£0.02 0.6040.01 0.554+0.02 0.52£0.02 0.61£0.02 0.6140.01 0.5540.02 0.51£0.02
M7 0.55£0.02 0.5440.01 0.5440.02 0.53£0.03 0.55£0.02 0.5540.01 0.5440.02 0.53£0.02
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Table 13 Comparison of prediction performance between our proposed method and other seven methods on new human dataset,

suppressing representation bias-driven learning

Method AUROC AUPRC
cv @ 2 a cv @ 2 3

MMI+NMBAC 0.61£0.01 0.62+0.01 0.57£0.02 0.53£0.01 0.64+£0.01 0.65+0.01 0.58+0.02 0.53£0.01
MMI 0.61£0.01 0.62+0.01 0.57£0.01 0.53£0.01 0.64+£0.01 0.65+0.01 0.58+0.01 0.53£0.01
NMBAC 0.5940.01 0.60£0.01 0.5640.01 0.524+0.02 0.62£0.01 0.6340.01 0.5640.01 0.5240.01
M1 0.6440.01 0.65+0.01 0.6140.01 0.5740.02 0.66+0.01 0.6740.01 0.6140.02 0.5640.02
M2 0.594:0.01 0.60£0.01 0.6040.01 0.574+0.02 0.60£0.01 0.61£0.01 0.5940.01 0.5540.01
M3 0.5440.01 0.5540.01 0.534+0.01 0.5040.00 0.6140.01 0.6140.01 0.564+0.02 0.524+0.05
M4 0.5640.01 0.5640.01 0.5440.01 0.524+0.02 0.5440.01 0.5440.01 0.5340.01 0.5240.01
M5 0.5940.01 0.60+£0.01 0.5640.01 0.5340.01 0.63£0.01 0.6440.01 0.5740.01 0.53£0.01
M7 0.55+0.01 0.55£0.01 0.53£0.01 0.53£0.03 0.55+0.01 0.55£0.01 0.53£0.01 0.54£0.02

method [13]. The prediction result and Wnt-related net-
work are shown in Fig. 5. The dark blue lines are true
prediction, and red lines are false prediction.

Discussion

Although many computational methods have been used
to predict PPIs, the effectiveness of previous prediction
models can still be improved. Existing methods that fail to
take into account local amino acid environments are nei-
ther reliable nor robust, therefore we propose a Conjoint
Triad method that accounts for the properties of each
amino acid when accompanied by its two vicinal peptide
amino acids.

We use one PPIs dataset to construct a model to predict
other five independent species PPIs datasets. This find-
ing indicates that the proposed model can be successfully
applied to other species for which experimental PPIs data
is not available. It should be noticed that the biological

Integrin
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Fig. 3 An one-core network for the CD9 network
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Collagen binding
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hypothesis of mapping PPIs from one species to another
species is that large numbers of physically interacting
proteins in one organism are co-evolved.

The most useful application of PPIs prediction method
is its capability of predicting PPIs networks. Accurately
predicting PPI networks is the most important issue for
PPI prediction methods. We extend our method to predict
three real important PPIs networks: one-core network,
multiple-core network and crossover network. General
PPIs networks are crossover networks, so our method is
useful in practical applications. All these results demon-
strate that our proposed method is a very promising and
useful support tool for future proteomics research. Main
improvements of the proposed method come from adopt-
ing an effective feature extraction method that can capture
useful protein sequence information. In the future work,
we will extend our method to predict other important
PPIs networks.

Conclusions

In this paper, we develop a new method for predict-
ing PPIs using primary sequences of two proteins. The
prediction model is constructed based on random forest
and ensemble feature representation scheme. In addition,
we use MMI to improve the performance in predict-
ing PPIs. For the performance evaluation, our method
is applied to S.cerevisiae PPIs dataset. The prediction
result shows that our method achieves 95.01 % accu-
racy and 92.67 % sensitivity. To further demonstrating
the effectiveness of our method, we also use H.pylori
PPIs dataset. Our method achieves 87.59 % accuracy and
86.81 % sensitivity. On humangie1 dataset, the experi-
mental result shows that our method achieves 97.56 %
accuracy and 96.57 % sensitivity. We use S.cerevisiae PPIs
dataset to construct a model to predict other five inde-
pendent species PPIs datasets. Our proposed method
achieves 92.80, 92.16,94.33,91.13, and 95.85 % accuracies
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on E.coli, C.elegans, humaniaio, H.pylori and M.musculus
datasets, respectively. We extend our method to predict
three real important PPIs networks, and accuracy of our
method is increased 6.25,2.06 and 18.75 % compared with
CT. The prediction ability of our approach is better than
that of other existing PPIs prediction methods.
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