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Abstract 
Background: Stem cell-based therapy is a new method 
for the treatment of neurodegenerative diseases such as 
multiple sclerosis (MS). Human adipose-derived stem 
cells (hADSCs) are a kind of adult stem cells which have 
a higher frequency in the fat tissue and have the ability 
to differentiate into other cell types outside their 
lineage. Due to some serious adverse events of  
cell-based therapy such as tumorigenic potential, the 
aim of this study was to evaluate of hADSCs 
differentiation into oligodendrocytes as a valuable way 
for future cell transplantation. 
Methods: hADSC were isolated from lipoaspirate 
samples of human abdominal fat. After hADSC 
characterization via flow cytometry, the cells were 
induced to oligodendrocytes using a special 
differentiation medium. Finally, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT), immunocytochemistry, and real-time 
polymerase chain reaction (RT-PCR) techniques were 
used for the evaluation of differentiated cells. 

Results: Flow cytometry indicated that hADSCs were 
CD105- and CD49-positive, but were negative for CD31 
and CD45 markers. In addition, immunocytochemistry 
analysis revealed that a high percent of differentiated 
cells expressed oligodendrocyte progenitor cells 
markers [A2B5 and oligodendrocyte transcription 
factor (Olig2)] which were significantly higher than 
myelin basic protein (MBP) which is mature 
oligodendrocytes marker. Moreover, a very low 
percentage of differentiated cells expressed glial 
fibrillary acidic protein (GFAP) marker. Finally, real-time 
reverse transcription PCR analysis confirmed the 
results of immunocytochemistry. 
Conclusion: Since hADSCs have the potential to 
differentiate into multi-lineage cells and due to their 
additional characteristics such as immunomodulatory 
and neuroprotective properties, it seems that these cells 
may be an ideal cell source for oligodendrocytes 
differentiation. 

Introduction 
Cell-based treatment is a novel idea for the 
treatment of demyelinating diseases such as 
multiple sclerosis (MS). The conclusive purpose of 
this strategy is the cell substitution and 
upregulation of neurotropic factors as well as 
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downregulation of apoptotic agents. MS is one of 
the most common autoimmune dysmyelinating 
disorders in central nervous system (CNS) which 
affects men more than women (sex ratio of 2.5:1).1,2 
The use of disease-modifying drugs cannot prevent 
MS progression.3,4 So, stem cell-base therapy is 
proposed to provide a cure for MS.5-7 

In recent studies, human embryonic stem cells, 
human bone-marrow-derived mesenchymal stem 
cells (BM-MSCs), and human placental 
mesenchymal stem cells were transplanted in 
animal model of MS.8,9 Despite the efficiency of 
stem cell transplantation, serious side effects 
which may occur following the stem cell 
transplantation (such as tumorigenesis) cannot be 
denied.10 Therefore, the use of fully differentiated 
cells instead of stem cells is a necessity. 
Laboratory studies proven that human Wharton’s 
jelly stem cells (hWJ-SCs) and human dental pulp 
stem cells (DPSCs) are able to differentiate into 
other cells outside of their lineage such as 
oligodendrocyte progenitor cells.11,12 In addition, 
these cells, when transplanted in animal model of 
MS, are able to promote the regeneration of 
myelin sheaths, and significantly reduce the 
clinical signs of MS. 

Since the frequency of hWJ-SCs-, DPSCs-, and 
BM-MSCs in-related tissue is low, and the 
isolation of these cells is a difficult process, many 
researchers have paid special attention to human 
adipose-derived stem cells (hADSCs).  

hADSCs are specie of adult stem cells which 
have particular features including 
immunomodulatory and neuroprotective effects. In 
addition, these cells are able to differentiate into 
other cells in the body as well as a potency to 
generate many identified neurotrophic agents such 
as brain-derived neurotrophic factor (BDNF), nerve 
growth factor (NGF), and glial cell line-derived 
neurotrophic factor (GDNF).5,13 Meanwhile, some 
studies demonstrated that hADSCs are able to cross 
the blood-brain barrier and exert their action.5,6 

Collectively, available data suggest that if 
hADSCs have the ability to differentiate into 
oligodendrocyte cells, these cells can be used as 
an ideal source of stem cells for MS treatment. 
Thus, the aim of this in-vitro study was to 
evaluate hADSCs differentiation into 
oligodendrocyte cells in order to access a valuable 
cell source for cell-based treatment in MS disease. 

Materials and Methods 
Stem cell isolation and culture: All procedures 

used in this study were approved by the Ethics 
Committee of Isfahan University of Medical 
Sciences, Isfahan, Iran (ethics code: 194267). After 
getting informed consent from healthy female 
donors (age range of 20-40 years) who referred to 
Alzahra hospital (Isfahan) for cesarean surgery, 
hADSCs were harvested from abdominal fat, and 
cultured according to our previous study.5 Briefly, 
after washing with phosphate-buffered saline 
(PBS) (Sigma-Aldrich, UK), the samples were 
treated with 0.075% collagenase type I  
(Sigma-Aldrich, UK) for enzymatic degradation. 
In the following, the enzyme activity was 
neutralized with Dulbecco’s Modified Eagles 
Medium (DMEM/F12) (Gibco, UK) contained 
10% fetal bovine serum (FBS) (Gibco, UK), and 
then centrifuged for 10 minutes. Finally, the cell 
pellet was resuspended in DMEM/F12, 10% FBS, 
and 1% penicillin/streptomycin solution, and was 
cultured under standard conditions. 

Flow cytometry and cell characterization : For 
this purpose, 1 × 106 hADSCs (within 3 passages) 
were fixed in 2% paraformaldehyde  
(Sigma-Aldrich, UK) for 25 minutes, and after 
washing with PBS, the samples were incubated 
with respective fluorochrome-conjugated 
antibodies against CD105, CD49, CD31, and CD45 
(Chemicon, Temecula, CA, USA) for 30 minutes. 
In addition, nonspecific fluorescein isothiocyanate 
(FITC)-conjugated immunoglobulin G (IgG) was 
used for isotype control. After incubation, the 
cells were washed and resuspended in PBS. 
Finally, the percentage of fluorescent cells was 
analyzed using a flow cytometer (Becton 
Dickinson, San Jose, CA, USA). 

Induction of hADSCs into oligodendrocyte 
progenitor cells: According to our previous 
protocol,14,15 1 × 104 hADSCs/cm2 in the fifth 
passage were seeded into cell culture special 
plates, and cultured in present of DMEM/F12 
which supplemented with 10 µl/ml N2 (Gibco, 
UK), 10 ng/ml human recombinant epidermal 
growth factor (EGF) (Biolegend, UK), and 
penicillin/streptomycin (SPN Solutions, Tysons 
Corner, VA, USA) in standard incubator for  
3 days. After this time, trypsin-
ethylenediaminetetraacetic acid (EDTA) solution 
(0.25%-0.02%) was used to detach the cells from 
the wells. Then, the cells were plated in plastic 
dish at a density of 2 × 102 cells/cm2 in presence 
of neurobasal medium (Life Technologies, UK) 
containing 20 ng/ml basic fibroblast growth 
factor (bFGF) (Pepro Tech, UK), B27 2% (Gibco, 
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UK), 20 ng/ml EGF (Pepro Tech, UK), 10 U/ml of 
penicillin, and 10 mg/ml streptomycin for  
18 days. Finally, the cells in previous stage were 
cultured in 12 well tissue culture plates which 
coated with poly-L-Lysine (Sigma-Aldrich, UK) in 
a differentiation medium consisting of 
DMEM/F12, 1 × non-essential amino acids 
(NEAA) (Gibco, UK), L-glutamine (2 mM) (Gibco, 
UK), 1 × N2 (Invitrogen, Carlsbad, CA, USA),  
1 × B27 (Gibco, UK), sonic hedgehog (SHH:  
200 ng/ml) (Sigma-Aldrich, UK), retinoic acid  
(2 µM) (Sigma-Aldrich, UK), in standard 
condition for 10 days and in second medium with 
DMEM/F12, 1 × NEAA, L-glutamine (2 mM), 1 × 
N2, 1 × B27, neurotrophin-3 (NT3) (30 ng/ml) 
(Biolegend, UK), and platelet-derived growth 
factor alpha (PDGFα) (10 ng/ml) (Biolegend, UK) 
for 2 weeks.  

3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay: MTT 
assay was used for detection of cell viability before 
and after the final stage of cell differentiation. To this 
purpose, MTT solution (5 mg/ml) (Sigma-Aldrich, 
UK) was added to the hADSCs culture medium 
(control group) and to the differentiation medium 
(experimental group) at a dilution of 1:10 at 37 °C for 
4 hours. Finally, the medium was replaced with  
200 µl of dimethyl sulfoxide (DMSO) (Sigma-
Aldrich, UK), and the absorbance of the solution in 
each well was detected using a microplate reader 
(Hiperion MPR 4+, Germany) at 540 nm. 

Immunocytochemistry analysis for 
oligodendrocyte characterization: To evaluate 
differentiation of hADSCs into oligodendrocytes, 
the differentiated cells fixed first in 4% 
paraformaldehyde, and then cell permeabilized 
with 1% BSA/10% normal goat serum/0.3M 
glycine in 0.1% PBS-Tween. Then, the samples 
incubated with primary antibodies in humidified 

condition at 4 °C overnight. For this purpose, anti-
A2B5 FITC antibody (1 µg/ml Abcam, 
Cambridge, MA, USA), anti-oligodendrocyte 
transcription factor (Olig2) FITC antibody (1:1000; 
Abcam, Cambridge, MA, USA), anti- myelin basic 
protein (MBP) FITC antibody (1:1000; Abcam, 
Cambridge, MA, USA), and anti-glial fibrillary 
acidic protein (GFAP) FITC antibody (1:1200; 
Abcam, Cambridge, MA, USA) were used. After 
cell washing with PBS, the samples were treated 
with goat anti-mouse FITC (1:500; Abcam, 
Cambridge, MA, USA)-conjugated secondary 
antibodies at room temperature for 1 hour and for 
5 minutes with 4',6-diamidino-2-phenylindole 
(DAPI) in order to cell counting. Finally, the 
number of A2B5-, Olig2-, MBP-, and GFAP-
positive cells were counted for a minimum of 200 
cells per slide using fluorescence microscope 
(Olympus, BX51, Japan). Meanwhile, all 
immunocytochemistry studies were repeated at 
least twice, and undifferentiated hADSCs were 
used as the control sample. 

Real-time polymerase chain reaction (RT-PCR): 
At the end of differentiation procedure, the 
differentiated cells were subjected to real-time 
(SYBR Green) PCR. Briefly, total RNA was 
extracted from 1 × 105 differentiated cells and  
1 × 105 undifferentiated cells using RNeasy micro 
Kit (Qiagen, Germany), and then cDNA synthesis 
was done with Revert Aid First Strand cDNA 
Synthesis Kit (Fermentas, Burlington, ON, 
Canada). Specific genes, including Olig2, platelet-
derived growth factor receptor alpha (PDGFRα), 
MBP, and astrocyte specific marker (GFAP), and a 
housekeeping gene glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) relative expression 
analysis was done by Thermal Cycler Rotor-Gene. 
Meanwhile, real-time specific primer pairs which 
used in this study were shown in table 1.  

 
Table 1. List of primers which used for real-time polymerase chain reaction (RT-PCR) analysis 

Gene primers Sequence 
MBP F: 5'-GTAGTAAGCCACTCCTTGACTG-3' 

R: 5'-GCAGAGAGGACTGTTGACAT-3' 
Olig2 F: 5'-CGCAGCGAGCACCTCAAATCTAA-3' 

R: 5'-CCCAGGGATGATCTAAGCTCTCGAA-3' 
PDGFRα F: 5'-  GTG GGA CAT TCA TTG CGG A-3' 

Rev: 5' AAG CTG GCA GAG GAT TAG G-3' 
GFAP F: 5'- CCGACAGCAGGTCCATGTG-3' 

Rev: 5'-GTTGCTGGACGCCATTGC-3' 
GAPDH F: 5'- GAAATCCCATCACCATCTTCCAGG-3' 

Rev: 5'-GAGCCCCAGCCTTCTCCATG-3' 
MBP: Myelin basic protein; Olig2: Oligodendrocyte transcription factor; PDGFRα: Platelet-derived growth 
factor receptor α; GFAP: Glial fibrillary acidic protein; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase 
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and a very low percent of them (1.0 ± 0.9 percent) 
expressed GFAP (astrocyte marker) which were 
significantly lower than Olig2 and A2B5 (P < 0.001). 
 

 
Figure 5. The mean percentage of cells positive marker at 
the end of the cell differentiation 
The mean percentage of A2B5-, oligodendrocyte transcription 
factor (Olig2)-positive cells was significantly increased 
compared to glial fibrillary acidic protein (GFAP)- and myelin 
basic protein (MBP)-positive cells. 
*P < 0.001 

 
RT-PCR results: After oligodendrocyte 

differentiation, total RNA extracted from 
differentiated cells in order to RT-PCR assay. To 
this end, GAPDH was used as a control marker. 
Our results revealed that the expression of Olig2 
and PDGFRα markers were higher compare to 
MBP and GFAP markers which is consistent with 
our immunocytochemistry results. In addition, 
the mean expression level of Olig2 and PDGFRα 
genes increased significantly in differentiated cells 
in compared to control group (Figure 6). 

 

 
Figure 6. Comparative analysis of oligodendrocyte 
specific markers examined via real-time polymerase 
chain reaction (RT-PCR) 
Quantification was done in oligodendrocytes after 
normalization to glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH). The mean expression level of oligodendrocyte 
transcription factor (Olig2) and PDGFRα genes increased 
significantly in differentiated cells in compared to  
control group. 
*P < 0.010, **P < 0.001 

Discussion 
Stem cell therapy results are associated with 
many intrinsic and extrinsic risk factors. Since 
stem cells have several features resemble with 
cancer cells (such as long life span, apoptosis 
resistance, and pluri- or multipotency),16,17 these 
cells may be considered as potential candidates 
for malignant transformation. Therefore, the 
transplantation of fully differentiated cells instead 
of stem cells in order to diminish tumor genesis is 
a new idea. Although stem cells unlike fully 
differentiated cells may higher create cell-cell 
junction and communicate with host cells, in vitro 
differentiation of stem cells into other specific cell 
types will decrease the potency of these cells, and 
may reduce the risk of tumor organization.18 

hADSCs which are a kind of adult stem cells 
have several specific features. Due to the 
abundance and availability, these cells may be 
one of the ideal sources for stem cell therapy.19 
Previous studies have shown that hADSCs have 
the ability to differentiate into other cells of 
ectodermal, mesodermal, and endodermal 
lineage, and can promote cell differentiation and 
nerve protection via paracrine effects.13,20,21 In 
present study, for the first time, hADSCs were 
differentiated into oligodendrocyte cells in order 
to access a valuable cell source for later cell 
transplantation in MS disease.  

Some species of stem cells such as 
hematopoietic stem cells are relatively more 
numerous in men than in women.22 In addition, it 
has been reported that stem cells separated from 
the muscles of female mice are better at 
regenerating tissue than those taken from male 
mice.23 In similar experiment, Ogawa, et al. 
reported that adipose derived stem cells (ADSCs) 
which isolated from female mice have more 
ability to differentiate into adipocytes than those 
taken from male mice.24 Thus, it appears that the 
differentiation potential of ADSCs is closely 
related to sex differences. As a result, in this 
study, hADSCs were taken from healthy female 
donors, and then differentiated into 
oligodendrocyte progenitor cells. 

A2B5 is a membrane epitope which typically 
express in oligodendrocyte precursor cells.25 
Moreover, Olig2 is critical for oligodendrocyte 
and motor neuron differentiation.26 Thus, in this 
study, both Olig2 and A2B5 were assessed in 
differentiated cells. After immunocytochemistry, 
it was found that a high percentage of 
differentiated cells expressed special markers of 
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oligodendrocyte precursor cells, and a low 
percentage of them expressed mature 
oligodendrocyte marker (MBP). In addition, a 
high expression of Olig2 and PDGFRα genes also 
was seen in differentiated cells which was higher 
than expression of MBP and GFAP genes. In 
similar experiments, other sources of stem cells 
such as spermatogonia stem cells, endometrial 
stromal cells, mouse-induced pluripotent stem 
cells, and human-induced pluripotent stem cells 
also differentiated into oligodendrocyte.27-30 The 
results of these studies revealed that 88-94 percent 
of differentiated cells expressed Olig2, and  
75-92 percent of them expressed A2B5. 

Therefore, the comparison of these results 
show that by hADSCs differentiation, we can 
achieve a higher percentage of precursor 
oligodendrocyte cells. 

One hypothesis could be that hADSCs can 
secrete high levels of neurotrophic factors, which 
could support the cell differentiation. 

In this study, the mean absorbance value of the 
differentiated cells significantly increased as 
compared to control group; which could be due to 
the presence of growth factors in cell 
differentiation medium. 

Another relevant finding of our study is that a 
less than 3 percentage of differentiated cells were 
only positive for GFAP which shows the 

efficiency of in vitro differentiation of hADSCs 
into oligodendrocyte cells. 

Conclusion 
Overall, the results of present study revealed that 
hADSCs are able to differentiate into 
oligodendrocyte precursor cells at a high level. 
Thus, due to the strong differentiation capacity of 
hADSCs and considering their ability to increase 
the neighboring cells viability through paracrine 
effects, it seems that hADSCs could be an ideal 
cell source for in vitro oligodendrocyte 
differentiation. 
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