
Microcirculation. 2022;29:e12744.	 		 	 | 1 of 20
https://doi.org/10.1111/micc.12744

wileyonlinelibrary.com/journal/micc

1  |  INTRODUC TION

Angiogenesis, the formation of new blood capillaries from pre- 
existing blood vessels, plays an important role in the survival of 

tissues, as the vessels carry blood throughout the body to provide 
oxygen and nutrients required by the resident cells.1,2 Thus, re-
searchers have been putting effort toward targeting angiogenesis 
as a strategy in many contexts, including in both tissue engineering 
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Abstract
Objective: We	aim	to	quantitatively	characterize	the	crosstalk	between	VEGF-		and	
FGF-	mediated	angiogenic	signaling	and	endothelial	sprouting,	to	gain	mechanistic	in-
sights and identify novel therapeutic strategies.
Methods: We constructed an experimentally validated hybrid agent- based math-
ematical	model	 that	characterizes	endothelial	 sprouting	driven	by	FGF-		and	VEGF-	
mediated signaling. We predicted the total sprout length, number of sprouts, and 
average	length	by	the	mono-		and	co-	stimulation	of	FGF	and	VEGF.
Results: The	 experimentally	 fitted	 and	 validated	model	 predicts	 that	 FGF	 induces	
stronger	 angiogenic	 responses	 in	 the	 long-	term	 compared	with	 VEGF	 stimulation.	
Also,	FGF	plays	a	dominant	role	in	the	combination	effects	in	endothelial	sprouting.	
Moreover,	the	model	suggests	that	ERK	and	Akt	pathways	and	cellular	responses	con-
tribute	differently	to	the	sprouting	process.	Last,	the	model	predicts	that	the	strate-
gies to modulate endothelial sprouting are context- dependent, and our model can 
identify potential effective pro-  and anti- angiogenic targets under different condi-
tions and study their efficacy.
Conclusions: The	model	 provides	 detailed	mechanistic	 insight	 into	VEGF	 and	 FGF	
interactions in sprouting angiogenesis. More broadly, this model can be utilized to 
identify targets that influence angiogenic signaling leading to endothelial sprouting 
and to study the effects of pro-  and anti- angiogenic therapies.
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and cancer treatment.1,2 Specifically, one challenge for the success 
of synthetic tissues is to ensure sufficient transport of nutrients and 
gases such as oxygen to the cells. Thus, stimulating new blood vessel 
formation is an important strategy for the long- term viability of engi-
neered tissue constructs.3	On	the	other	hand,	inhibiting	angiogene-
sis is an important strategy for cancer treatment, as tumors grow by 
obtaining nutrients and oxygen from the blood delivered by vessels, 
and tumor metastasis is facilitated by the blood circulation.1,4,5

The process of blood vessel formation, particularly for capillar-
ies, is largely initiated and mediated by endothelial cells responding 
to the local physiological conditions.6 Many different pro- angiogenic 
growth	factors,	such	as	fibroblast	growth	factor	(FGF),	vascular	en-
dothelial	growth	factor	(VEGF),	and	platelet-	derived	growth	factor	
(PDGF),	 regulate	 angiogenesis.7,8 These factors promote different 
cellular processes involving endothelial cell survival, proliferation, 
migration, and vessel maturation leading to new blood vessel for-
mation.9,10 Strategies to promote or inhibit angiogenesis focus on 
modulating the effects of these factors to alter the cellular- level 
processes they induce, with a focus on endothelial cells.

However,	not	all	approaches	to	promote	or	inhibit	angiogenesis	
lead	to	successful	outcomes.	For	example,	clinical	trials	have	shown	
no	effective	 improvement	 in	FGF-	11	 or	VEGF-	induced12 angiogen-
esis.	 Also,	 bevacizumab,	 an	 anti-	VEGF	 agent,	 has	 limited	 effect	 in	
certain cancer types, and it is no longer approved for the treatment 
of metastatic breast cancer due to its disappointing results.13 Thus, 
there is a need to better understand the mechanism of angiogene-
sis, specifically the molecular interactions and signaling required for 
new blood vessel formation and how they affect cellular behaviors, 
in order to establish more effective therapeutic strategies.

In	 addition,	 there	 is	 crosstalk	 between	 intracellular	 signal-
ing pathways. The overall response in endothelial angiogenesis 
is dependent on the integrated signals activated by these growth 
factor- mediated pathways to influence cellular decisions, such as 
proliferation, survival, and migration, and further promote or inhibit 
vessel	formation.	However,	the	integrated	effects	of	more	than	one	
factor on intracellular signaling reactions at a detailed level have not 
been	studied	in	great	detail.	In	pro-	angiogenic	strategies,	some	syn-
ergistic	 effects	 between	 FGF	 and	VEGF	 in	 endothelial	 angiogenic	
activities have been shown.14– 16	However,	 the	mechanism	of	 how	
they act together quantitatively on regulating molecular and cellular 
behaviors is still not clear. Also, in the case of inhibiting angiogenesis, 
tumors often evade the effects of drugs that target a single factor 
by making use of alternate compensatory pathways to activate sig-
naling	species	needed	for	proliferation	and	migration.	For	instance,	
FGFR	activation	may	play	a	role	in	the	resistance	mechanism	of	anti-	
angiogenic	drugs,	especially	anti-	VEGF	treatment.17,18 Additionally, 
experiments	show	high	levels	of	FGFR1	in	tumors	that	continue	to	
progress,	even	during	anti-	VEGF	therapy.19 Thus, it is necessary to 
better mechanistically understand the effects of multiple angiogenic 
factors and their crosstalk in activating angiogenic signaling and fur-
ther cellular responses.

In	this	study,	we	are	interested	in	the	angiogenic	signals	required	
to initiate vessel growth. Therefore, we focused on the molecular 

signaling and further cellular responses in the process of endothelial 
sprouting.	We	consider	 sprouting	promoted	by	FGF	and	VEGF,	 as	
they are particularly important in early stages of angiogenesis.20– 22 
We are particularly interested in signaling crosstalk between these 
factors	 required	 to	 initiate	 vessel	 growth.	 FGF	 and	VEGF	 bind	 to	
their receptors and initiate signaling through the mitogen- activated 
protein	 kinase	 (MAPK)	 and	 phosphatidylinositol	 3-	kinase/protein	
kinase	B	(PI3K/Akt)	pathways	to	phosphorylate	extracellular	regu-
lated	kinase	 (ERK)	and	Akt,	 respectively.	ERK	and	Akt	are	 import-
ant signaling species in the angiogenesis process that influence cell 
proliferation, survival, and migration. Thus, we aim to quantitatively 
investigate the combination effects of two major pro- angiogenic 
factors,	FGF	and	VEGF,	on	activating	MAPK	and	PI3K/Akt	signaling	
(at	the	molecular	level)	and	further	promoting	endothelial	sprouting	
(at	the	cellular	level)	in	endothelial	cells.

Given	 the	 complexity	 of	 biochemical	 reactions	 comprising	 an-
giogenesis signaling networks, a better quantitative understand-
ing of the dynamics of these networks is beneficial for current 
angiogenesis- based strategies. Computational modeling serves as a 
powerful tool to investigate molecular and cellular responses sys-
tematically. There are many published models that predict molecu-
lar23– 25 and cellular26,27 responses mediated by angiogenic factors. 
However,	 such	 models	 are	 mostly	 designed	 to	 predict	 responses	
upon single agent stimulation. Targeting more than one growth 
factor and exploring their effects in intracellular signaling and cel-
lular	responses	in	detail	deserves	more	attention.	In	addition,	many	
models that focus on specific cellular behaviors significantly reduced 
the intracellular signaling network such that the output signal is sim-
ply linearly proportional to the fraction of bound receptors.26–	28 
Therefore, we constructed a hybrid agent- based model to charac-
terize	the	intracellular	signaling	 interactions	of	FGF	and	VEGF	and	
utilized downstream signals (maximum pERK and pAkt)	as	inputs	to	
describe angiogenic cellular responses in the process of endothe-
lial	spheroid	sprouting.	Overall,	we	predict	the	contributions	of:	(1)	
cellular processes including cell proliferation, sprout growth, and 
the	chance	of	forming	a	sprout;	(2)	mono-		and	co-	stimulation	of	an-
giogenic	 factors	 FGF	 and	VEGF;	 and	 (3)	 underlying	molecular	 sig-
nals (pERK and pAkt)	that	modulate	endothelial	sprouting.	Thus,	we	
generate novel cellular-  and molecular- level insights related to cell 
sprouting.	 In	particular,	we	describe	 total	 sprout	 total	 length	 (TL),	
number	of	sprouts	(NS),	and	average	length	(AL),	which	are	the	well-	
studied metrics in in vitro studies, by the mono-  and co- stimulation 
of	FGF	and	VEGF.	The	model	predicts	that	the	type	and	concentra-
tion of ligand, length of growth factor stimulation, and initial number 
of	cells	are	important	in	endothelial	sprouting,	and	FGF	is	a	dominant	
factor	driving	the	combination	effects	of	FGF	and	VEGF	in	endothe-
lial sprouting. Also, the model suggests that proliferation of endo-
thelial cells and the growth of existing sprouts are more important in 
the sprouting process compared to the effect of the chance of form-
ing	 a	 new	 sprout.	 In	 addition,	 the	MAPK	 and	 PI3K/Akt	 pathways	
regulate	the	vessel	network	in	different	ways.	Specifically,	the	ERK	
pathway regulates vessel network mainly via regulating cell prolifer-
ation	and	NS,	while	the	Akt	pathway	mainly	affects	vessel	network	



    |  3 of 20SONG aNd FINLEY

via regulating sprout growth. Moreover, the strategies to modulate 
endothelial sprouting are context- dependent, and our model can 
identify potential effective pro-  and anti- angiogenic targets under 
different conditions and study their efficacy.

2  |  MATERIAL S AND METHODS

2.1  |  Model construction

We	constructed	a	hybrid	agent-	based	model	(Figure	1)	that	describes	
cellular responses, including cell proliferation, sprout growth, and 
the formation of new sprouts. We note that agents are probabilistic 
discrete cellular responses; however, we do not include spatial ef-
fects. These cellular responses are driven by molecular signals, pERK 
and pAkt,	 upon	 the	 mono-		 and	 co-	stimulation	 of	 FGF	 and	 VEGF.	
The molecularly detailed biochemical reaction network that char-
acterizes	 the	MAPK	 and	 PI3K/Akt	 pathways	 induced	 by	 FGF	 and	
VEGF	is	adapted	from	our	previous	work,29 which is referred to as 
the	ERK-	Akt	model	in	this	study.	In	the	ERK-	Akt	model,	FGF	binding	
to	FGFR1	and	HSGAG	activates	FRS2	and	 then	 initiates	PI3K/Akt	
and	MAPK	pathways,	 and	VEGF	 binding	 to	 its	 receptor,	 VEGFR2,	
phosphorylates	VEGFR2	and	activates	PI3K	directly.	In	addition,	ac-
tivated	Raf	triggers	MAPK	pathway	upon	the	stimulation	by	VEGF.	
This network is implemented as an ordinary differential equation 

(ODE)	model	using	MATLAB.	The	main	model	includes	97	reactions,	
99 species and 100 parameters (see detail in29).

To link the molecular signals (pERK and pAkt)	produced	by	the	
angiogenic	 factors	 (FGF	 and	 VEGF)	 with	 the	 short-	term	 cellular	
responses,	 we	 made	 four	 assumptions:	 (1)	 The	 endothelial	 cell	
responses (cell proliferation, sprout growth, and probability of 
sprouting)	are	dependent	on	the	maximum	pAkt	and	pERK	 levels	
upon	the	stimulation	of	FGF	and	VEGF	within	2	h;	(2)	the	intrinsic	
properties of endothelial cells to grow and form sprouts are stable 
within 3 days of simulated cell culture, which leads to a constant av-
erage cell proliferation rate, sprout growth rate, and the probability 
of forming a new sprout within 3 days (described in subsequent 
sections	below	 in	detail);	 (3)	daughter	cells	 inherit	all	 the	proper-
ties from mother cells, specifically the cell proliferation rate, sprout 
growth	 rate,	 and	 probability	 of	 sprouting;	 and	 (4)	 the	 maximum	
pERK	 and	 pAkt	 drive	 endothelial	 cell	 proliferation	 and	 sprouting	
following	Hill	functions:

where S refers to either pERK or pAkt, [S] is their maximal concen-
tration, Km is the substrate concentration where the proliferation or 
sprouting rate is half of its maximum value, Vmax, and n	 is	 the	Hill	
coefficient.

f (S) =
Vmax

1 +

(

Km

[S]

)n

F I G U R E  1 Endothelial	spheroid	sprouting	process.	(A)	Activated	endothelial	cells	become	tip	cells	and	start	to	migrate	and	the	stalk	cells	
behind	tip	cells	are	proliferative.	Finally,	the	endothelial	cells	sprout	into	linear	cord-	like	structures.	(B)	The	sprouting	process	involves	tip	cell	
migration,	stalk	cell	proliferation,	and	elongation.	(C)	Growth	factors,	FGF	and	VEGF,	binding	to	their	receptors	initiate	intracellular	signaling	
and regulate cellular responses in all endothelial cells 
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2.1.1  | Module	of	endothelial	cell	proliferation

The endothelial cell proliferation module is a hybrid agent- based 
model that simulates each endothelial cell as one agent that has its 
own cell proliferation rate and divides based on its own cell doubling 
time. The pERK and pAkt levels were used to inform the rate of cell 
proliferation, as has been done in other computational work.30 The 
total number of endothelial cells was quantified to account for cell 
proliferation, which is a net result of survival and proliferation of 
endothelial	cells	 in	response	to	FGF	and/or	VEGF	stimulation.	The	
ERK-	Akt	model	predicts	the	dynamics	of	the	molecular	signals	pAkt 
and pERK within 2 h upon ligand stimulation, which are the inputs to 
calculate the rate of cell proliferation.

Based on the assumptions above, the average cell proliferation 
rate (rcp)	is	given	by

where rcp_basal is the basal cell proliferation rate when no stimuli are ap-
plied,	which	is	not	affected	by	pERK	or	pAkt	levels,	kcp_pERK and kcp_pAkt 
are the cell proliferation rate constants, Vmax_pERK_cp and Vmax_pAkt_cp 
are the maximum rates of cell proliferation driven by maximum pERK 
and pAkt,	respectively.	For	simplification,	we	use	VpERK_cp and VpAkt_cp 
to represent kcp × Vmax_pERK_cp and kcp × Vmax_pAkt_cp, respectively. [max 
(pERK)]	and	[max	(pAkt)] are maximum pERK and pAkt levels within 2 h 
upon the ligand simulation, respectively. KmpERK_cp and KmpAkt_cp are 
the maximum pERK and pAkt levels that produce the half maximal of 
the cell proliferation rates, respectively. ncp	 is	the	Hill	coefficient	for	
the cell proliferation rate.

The average cell proliferation rate (rcp)	 indicates	 that	 the	 aver-
age doubling time for endothelial cells is 1/rcp. To account for the 
cell heterogeneity within a cell population, we assigned a cell pro-
liferation rate chosen from a normal distribution with a mean (μ)	of	
the calculated average cell proliferation rate and a standard devia-
tion (σ)	 to	capture	99.7%	of	the	possible	values	given	the	range	of	
μ ±	25%μ (i.e., μ ± 3σ)	for	each	cell.	The	baseline	values	are	provided	
in Table S1 and supplementary materials.

The total cell number at a particular time T, Ntot (T),	is	given	by

where cell i from an initial cell population that consists of Nint of 
HUVECs	has	a	cell	proliferation	rate	of	rcp_i, T is cell culture time, floor 
(T × rcp_i)	rounds	(T × rcp_i)	to	the	nearest	integer	less	than	or	equal	to	
(T × rcp_i).

Note	 that	 the	 mean	 cell	 proliferation	 from	 experimental	
data is usually calculated for several replicates. To compare with 

experimental data, we calculated the average total cell number for 
ten simulations per condition.

2.1.2  | Model	of	endothelial	cell	sprouting

Model overview
The endothelial cell sprouting model is also a hybrid agent- based 
model that simulates each endothelial cell as one agent that has its 
own properties and makes its own cellular decisions. The model uti-
lizes a probabilistic approach to model sprouting. The general flow of 
the	model	is	shown	in	Figure	2.

First,	 the	model	checks	each	cell	 to	see	whether	 it	 is	a	 tip	cell	
(i.e.,	if	it	is	a	leading	cell	in	a	trail	of	cells)	and	if	so,	the	cell	migrates,	
leading to sprout elongation with an assigned sprout growth rate. 
Overall,	sprout	elongation	is	due	to	cell	proliferation,	migration,	and	
stretching.	If	the	cell	is	not	a	tip	cell,	it	has	a	chance	to	become	a	tip	
cell based on a certain probability: the model generates a random 
number, and if the random number is greater than the given proba-
bility threshold, then this cell becomes a tip cell and starts migrating 
instead	of	proliferating.	If	the	random	number	is	not	greater	than	the	
threshold for the probability of becoming a tip cell, the model then 
checks whether at this time, the cell is ready to proliferate based 
on whether the simulated time has reached the assigned cell dou-
bling time. The cell's doubling time is defined by the inverse of its 
cell proliferation rate (refer to above section on the cell proliferation 
module).	If	the	check	is	yes,	the	cell	divides	to	generate	a	daughter	
cell that is assumed to inherit all the properties from the mother cell. 
If	the	elapsed	simulation	time	is	not	enough	for	the	cell	to	proliferate,	
it remains quiescent. The model repeats this process at the next time 
point until the end of the simulation. We update results every hour, 
which corresponds to the time scale over which cellular responses 
are usually studied in vitro.31– 33 This model is implemented using 
MATLAB,	and	model	details	are	provided	in	the	supplementary	ma-
terials. Because we only focus on the number of sprouts and sprout 
lengths, which are well- studied metrics in in vitro sprouting assays, 
we do not consider spatial effects for extracellular protein concen-
trations, cells, or sprouting directions in this study.

Initial state
The model is initialized with a specific number of endothelial cells 
(Nint)	 in	a	spheroid.	Each	of	the	 initial	cells	are	assigned	a	cell	pro-
liferation rate (refer to above section on the cell proliferation mod-
ule),	sprout	growth	rate,	and	a	probability	of	forming	a	new	sprout.	
The average values of the sprout growth rate and probability of 
forming a new sprout for a population of the endothelial cells are 
calculated	 (described	 in	 subsequent	 sections	 below	 in	 detail).	 The	
sprout growth rate and a probability of forming a new sprout for 
each cell were chosen from normal distributions, where the mean 
and standard deviation for each is based on the calculated values 
for the population. The mean (μ)	is	taken	as	the	calculated	average	
probability of forming a new sprout and average sprout growth rate, 
and a standard deviation (σ)	is	set	to	capture	99.7%	of	the	possible	

rcp= rcp_basal+ rcp_pERK + rcp_pAkt

= rcp_basal+kcp_pERK × fcp (max (pERK)) +kcp_pAkt × fcp (max (pAkt))

= rcp_basal+kcp_pERK ×
Vmax_pERK_cp

1+

(

KmpERK_cp

[max(pERK)]

)ncp
+kcp_pAkt ×

Vmax_pAkt_cp

1+

(

KmpAkt_cp

[max(pAkt)]

)ncp

= rcp_basal+
VpERK_cp

1+

(

KmpERK_cp

[max(pERK)]

)ncp
+

VpAkt_cp

1+

(

KmpAkt_cp

[max(pAkt)]

)ncp

Ntot (T) =

Nint
∑

i=1

2floor(T×rcp_i )
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values given the range of μ ±	100%μ and μ ±	25%μ (i.e., μ ± 3σ)	for	
each cell, respectively.

During	 the	 first	 iteration,	 each	of	 the	 initial	 cells	 is	 assigned	 a	
cell proliferation rate, a sprout growth rate, and a probability to be-
come a tip cell, and then all decisions follow the flowchart shown 
in	Figure	2.	Each	cell	can	only	become	a	tip	cell	once,	and	it	stops	
proliferating if it becomes a tip cell.

Sprouting
Endothelial	sprouting	 is	dependent	on	cell	proliferation,	migration,	
and elongation. To quantify endothelial sprouting, we consider 
the formation of a new sprout and the growth of existing sprouts, 
which	are	determined	by	the	probability	of	forming	a	new	sprout	(p)	
and sprout growth rate (rsg),	 respectively.	We	note	that	the	sprout	
growth rate here is the net rate of sprout elongation caused by cell 
proliferation, migration and elongation.

Based on the assumptions made above, the average probability 
of forming a new sprout p	from	a	cell	during	a	1-	h	period,	∆t, is:

where pbasal is the basal probability rate of forming a new sprout 
when	 no	 stimuli	 are	 applied,	 which	 is	 not	 affected	 by	 pERK	 or	
pAkt levels, kp_pERK and kp_pAkt are the probability constants, and 
Vmax_pERK_p and Vmax_pAkt_p are the maximum probability rates of 
sprout	formation	driven	by	maximum	pERK	and	pAkt	in	an	hour,	re-
spectively.	For	simplification,	we	use	VpERK_p and VpAkt_p to represent 

kp_pERK × Vmax_pERK_p and kp_pAkt × Vmax_pAkt_p respectively. KmpERK_p 
and KmpAkt_p	are	the	maximum	pERK	and	pAkt	 levels	that	produce	
the half maximal of the probability rates of forming a new sprout, 
respectively. np	is	the	Hill	coefficient	for	the	probability	rate	of	form-
ing a new sprout. The baseline values are provided in Table S1 and 
supplementary materials.

The average sprout growth rate (rsg)	is

where rsg_basal is the basal sprout growth rate when no stimuli are ap-
plied,	which	is	not	affected	by	pERK	or	pAkt	levels;	ksg_pERK and ksg_pAkt 
are the sprout growth rate constants; and Vmax_pERK_sg and Vmax_pAkt_sg 
are the maximum rates of sprout length increase driven by maximum 
pERK	and	pAkt,	 respectively.	 For	 simplification,	we	use	VpERK_sg and 
VpAkt_sg to represent ksg_pERK × Vmax_pERK_sg and ksg_Akt × Vmax_pAkt_sg, re-
spectively. KmpERK_sg and KmpAkt_sg	are	 the	maximum	pERK	and	pAkt	
levels that produce the half maximal of the sprout growth rates, re-
spectively. nsg	is	the	Hill	coefficient	for	the	sprout	growth	rate.	Note	
that the sprout growth is a net result of sprout formation, growth, 
degradation, and anastomosis. The baseline values are provided in 
Table S1 and supplementary materials.

Next,	we	used	these	three	parameters	(rcp, p, and rsg)	to	char-
acterize	endothelial	 cell	 sprouting:	number	of	 sprouts	 (NS),	 total	
sprout	length	(TL),	and	average	sprout	length	(AL)	in	a	certain	pe-
riod of time. The number of sprouts is determined by counting the 
number of tip cells predicted by the model. The total sprout length 

p=pbasal+ppERK+ppAkt

=pbasal+kp_pERK × fp (max (pERK)) +kp_pAkt × fp (max (pAkt))

=pbasal+kp_pERK ×
Vmax_pERK_p

1+

(

KmpERK_p

[max(pERK)]

)np
+kp_pAkt ×

Vmax_pAkt_p

1+

(

KmpAkt_p

[max(pAkt)]

)np

=pbasal+
VpERK_p

1+

(

KmpERK_p

[max(pERK)]

)np
+

VpAkt_p

1+

(

KmpAkt_p

[max(pAkt)]

)np

rsg= rsg_basal+ rsg_pERK + rsg_pAkt

= rsg_basal+ksg_pERK × fsg (max (pERK)) +ksg_pAkt × fsg (max (pAkt))

= rsg_basal+ksg_pERK ×
Vmax_pERK_sg

1+

(

KmpERK_sg

[max(pERK)]

)nsg
+ksg_pAkt ×

Vmax_pAkt_sg

1+

(

KmpAkt_sg

[max(pAkt)]

)nsg

= rsg_basal+
VpERK_sg

1+

(

KmpERK_sg

[max(pERK)]

)nsg
+

VpAkt_sg

1+

(

KmpAkt_sg

[max(pAkt)]

)nsg

F I G U R E  2 Flowchart	of	the	endothelial	sprouting	agent-	based	model.	The	model	simulates	each	endothelial	cell	as	one	agent	that	has	its	
own properties and makes its own cellular decisions in every time step 
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is the summation of all sprout lengths. The average sprout length 
is calculated as the total sprout length divided by the number of 
sprouts.

Constraint on probability of forming a sprout

It	has	been	reported	that	tip	cells	activate	Notch	signaling	and	pre-
vent neighboring cells from becoming a tip cell.34– 36 Thus, we ap-
plied a constraint in our model to account for the effects of lateral 
inhibition. We adapted a rate constant Pmax (5 × 10−4 μm−1 h−1),	which	
determines the maximum probability of sprout formation per unit 
time and vessel length in a rat corneal assay.27	 To	match	HUVEC	
data,37,38 we adjusted the Pmax to 10−3 μm−1 h−1. Thus, Pmax is used to 
limit the maximum number of sprouts at every time step.

Model outputs

In	vitro	spheroid	assays	are	usually	three	dimensional;	however,	the	
TL,	NS,	and	AL	from	experimental	data	are	usually	obtained	by	quan-
tifying the sprouts from a two- dimensional image of a focal plane. 
In	order	to	make	comparisons	to	experimental	data,	we	calculated	
the	 TL,	NS,	 and	AL	 on	 a	 focal	 plane	 by	 assuming	 the	 sprouts	 are	
uniformly distributed on a spheroid since our model does not con-
sider	spatial	effects.	Thus,	the	TL	and	NS	are	scaled	to	the	ratio	of	
the number of cells on the focal plane and the total number of cells. 
Also,	the	mean	values	of	TL,	NS,	and	AL	from	experimental	data	are	
usually calculated for several randomly selected spheroids per ex-
perimental group. To compare with experimental data, we calculated 
the	average	TL,	NS,	and	AL	on	a	focal	plane	for	ten	simulations	per	
condition.

2.2  |  Sensitivity analysis

Before fitting the model to experimental data, we first performed a 
sensitivity analysis to identify the parameters that significantly in-
fluence	 the	model	outputs,	using	 the	extended	Fourier	Amplitude	
Sensitivity	Test	 (eFAST)39 method. Since the initial concentrations 
and	 parameters	 involved	 in	 the	 ERK-	Akt	model	 are	 adapted	 from	
previous work,29 we used the median fitted values and held them 
constant during the sensitivity analysis. All remaining model param-
eters were varied simultaneously within two orders of magnitude 
above and below the baseline values, where the baseline values are 
provided	in	Table	S1.	 In	this	way,	the	effects	of	multiple	model	 in-
puts on rcp, rcp_pERK, and rcp_pAkt in the cell proliferation module and 
rsg, rsg_pERK, rsg_pAkt, p, ppERK and ppAkt in the sprouting model were 
computed.	Specifically,	the	eFAST	method	gives	the	total	sensitivity	
indices, “Sti,” which can range from 0 to 1, where a higher Sti index 
indicates the input is more influential to the output. We calculated 
the Sti	values	using	eFAST	for	all	the	same	ligand	concentrations	as	
the experimental data that were used for model training. The highest 

Sti value (Stimax)	across	all	of	the	concentrations	was	selected	to	rep-
resent the sensitivity index for each parameter.

We	also	performed	eFAST	for	the	trained	and	validated	model	
to identify potential targets for pro-  and anti- angiogenic strategies. 
All	parameters	and	initial	concentrations	in	the	ERK-	Akt	model	were	
varied simultaneously within two orders of magnitude above and 
below the baseline values. The fitted variables were held constant 
at the median values estimated from model fitting. We calculated 
the Sti values to quantify how all the variables affected rates of cell 
proliferation, sprout growth, and the probability of forming a new 
sprout.	 Based	 on	 the	 effects	 in	 influencing	 TL,	 low,	 intermediate,	
and	high	levels	of	FGF	and	VEGF	(Table	1)	were	selected	as	repre-
sentative ligand concentrations. We calculated the Sti values using 
eFAST	for	the	nine	possible	combinations	of	low,	intermediate,	and	
high	levels	of	FGF	and	VEGF	stimulation.	Again,	the	Stimax across all 
the combinations were compared for all the variables.

2.3  |  Data extraction

Data	 from	 published	 experimental	 studies37,38,40,41 were used for 
parameter	 fitting	 and	 model	 validation.	 Experimental	 data	 from	
plots were extracted using the grabit	function	in	MATLAB.

2.4  |  Parameterization

2.4.1  |  Cell	proliferation	module

Fitting
The	 initial	concentrations	and	parameters	 involved	 in	the	ERK-	Akt	
model are adapted from previous work.29	Five	influential	variables	
with Sti values greater than 0.5 were identified by performing 
eFAST	in	the	cell	proliferation	module	(Figure	S1A).	They	were	es-
timated	 against	 experimental	measurements	 using	Particle	 Swarm	
Optimization	(PSO)42 to minimize the objective function (the differ-
ence	between	model	predictions	and	experimental	data).	PSO	starts	
with	a	population	of	initial	particles	(parameter	sets).	As	the	particles	
move	around	 (i.e.,	as	 the	algorithm	explores	the	parameter	space),	
an	objective	function	is	evaluated	at	each	particle	location.	Particles	
communicate with one another to determine which has the lowest 
objective function value. The objective function for each parame-
ter set was used to identify optimal parameter values. Specifically, 
we	 used	 PSO	 to	minimize	 the	weighted	 sum	 of	 squared	 residuals	
(WSSR):

TA B L E  1 Representative	low,	intermediate,	high	levels	of	FGF	
and	VEGF

Low (ng/ml)
Intermediate 
(ng/ml) High (ng/ml)

FGF 0.03 0.1 10

VEGF 0.1 4 25
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where Vexp,i is the ith	experimental	measurement,	Vpred,i is the ith pre-
dicted value at the corresponding time point, and n is the total number 
of experimental data points. The minimization is subject to θ, the set of 
upper and lower bounds on each of the free parameters. The bounds 
were set to be two orders of magnitude above and below the baseline 
parameter values, which are listed in Table S1.

The cell proliferation module was fitted 200 times using two 
datasets:	 the	 relative	 proliferation	 of	 HUVECs	 stimulated	 by	
0.03–	1	 ng/ml	 FGF40	 and	 0.1–	1	 ng/ml	 VEGF41	 for	 48	 h,	 compared	
with	the	reference	FGF	and	VEGF	concentration	points	of	1	ng/ml,	
respectively	(Figure	3A,B).	Note	that	the	simulated	initial	number	of	
cells are the same as experimental data: West et al.40 and Jih et al.41 
cultured 104 cells and 5000 cells initially, respectively. The relative 
change	of	the	HUVEC	proliferation	was	calculated	as	following:

where	proliferation(c)	is	the	HUVEC	proliferation	in	response	to	ligand	
concentration c, and proliferation(cref)	is	the	HUVEC	proliferation	at	a	
reference concentration point cref.

Validation
We then validated the model with three datasets not used in the 
fitting.	We	predicted	results	 for	1–	30	ng/ml	FGF-		and	1–	10	ng/ml	
VEGF-	induced	HUVEC	relative	proliferation	on	Day	2	(using	the	ref-
erence	ligand	concentration	points	of	1	ng/ml)	and	compared	with	
experimental	data,	specifically	the	relative	proliferation	of	HUVECs	
stimulated	by	1–	30	ng/ml	FGF,40	0.5–	10	ng/ml	FGF,41 and 1– 10 ng/
ml	VEGF41	for	48	h.

For	all	 three	datasets,40,41 we simulated the experimental con-
ditions without any additional model fitting and compared to the 
experimental measurements. A total of 21 parameter sets with the 
smallest errors were taken to be the “best” sets based on the model 
fitting	and	validation	 (Figure	3A,B	and	S2A	and	Table	S2),	and	the	
median values were used for the sprouting model.

2.4.2  |  Sprouting	model

Seven influential variables with Sti values greater than 0.75 were 
identified	by	performing	eFAST	in	the	sprouting	model	(Figure	S1B).	
Due	to	the	lack	of	experimental	data,	we	first	estimated	all	the	un-
known parameters 500 times by fitting the model to experimental 
observations:	 0–	64	 ng/ml	 VEGF-	induced	 total	 sprout	 length	 for	
24 h cultured with a 500- cell spheroid initially.37 After model train-
ing, we validated the model with another dataset not used in the fit-
ting. Specifically, we used the fold change of the average length and 
number	of	sprouts	induced	by	25	ng/ml	FGF	and	25	ng/ml	VEGF	for	

24 h cultured with a 400- cell spheroid initially compared to the con-
trol38 for validation. We simulated the experimental conditions with-
out any additional model fitting and compared to the experimental 
measurements. A total of 15 parameter sets with the smallest er-
rors were taken to be the “best” sets based on the model fitting and 
validation	(Figures	S2B	and	S3	and	Table	S3).	The	non-	influential	pa-
rameters were held constant at the median of the fitted values, and 
the	seven	influential	variables	were	estimated	using	PSO	300	times	
using	data	from	Heiss	et	al.	(0–	64	ng/ml	VEGF-	induced	total	sprout	
length).37	We	again	compared	model	predictions	to	the	Liebler	et	al.	
data38	without	 any	 additional	model	 fitting.	 A	 total	 of	 18	 param-
eter sets with the smallest errors were taken to be the “best” sets 
based	on	the	model	fitting	and	validation	(Figure	3C,D	and	S2C	and	
Table	S4)	and	were	used	for	all	model	simulations	presented	below.

2.5  |  Model availability

The	MATLAB	files	with	all	model	equations	and	scripts	for	simulat-
ing	 the	 model	 are	 available	 at:	 https://github.com/Finle	yLabU	SC/
Endot	helia	l-	cell-	sprou	ting-	model.

3  |  RESULTS

3.1  |  The fitted hybrid agent- based model captures 
the main features of FGF-  and VEGF- induced 
endothelial sprouting characteristics

We developed a hybrid agent- based mathematical model that de-
scribes angiogenic cellular responses in the process of endothelial 
sprouting	driven	by	 integrating	molecular	 signals,	 pERK	and	pAkt,	
upon	the	mono-		and	co-	stimulation	of	FGF	and	VEGF	(Figure	1).	The	
model focuses on the endothelial proliferation, new sprout forma-
tion, and sprout growth, which are assumed to be dependent on the 
maximum	pERK	and	pAkt	 levels.	 The	model	 parameter	 values	 are	
given in Tables S1– S4. The molecular- detailed biochemical reaction 
network	 that	 characterizes	 the	MAPK	and	PI3K/Akt	pathways	 in-
duced	by	FGF	and	VEGF	is	adapted	from	our	previous	work,29 and 
the parameters and initial concentrations are taken from the median 
of the fitted values.29 The newly introduced parameters were esti-
mated by fitting the model to experimental data, as described below.

3.1.1  |  Cell	proliferation	module

To identify the influential parameters to the model outputs, rcp, 
rcp_pERK, and rcp_pAkt,	 we	 performed	 the	 eFAST

39 (see Methods for 
more	 details)	 and	 analyzed	 the	 maximal	 Sti (Stimax)	 value	 for	 the	
newly	 introduced	 parameters	 (Figure	 S1A).	 All	 five	 parameters	
(Table	S2)	were	 identified	as	 influential	and	were	estimated	by	fit-
ting the model to experimental measurements40,41	using	PSO42 (see 
Methods	for	more	details).

WSSR (�) = min

n
∑

i=1

(

Vpred,i (�) −Vexp,i

Vexp,i

)2

relativeproliferation (c) =
proliferation (c) − proliferation(cref)

proliferation(cref)

https://github.com/FinleyLabUSC/Endothelial-cell-sprouting-model
https://github.com/FinleyLabUSC/Endothelial-cell-sprouting-model
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The fitted model shows a good agreement with experimental 
results	 (Figure	 3A,B).	 It	 quantitatively	 captures	 the	main	 features	
of	 FGF-		 and	 VEGF-	induced	 endothelial	 cell	 proliferation	 from	 ex-
perimental observations.40,41	In	addition	to	matching	data	used	for	
fitting, model predictions were compared to experimental data not 
used in the model fitting40,41	 to	 validate	 the	model	 (Figure	 3A,B).	
Although the model slightly underestimates the relative prolifera-
tion	at	low	VEGF	concentration	(Figure	3B),	the	simulated	results	are	
consistent with experimental observations and can capture the pla-
teau	behavior	at	high	FGF	and	VEGF	concentrations	(Figure	3A,B).	

The weighted errors for 21 best fits are all approximately 4.1 
(Table	S2).	Also,	 the	estimated	values	of	 the	 fitted	variables	 show	
good	consistency	(Figure	S2A),	and	the	median	values	were	used	for	
the sprouting model.

3.1.2  |  Sprouting	model

We again identified seven variables that are influential to rsg, rsg_pERK, 
and rsg_pAkt, p, p_pERK, and p_pAkt with Sti values greater than 0.75 in 

F I G U R E  3 Model	comparison	to	training	and	validation	data	for	FGF	or	VEGF	stimulation.	(A)	Relative	change	of	endothelial	cell	
proliferation for 104	cells	cultured	for	48	h	in	response	to	0.01–	30	ng/ml	FGF	stimulation	compared	with	the	reference	FGF	concentration	
of	1	ng/ml.	(B)	Relative	change	of	endothelial	cell	proliferation	for	5000	cells	cultured	for	48	h	by	the	stimulation	of	0.1–	10	ng/ml	VEGF,	
compared	with	the	reference	VEGF	concentration	of	1	ng/ml.	(C)	Total	sprout	length	induced	by	0–	64	ng/ml	VEGF	for	24	h	cultured	with	
500-	cell	spheroid	initially.	(D)	The	fold	change	of	the	average	length	and	number	of	sprouts	induced	by	25	ng/ml	FGF	and	25	ng/ml	VEGF	
for	24	h	cultured	with	400-	cell	spheroid	initially	compared	to	the	control.	Circles,	squares,	and	diamonds	in	Panels	A–	C	are	experimental	
data.37,38,40,41	Circles	in	Panel	A,	squares	in	Panels	A	and	B,	and	diamonds	in	Panel	C	are	experimental	data	from	West	et	al.,40 Jih et al.,41 
and	Heiss	et	al.,37	respectively.	The	light	yellow	circles	and	light	blue	squares	in	Panels	A,	B	are	experimental	data	used	for	model	fitting.	
The	orange	circles	and	squares	and	dark	blue	squares	are	experimental	data	used	for	model	validation.	Curves	in	Panels	A,	B	and	C	are	
the	mean	model	predictions	of	the	21	and	18	best	fits,	respectively.	Shaded	regions	show	standard	deviation	of	the	fits.	Solid	and	dashed	
bars	in	Panel	D	are	mean	±	standard	deviation	of	Liebler	et	al.	data38 and model predictions, respectively 
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the	 sprouting	model	using	eFAST	 (Figure	S1B).	Due	 to	 the	 lack	of	
experimental data, we first estimated all the unknown parameters 
by	 fitting	 the	model	 to	experimental	observations	showing	VEGF-	
induced total sprout length.37 We selected 15 “best” fits that 
showed good match to experimental observations38	(Figure	S3).	The	
non- influential parameters were then set at the median of fitted val-
ues	(Figures	S1B	and	S2B)	and	the	influential	parameters	were	esti-
mated	300	times,	from	which	18	“best”	fits	were	selected	(Figure	3C	
and	S2C).	The	fitting	results	can	capture	the	main	features	of	VEGF-	
induced	 endothelial	 total	 length	 for	 24	 h	 (Figure	 3C).	 We	 again	
compared model predictions to independent experimental data38 
without	 any	 additional	 model	 fitting.	 It	 showed	 good	 agreement	
with the fold change of the average length and number of sprouts 
induced	by	25	ng/ml	FGF	and	25	ng/ml	VEGF	 for	24	h	compared	
with	 the	 control	 (Figure	3D).	 The	weighted	errors	 for	18	best	 fits	
are	0.001–	0.013	(Table	S4).	Also,	the	estimated	values	of	the	fitted	
variables	show	good	consistency	(Figure	S2C).	The	ability	to	predict	
experimental data not used for estimating the model parameters 
suggests the model is reliable to make new predictions.

3.2  |  The type and concentration of ligand, 
length of growth factor stimulation, and initial 
number of cells impact endothelial sprouting

3.2.1  | Mono-	stimulation

We	 first	 compared	 the	effects	of	 four	 inputs:	 type	of	 ligand	 (FGF	
and	VEGF),	concentration	of	the	ligand	(low,	intermediate,	and	high)	
(Table	1),	 length	of	growth	factor	stimulation	(1–	3	days),	and	initial	
number	of	cells	(250,	500,	and	750	cells)	on	sprouting	characteristics	
(TL,	NS,	 and	AL)	 (Figure	4).	Note	 that	AL	equals	TL/NS,	providing	
the	relative	change	in	TL	compared	to	NS.	A	higher	AL	suggests	that	
the	TL	is	due	to	the	growth	of	existing	sprouts,	whereas	a	lower	AL	
indicates that the formation of new sprouts plays a more important 
role	 in	TL.	Also,	we	take	 low,	 intermediate,	and	high	 levels	of	FGF	
and	VEGF	based	on	 their	 effects	 in	 inducing	TL	as	 representative	
concentrations	 to	 study	 the	 effects	 of	 ligand	 concentration.	Note	
that	for	the	high	levels	of	FGF	and	VEGF,	the	total	sprout	length	is	
at a plateau level.

Type of ligand (FGF and VEGF)
Generally,	 FGF	 induces	greater	 sprouting	 responses	 than	VEGF	 in	
terms	of	TL	(Figure	4A,B)	and	NS	(Figure	4C,D)	at	the	same	concen-
trations.	On	Day	1,	FGF	shows	slightly	higher	sprouting	responses	
compared	to	VEGF,	and	the	differences	between	FGF-		and	VEGF-	
induced	TL	(Figure	4A,B)	and	NS	(Figure	4C,D)	 increase	with	time.	
This	 indicates	 that	 FGF-	induced	 TL	 and	 NS	 increase	 faster	 than	
VEGF-	induced	 TL	 and	 NS,	 which	 results	 in	 greater	 sprouting	 re-
sponses	induced	by	FGF	in	the	long-	term,	compared	to	VEGF.	In	ad-
dition,	FGF-	induced	AL	 is	higher	 than	VEGF	 for	all	 concentrations	
on	Day	1	(Figure	4E,F).	On	days	2	and	3,	FGF	showed	higher	effects	
in	AL	at	low	to	intermediate	concentrations	(Figure	4E),	while	VEGF	

showed	 higher	 effects	 in	 AL	 at	 a	 high	 concentration	 (Figure	 4F).	
While	increasing	FGF	and	VEGF	concentration	both	lead	to	greater	
NS	and	TL,	a	higher	FGF	concentration	causes	a	greater	increase	in	
NS	compared	to	TL,	which	causes	a	lower	AL	(Figure	4A,	C,	and	E).	
The	opposite	is	true	for	VEGF,	where	a	higher	concentration	causes	
a	 greater	 increase	 in	 TL	 compared	 to	 NS,	 producing	 a	 higher	 AL	
(Figure	4B,	D,	 and	F).	 Thus,	 increasing	 concentrations	of	FGF	and	
VEGF	affect	the	average	length	of	sprouts	in	different	ways.

Concentration of the ligands (low, intermediate, and high)
FGF-		 and	 VEGF-	induced	 TL,	 NS,	 and	 AL	 are	 dose-	dependent	
(Figure	 4).	 Specifically,	 FGF-		 and	 VEGF-	induced	 TL	 (Figure	 4A,B)	
and	NS	 (Figure	 4C,D)	 increase	with	 increasing	 FGF	or	VEGF	 con-
centration.	Also,	VEGF-	induced	AL	on	Day	1	increases	with	the	in-
crease	 in	VEGF	concentration	 (Figure	4F).	Moreover,	FGF-	induced	
AL	has	a	biphasic	dose	response	over	all	3	days	of	stimulation,	and	
VEGF-	induced	 AL	 shows	 a	 biphasic	 dose	 response	 for	 days	 2–	3,	
respectively	 (Figure	4E,F).	The	dose	response	of	the	AL	for	FGF	is	
U-	shaped	 (Figure	4E),	while	 the	dose	 response	 for	VEGF	 is	 an	 in-
verted	U	(Figure	4F).	This	is	caused	by	the	difference	in	the	relative	
change	in	TL	compared	with	NS	induced	by	different	FGF	and	VEGF	
concentrations.	As	explained	above,	at	high	FGF	concentrations,	the	
increase	in	TL	is	contributed	most	by	the	increase	in	the	formation	of	
new	sprouts	rather	than	the	growth	of	existing	sprouts,	while	VEGF	
showed opposite effects.

Length of growth factor stimulation (1– 3 days)
TL,	NS,	 and	AL	 increase	with	 the	 increase	 in	 length	of	 cell	 stimu-
lation	(Figure	4).	Note	that	since	we	are	studying	responses	within	
3 days, we assume that anastomosis has not happened yet or is at a 
minimum	level.	Otherwise,	we	would	expect	that	the	AL	reaches	a	
plateau and might even decrease in a long term.

Initial number of cells (250, 500, and 750 cells)
TL	and	NS	increase	with	the	increase	in	the	initial	number	of	cells,	
but	AL	is	independent	of	the	initial	number	of	cells	(Figure	4).	Since	
the characteristics of endothelial sprouting are qualitatively similar 
among the groups of different initial number of cells, we take 500 
cells as a representative initial number of cells to investigate the 
effects	of	FGF	and/or	VEGF	 stimulation	 for	 the	 remainder	of	 this	
study.

3.2.2  |  Co-	stimulation

We	 next	 studied	 the	 effects	 of	 FGF	 and	 VEGF	 co-	stimulation	 in	
endothelial	 sprouting.	 Generally,	 we	 found	 that	 similar	 to	 mono-	
stimulation,	TL,	NS,	and	AL	are	dose-	dependent	for	both	FGF	and	
VEGF.	 Specifically,	 TL	 and	 NS	 increase	 with	 the	 increase	 in	 FGF	
or	 VEGF	 concentrations,	 while	 AL	 has	 a	 biphasic	 dose	 response	
(Figure	5).	Also,	TL,	NS,	and	AL	increase	with	the	increase	in	length	
of	cell	stimulation	(Figure	5).	Furthermore,	we	found	that	FGF	plays	
a dominant role in the combination effects in endothelial sprouting 



10 of 20  |     SONG aNd FINLEY

as	 co-	stimulation	 exhibits	 the	 features	 of	 FGF-	induced	 sprouting	
(Figures	4,	5,	and	S4).	Specifically,	the	effects	of	co-	stimulation	on	
TL,	 NS,	 and	 AL	 are	 more	 sensitive	 to	 FGF	 concentration	 change	
compared	 to	VEGF,	which	 shows	no	obvious	differences	between	
low,	 intermediate,	 and	 high	 VEGF	 levels	 (Figure	 5).	 Also,	 TL,	 NS,	
and	 AL	 induced	 by	 co-	stimulation	 are	 approximately	 the	 same	
level	as	FGF	stimulation	alone,	as	the	ratios	of	combination	effects,	
relative	 to	FGF	mono-	stimulation,	 are	 approximately	 equal	 to	one	
(Figure	S4A–	C	 left).	 In	comparison,	TL,	NS,	and	AL	 induced	by	co-	
stimulation	are	greater	than	VEGF	stimulation	alone,	as	the	ratios	of	
combination	effects,	relative	to	VEGF	mono-	stimulation,	are	greater	
than	one	(Figure	S4A–	C	right).

In	summary,	endothelial	sprouting	is	ligand-		and	dose-	dependent	
and	has	different	short-	term	and	 long-	term	responses.	 In	addition,	
the initial number of cells is important in the sprouting process. 
Also,	 FGF	 plays	 a	 dominant	 role	 in	 the	 effects	 of	 FGF	 and	 VEGF	
co- stimulation on endothelial sprouting. Moreover, the predicted 
effects	 of	 the	 co-	stimulation	 by	 FGF	 and	 VEGF	 on	 endothelial	

sprouting	were	not	significantly	greater	than	FGF	mono-	stimulation	
alone.

3.3  |  The cell proliferation and sprout growth of 
existing sprouts are predicted to be more important 
in the sprouting process

To understand the contributions of cellular behaviors in the process 
of	endothelial	sprouting,	we	next	investigated	the	effects	of	FGF	and	
VEGF	on	rcp, rsg, and p.	NS	is	a	result	of	the	number	of	cells	and	the	
probability of a sprout formation, which are determined by rcp and p 
for	a	certain	number	of	cells	initially	present.	TL	is	a	result	of	NS	and	
the growth of the sprouts determined by rsg.	And	AL	equals	TL/NS.	
Thus, understanding how the rate of cell proliferation, rate of sprout 
growth, and the probability of sprouting depend on growth factor 
concentration gives insight into the observable sprouting features 
(number	of	sprouts,	total	sprout	length,	and	average	sprout	length).

F I G U R E  4 Predicted	sprouting	responses	stimulated	by	single	agents.	Response	to	FGF	stimulation,	left	panels:	Predicted	TL	(μm)	(A),	NS	
(C),	and	AL	(μm)	(E)	stimulated	by	low,	intermediate,	and	high	levels	of	FGF.	Response	to	VEGF	stimulation,	right	panels:	Predicted	TL	(μm)	
(B),	NS	(D),	and	AL	(μm)	(F)	stimulated	by	low,	intermediate,	and	high	levels	of	VEGF.	250-	,	500-	,	and	750-	cell	spheroid	sprouting	responses	
when simulated for 1, 2, and 3 days. Bars are mean model prediction +	standard	deviation	of	18	best	fits	
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3.3.1  | Mono-	stimulation

We studied cell proliferation, sprout growth, and the probability 
of	 sprouting	 in	 response	 to	FGF	and	VEGF	mono-	stimulation.	We	
found	 that	 FGF	 and	VEGF	mono-	stimulation	both	 show	 sigmoidal	
dose	 response	 curves	 for	 cell	 proliferation	 (Figure	6A)	 and	 sprout	
growth	 (Figure	6B).	Additionally,	FGF	 induces	 faster	 cell	prolifera-
tion	and	sprout	growth	than	VEGF	at	the	same	concentrations.	This	
is	because	FGF-	induced	rcp and rsg	are	higher	than	VEGF-	induced	rcp 
and rsg,	respectively,	at	the	same	ligand	concentrations	(Figure	6A,B).	
In	addition,	the	large	variation	in	p suggests that the exact value for 
the probability of forming a new sprout does not significantly af-
fect	the	model	predictions	(Figure	6C).	This	indicates	that	NS	is	more	
dependent on the number of cells compared to the probability of 
sprout	 initiation.	It	also	suggests	that	the	number	of	cells/cell	pro-
liferation and the growth of existing sprouts are more important in 
contributing	to	the	TL	over	time	than	the	chance	of	forming	a	new	

sprout. Thus, rcp and rsg are the main focus in the remainder of this 
study.

3.3.2  |  Co-	stimulation

Similar to mono- stimulation, we next investigated the effects of 
FGF	and	VEGF	co-	stimulation	in	the	rate	of	cell	proliferation,	rate	of	
sprout growth, and the probability of sprouting. We found that rcp, 
rsg, and p	increase	as	the	ligand	concentration	increases	(Figure	6D–	
F).	Moreover,	 FGF	 is	 dominant	 in	 the	 combination	 effects,	 as	 the	
co- stimulation exhibits the dose- dependent features and approxi-
mately the same magnitude in inducing rcp, rsg, and p as in response 
to	 FGF	 mono-	stimulation.	 Specifically,	 rcp and rsg are more sensi-
tive	to	FGF	concentration	and	relatively	 independent	of	the	VEGF	
concentration	 (Figure	 6D–	E).	 Also,	 the	 values	 of	 rcp, rsg, and p are 
only	slightly	higher	with	FGF	and	VEGF	co-	stimulation,	compared	to	

F I G U R E  5 Predicted	sprouting	responses	in	response	to	FGF	and	VEGF	co-	stimulation.	Co-	stimulation	of	FGF-		and	VEGF-	induced	TL	
(μm)	on	Day	1	(A),	Day	2	(D),	and	Day	3	(G);	NS	on	Day	1	(B),	Day	2	(E),	and	Day	3	(H);	and	AL	(μm)	on	Day	1	(C),	Day	2	(F),	and	Day	3	(I)	
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FGF	mono-	stimulation;	while	with	co-	stimulation,	rcp is significantly 
higher, and the values of rsg and p are also much higher compared to 
VEGF	mono-	stimulation	(Figure	S5).	It	suggests	that	FGF	is	dominant	

in promoting cell proliferation, sprout growth, and the probability of 
sprouting	 in	 the	combination	effects.	 It	 is	also	consistent	with	the	
dominant	 role	 of	 FGF	 in	 the	 combination	 effects	 in	 the	 sprouting	

F I G U R E  6 Predicted	rcp, rsg, and p	in	response	to	mono-		and	co-	stimulation	of	FGF	and	VEGF.	Effects	of	mono-	stimulation	of	FGF	
(yellow)	or	VEGF	(blue)	on	rcp	(A),	rsg	(B),	and	p	(C).	Effects	of	co-	stimulation	of	FGF	and	VEGF	on	rcp	(D),	rsg	(E),	and	p	(F).	Curves	in	Panels	
A–	C	are	the	mean	model	predictions	of	18	best	fits.	Shaded	regions	show	standard	deviation	of	the	fits	

F I G U R E  7 The	contributions	of	
MAPK	and	PI3K/Akt	pathways	to	rcp 
and rsg	in	response	to	FGF	and	VEGF	
mono- stimulation. Contributions of 
pERK	(purple),	pAkt	(green),	and	basal	
(gray)	for	FGF-	induced	rates	of	cell	
proliferation, rcp	(A)	and	sprout	growth,	
rsg	(C).	Contributions	of	pERK	(purple),	
pAkt	(green),	and	basal	(gray)	for	VEGF-	
induced cell proliferation, rcp	(B)	and	
sprout growth, rsg	(D)	
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characteristics	specifically	TL,	NS,	and	AL	observed	in	the	previous	
section.

In	summary,	rcp and rsg are more important in endothelial sprout-
ing compared to p.	Moreover,	FGF	plays	a	dominant	role	in	the	com-
bination effects.

3.4  |  The MAPK and PI3K pathways contribute to 
cell proliferation, sprout growth, and probability of 
sprouting in different ways

We	next	studied	the	contributions	of	MAPK	and	PI3K	pathways	in	
rcp, rsg, and p to gain insight into the mechanisms of the endothelial 
sprouting	process	in	response	to	mono-		and	co-	stimulation	of	FGF	
and	VEGF.

3.4.1  | Mono-	stimulation

Cell proliferation
FGF	and	VEGF	 stimulate	 cell	 proliferation	 in	different	ways:	FGF-	
induced	 cell	 proliferation	 is	 dominated	 by	 pERK,	 while	 VEGF-	
induced	 cell	 proliferation	 is	 promoted	 by	 pAkt	 (Figure	 7A,B).	 The	
dose-	dependent	 feature	 of	 cell	 proliferation	 induced	 by	 FGF	 is	
mostly	contributed	by	ERK	phosphorylation,	as	the	rate	of	cell	pro-
liferation	influenced	by	pERK	exhibits	the	dose-	dependent	feature	
of the overall cell proliferation rate, while the rate of cell prolifera-
tion	 influenced	 by	 pAkt	 is	 independent	 of	 the	 FGF	 concentration	
(Figure	7A).	In	addition,	at	low	FGF	concentrations	(<0.12	ng/ml),	Akt	
phosphorylation plays a more important role in the cell proliferation 
rate,	compared	to	its	impact	at	high	FGF	concentrations	(Figure	7A).	
As	the	FGF	concentration	increases,	the	impact	of	rcp_pERK increases 
and eventually surpasses the influence of rcp_pAkt	(or	Akt	activation)	
at	higher	FGF	concentrations	(Figure	7A).	In	contrast,	the	cell	prolif-
eration	behavior	and	dose-	dependent	feature	induced	by	VEGF	are	
mostly	contributed	by	Akt	phosphorylation,	while	ERK	phosphoryla-
tion	shows	a	negligible	contribution	 (Figure	7B).	Moreover,	 the	ef-
fect of basal cell proliferation minimally contributes to the response 
induced	by	FGF	or	VEGF	stimulation	(Figure	7A,B).

Sprout growth
The	MAPK	and	PI3K	pathways	contribute	differently	 to	FGF-		 and	
VEGF-	induced	sprout	growth	(Figure	7C,D).	First,	we	found	that	the	
basal rsg	 (6.87	μm/h)	plays	 a	major	 role	 in	 the	overall	 rsg, account-
ing	for	42%	and	63%	of	the	FGF-		and	VEGF-	induced	rsg at their pla-
teau	 levels,	 respectively	 (Figure	7C,D).	 In	addition	 to	 the	basal	 rsg, 
at	low	FGF	concentrations	(<0.03	ng/ml),	Akt	phosphorylation	also	
plays a substantial role in rsg	(Figure	7C).	As	the	FGF	concentration	
increases, the impact of rsg_pERK	increases.	Eventually,	the	contribu-
tions of pAkt	(height	of	the	green	area)	and	pERK (height of the purple 
area)	to	the	sprout	growth	rate	plateau	at	4.07	μm/h and 5.52 μm/h 
(Figure	7C),	which	are	the	mean	values	of	fitted	VpAkt_sg and VpERK_sg, 
respectively.	When	VEGF	is	lower	than	3	ng/ml,	basal	rsg is dominant 

in	VEGF-	induced	rsg	 (Figure	7D).	As	VEGF	concentration	increases,	
rsg_pAkt increases and plateaus at 4.07 μm/h (VpAkt_sg),	and	 rsg_pERK is 
negligible	in	VEGF-	induced	rsg	(Figure	7D).

3.4.2  |  Co-	stimulation

We	 then	 investigated	 the	 contributions	 of	 the	 MAPK	 and	 PI3K	
pathways in rcp and rsg	upon	co-	stimulation	with	FGF	and	VEGF.	We	
found	that	ERK	and	Akt	activation	contribute	differently	to	cell	pro-
liferation	and	 sprout	growth,	 and	FGF	plays	a	dominant	 role	of	 in	
combination effects in cell proliferation and sprout growth.

Cell proliferation
First,	rcp, rcp_pERK, and rcp_pAkt	stimulated	by	a	combination	of	FGF	and	
VEGF	mirror	the	corresponding	responses	stimulated	by	FGF	alone	
(Figures	 6A,D,	 7A	 and	 S6A,B).	 Specifically,	 the	 dose-	dependent	
manner	of	the	cell	proliferation	rate	induced	by	FGF	and	VEGF	co-	
stimulation is mostly impacted by rcp_pERK, while rcp_pAkt is independ-
ent	of	the	FGF	or	VEGF	concentrations	(Figure	S6A,B).	Also	similar	
to	 FGF	mono-	stimulation,	 Akt	 phosphorylation	 plays	 a	more	 sub-
stantial	role	in	the	cell	proliferation	rate	at	FGF	concentrations	lower	
than 0.12 ng/ml, while rcp_pERK	 increases	as	 the	FGF	concentration	
increases and surpasses the influence of rcp_pAkt	at	higher	FGF	con-
centrations (>0.12	ng/ml)	(Figure	S6A).

Sprout growth
The dose- dependent manner of sprout growth rate induced by 
FGF	 and	 VEGF	 co-	stimulation	 is	 mostly	 influenced	 by	 rsg_pERK 
(Figure	 S6C),	 while	 rsg_pAkt	 is	 independent	 of	 FGF	 or	 VEGF	 con-
centrations	 (Figure	S6D).	 In	addition,	Akt	phosphorylation	 is	more	
important in rsg	at	FGF	concentrations	 lower	than	0.03	ng/ml,	and	
the impact of rsg_pERK	 increases	as	the	FGF	concentration	increases	
(Figure	S6C,D).	These	predictions	 show	 the	 same	 feature	as	FGF-	
induced	sprout	growth	(Figure	7C),	 indicating	the	dominant	role	of	
FGF	on	sprout	growth.

3.5  |  ERK pathway regulates vessel network mainly 
via regulating cell proliferation and NS, while Akt 
pathway mainly affects vessel network via regulating 
sprout growth

We applied the model to identify the parameters and initial concen-
trations	in	the	ERK-	Akt	model	that	are	influential	to	the	cell	prolifer-
ation rate and sprout growth rate. This allows us to gain mechanistic 
insight into how to modulate endothelial sprouting by targeting in-
tracellular signaling pathways. We identified the influential variables 
by	 performing	 eFAST	 and	 evaluating	 the	 calculated	 Stimax values. 
The	variables	(Table	2)	that	have	Stimax values greater than 0.3 are 
identified as influential and considered as potential targets for pro-  
and	anti-	angiogenic	strategies.	This	analysis	predicts	that	ERK	and	
MEK	 influence	 rcp and rsg,	while	Akt	 and	 Ptase2	 influence	 rsg. We 
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note that no parameter was identified as influential to the probabil-
ity of sprouting, further justifying our primary focus on the rates of 
cell proliferation and sprout growth. The model predictions suggest 
that	 the	MAPK	pathway	 is	more	 influential	 to	 rcp,	 and	MAPK	 and	
PI3K/Akt	pathways	are	both	influential	to	rsg.

However,	eFAST	only	tells	us	that	those	variables	are	influential,	
but the information of how those variables influence model outputs 
are limited. Therefore, we varied two representative influential vari-
ables,	ERK	and	Akt,	by	0.1-		 and	10-	fold	and	predicted	 the	 rcp and 
rsg	(Figure	8),	as	well	as	TL,	NS,	and	AL	(Figures	9	and	10)	compared	
to the baseline model predictions. We found that the strategies to 
modulate	 endothelial	 sprouting	 are	 context-	dependent,	 and	 ERK	
and Akt pathways regulate vessel network differently.

Varying	ERK

In	Figure	8A,B,	and	S7A,	upregulating	ERK	is	predicted	to	be	effec-
tive in promoting cell proliferation at low to intermediate but not 
at	high	FGF	concentrations.	In	contrast,	downregulating	ERK	is	pre-
dicted to be more effective in inhibiting cell proliferation at interme-
diate	to	high	FGF	concentrations	(Figure	8A,B	and	S7A).	In	addition,	
upregulating	ERK	 is	more	effective	 in	promoting	sprout	growth	at	
low	 FGF	 concentrations	 (Figure	 8D-	E	 and	 S7A).	 Downregulating	
ERK	is	most	effective	in	inhibiting	sprout	growth	at	intermediate	and	

high	FGF,	particularly	in	combination	with	low	VEGF	concentration	
(Figure	8D,E	and	S7A).

We	next	investigated	how	finitely	varying	ERK	affects	endothe-
lial	sprouting,	specifically,	TL,	NS,	and	AL	on	days	1–	3	(Figures	9	and	
S7C,	E,	G).	The	model	showed	no	obvious	effects	of	 increasing	or	
decreasing	ERK	by	10-	fold	on	TL,	NS,	and	AL	on	Day	1	(Figures	9Ai,	
Bi,	and	Ci,	and	S7C).	In	addition,	increasing	the	ERK	level	is	effective	
in	promoting	TL	at	low	FGF	level	and	NS	at	low	to	intermediate	FGF	
levels	but	has	no	obvious	effects	at	high	FGF	concentration	on	Day	
2	(Figures	9Aii,	Bii,	and	S7E)	and	Day	3	(Figures	9Aiii,	Biii,	and	S7G).	
Also,	decreasing	ERK	is	effective	in	inhibiting	TL	at	intermediate	FGF	
level	and	NS	at	intermediate	and	high	FGF	levels,	but	this	strategy	is	
not	very	promising	at	low	FGF	level	on	Day	2	(Figures	9Aii,	Bii,	and	
S7E)	 and	Day	3	 (Figures	9Aiii,	Biii,	 and	S7G).	 Furthermore,	 the	 in-
crease	in	TL	is	less	than	the	increase	in	NS,	which	causes	a	decrease	
in	AL	(Figures	9Cii,	Ciii,	and	S7E,	G)	since	AL	equals	TL/NS.

Varying	Akt

In	Figures	8A,	C,	 and	S7B,	we	did	 not	 observe	obvious	 effects	 in	
rcp	when	increasing	or	decreasing	Akt	by	10-	fold.	However,	down-
regulating Akt is predicted to be effective in inhibiting sprout growth 
at	all	FGF	and	VEGF	combinations,	while	upregulating	Akt	does	not	
have obvious effects in rsg	(Figures	8D,	F,	and	S7B).

We	then	investigated	how	finitely	varying	Akt	affects	TL,	NS,	and	
AL	on	days	1–	3	(Figures	10	and	S7D,	F,	H).	We	found	that	increasing	
Akt	level	has	no	obvious	effects	on	TL,	NS,	or	AL	at	any	of	the	sim-
ulated	combinations	of	FGF	and	VEGF	on	days	1–	3	(Figures	10	and	
S7D,	F,	H).	However,	decreasing	Akt	level	leads	to	a	decrease	in	AL	
and	TL	at	all	combinations	of	FGF	and	VEGF	on	days	1–	3,	but	no	ob-
vious	effects	in	NS	were	observed	when	the	Akt	level	was	decreased	
(Figures	10	and	S7D,	F,	H).

TA B L E  2 Influential	parameters	affecting	rates	of	cell	
proliferation (rcp)	and	sprout	growth	(rsg)

rcp rsg

ERK
MEK

Akt
ERK
Ptase2
MEK

F I G U R E  8 Predicted	representative	targets	for	modulating	rcp and rsg.	Predicted	rcp	(A)	and	rsg	(D)	from	baseline	model.	Predicted	rcp	(B)	
and rsg	(E)	when	ERK	is	varied	by	0.1-		(left)	and	10-	fold	(right).	Predicted	rcp	(C)	and	rsg	(F)	when	Akt	is	varied	by	0.1-		(left)	and	10-	fold	(right)	
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In	summary,	targeting	the	ERK	pathway	 is	predicted	to	control	
the	vessel	network	mainly	via	 regulating	cell	proliferation	and	NS,	
while targeting the Akt pathway mainly influences the vessel net-
work	 via	 regulating	 sprout	 growth.	 In	 addition,	 the	 effects	 of	 the	
molecular signaling pathways on sprouting are not obvious after 
1 day of stimulation but is more effective in a long- term (days 2– 
3).	Overall,	 our	model	 can	 identify	potential	 effective	pro-		 and/or	
anti- angiogenic targets and predicts the effects of perturbing those 
targets under different conditions.

4  |  DISCUSSION

We developed a hybrid agent- based model characterizing the en-
dothelial sprouting process driven by integrating molecular signals, 

pERK	 and	 pAkt,	 upon	 the	 mono-		 and	 co-	stimulation	 of	 two	 pro-	
angiogenic	factors	FGF	and	VEGF.	The	intracellular	signaling	model	
of	ERK	and	Akt	activation	in	response	to	FGF	and	VEGF	stimulation	
in endothelial cells was adapted from our previous work.29 The en-
dothelial sprouting process was modeled by assuming the cellular 
responses (cell proliferation, sprout growth, and the probability of 
forming	a	new	sprout)	are	driven	by	pERK and pAkt,	 following	Hill	
functions.	Unknown	parameters	were	estimated	by	fitting	the	model	
to experimental data. Additionally, we validated the model using a 
separate set of data.

The	fitted	model	predicts	the	TL,	NS,	and	AL	upon	stimulation	
by	FGF	and	VEGF,	alone	and	in	combination,	on	days	1–	3.	We	par-
ticularly	 focus	on	TL,	NS,	and	AL	because	 they	are	metrics	exam-
ined most often in in vitro studies.37,38,43–	45 The model predicts that 
the type and concentration of ligand, length of cell stimulation by 

F I G U R E  9 Predicted	effects	of	varying	ERK.	Predicted	TL	(A),	NS	(B),	and	AL	(C)	when	ERK	is	varied	by	0.1-		(left)	and	10-	fold	(right),	
compared	with	baseline	model	predictions	(middle)	on	days	1–	3	(i–	iii)	

F I G U R E  1 0 Predicted	effects	of	varying	Akt.	Predicted	TL	(μm)	(A),	NS	(B),	and	AL	(μm)	(C)	when	Akt	is	varied	by	0.1-		(left)	and	10-	fold	
(right),	compared	with	baseline	model	predictions	(middle)	on	days	1–	3	(i–	iii)	
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the ligand, and initial number of cells are important in endothelial 
sprouting.	 Importantly,	 the	 model	 provides	 quantitative	 insight	
into how these inputs influences sprouting. The predicted dose- 
dependent	 sprouting	 responses	 (TL	 induced	 by	 FGF	 and	VEGF	 in	
Figure	4)	are	consistent	with	experimental	data,	which	shows	dose-	
dependent	 total	 tubular	 length	 induced	by	FGF	and	VEGF.31 Also, 
in	the	same	study,	0.1	ng/ml	FGF	exhibits	approximately	the	same	
level	of	increase	in	proliferation	and	migration	for	HUVECs	as	25	ng/
ml	VEGF	after	24	h,31 which agrees with our model prediction that 
FGF	 induces	greater	sprouting	responses	than	VEGF	at	same	con-
centrations	 (Figure	 4).	 Furthermore,	 our	model	 suggests	 that	 FGF	
promotes greater sprouting responses in the long- term compared 
with	VEGF	(Figure	4).	In	addition,	the	model	predicts	that	FGF	plays	
a dominant role in the combination effects in endothelial sprouting, 
and	co-	stimulation	of	FGF	and	VEGF	only	slightly	increases	TL,	NS,	
and	AL,	compared	to	FGF	simulation	alone	within	3	days	(Figures	4,	
5,	and	S4).	Also,	the	effects	of	low	FGF	concentration	in	combina-
tion	with	high	VEGF	concentration	in	TL,	NS,	and	AL	show	no	obvi-
ous	difference	compared	to	VEGF	mono-	stimulation	within	3	days	
(Figures	4,	5,	and	S4).	This	prediction	is	consistent	with	experimental	
observations	showing	no	significant	increase	in	HUVEC	proliferation	
in	72	h,	migration	in	8	h,	or	total	tubular	 length	in	24	h	stimulated	
by	the	combination	of	0.1	ng/ml	FGF	and	25	ng/ml	VEGF	compared	
with their mono- stimulation.31 Moreover, our model can supple-
ment experimental endothelial sprouting assays to differentiate and 
analyze the contributions of cellular and molecular responses during 
the overall sprouting process including cell proliferation, sprout 
growth	and	formation,	and	activation	of	the	ERK	and	Akt	pathways.	
Specifically,	the	model	predicts	that	the	ERK	pathway	regulates	ves-
sel	network	mainly	via	regulating	cell	proliferation	and	NS,	while	the	
Akt pathway mainly affects vessel network via regulating sprout 
growth	 (Figures	8–	10).	These	predictions	are	 in	 line	with	 the	 liter-
ature	results	reporting	that	ERK	is	believed	to	mainly	promote	cell	
proliferation46 and Akt is more important in cell survival47– 51 and 
migration.51– 53

Compared to other models that study cellular behaviors, our 
mechanistic model considers intracellular signaling and quantita-
tively analyzes cellular responses driven by integrating molecular 
signals, pERK and pAkt.	 Our	model	 explicitly	 examines	 how	 cellu-
lar behaviors are driven by pERK and pAkt, which are downstream 
signals that regulate angiogenic cellular responses. Thus, we can 
apply our model to mechanistically study the roles of intracellular 
signaling species in affecting endothelial sprouting. Tong and Yuan 
constructed a computational model to study vessel growth in rat 
cornea based on assumptions that cellular responses are only de-
pendent	on	FGF-	bound	FGFR,	where	the	probability	of	sprout	for-
mation and the speed of vessel growth are linearly proportional to 
the	fraction	of	FGFR	occupied	by	FGF.27	Our	model	can	complement	
such models to understand intracellular mechanisms that regulate 
cellular	responses.	In	another	study,	Norton	and	Popel	constructed	
a computational model to study vessel growth in tumors and showed 
that the proliferation rate has a greater effect on the spread and 
extent of vascular growth compared to migration rate.54	Our	model	

predictions agree with these previous modeling works, as we pre-
dict that cell proliferation and the number of cells are critical factors 
that	contribute	to	endothelial	sprouting	(Figure	4)	and	that	varying	
ERK	level	seems	to	be	more	influential	in	TL	than	varying	Akt	level	
(Figures	9	and	10).	Our	work	goes	further	in	that	the	model	consid-
ers the intracellular signaling and provides mechanistic insight into 
the signaling factors driving endothelial sprouting.

Our	model	can	be	utilized	to	study	the	efficiency	of	pro-		or	anti-	
angiogenic therapies. The model predicts that potential strategies to 
modulate	endothelial	sprouting	are	context	dependent	(Figures	8–	
10),	and	it	can	identify	potential	pro-		and/or	anti-	angiogenic	targets	
under different conditions and study their efficacy. The intracellu-
lar	 angiogenic	 signals	 such	as	pERK	and	pAkt	are	believed	 to	play	
important roles in cellular behaviors, especially cell survival, prolif-
eration, and migration.46– 53	However,	 there	 is	 limited	 quantitative	
understanding of how integrating the intracellular angiogenic signals 
affect cellular behaviors, especially in cases where approaches to in-
hibit	angiogenesis	have	counterintuitive	effects	on	pERK	and	pAkt.	
For	example,	it	has	been	shown	that	the	MEK	inhibitor	PD0325901	
upregulates	 the	PI3K	pathway	 signaling.55	Our	model	 can	 investi-
gate such experimental observations and predict the overall cellular 
responses	driven	by	the	integrated	molecular	signals	from	pERK	and	
pAkt.

This model can be utilized in combination with other model-
ing frameworks that predict intracellular signaling to provide more 
mechanistic	 insight	 into	 certain	 cellular	 responses.	 For	 example,	
there are models that study pro- angiogenic signaling, including 
sphingosine	kinase	1	and	calcium	responses	induced	by	VEGF,	which	
are	the	downstream	signals	of	ERK1/2,56 and also angiopoietin- Tie 
signaling in endothelial cells,57 which has been shown to be import-
ant in vessel development, permeability, vascular homeostasis, and 
remodeling.57– 60	Other	models	study	anti-	angiogenic	signaling,	such	
as	TSP1-	CD36	signaling	that	influences	endothelial	cell	apoptosis61 
and	antagonizes	VEGF-	induced	eNOS	signaling,62,63 as nitric oxide is 
a major vasodilator62 and is important in angiogenesis and vascular 
permeability.64,65 Still other models characterize sprouting angio-
genesis	behaviors	by	considering	how	Notch	signaling	 in	endothe-
lial cells determines the tip cell and vessel branching as reported in 
other studies.35,66–	68	Our	model	can	be	combined	with	these	exist-
ing models of angiogenic signaling and applied in various way to pro-
vide quantitative insight at both molecular and cellular levels.

We acknowledge some limitations in our model. Although many 
studies	reported	that	pERK	and	pAkt	play	important	roles	in	cell	sur-
vival, proliferation, and migration, the upstream species in the net-
work	(e.g.,	pVEGFR2,	pFGFR1,	and	PI3K)	can	activate	other	pathways	
that are not included in this work but may also contribute to relevant 
angiogenic cellular responses.9,69 Also, to ease model construction, 
we	excluded	VEGFR1	and	neuropilin-	1	(NRP1),	although	their	bind-
ing	with	VEGF	contributes	to	angiogenesis.	Moreover,	PDGF	plays	
an important role in maturing the vessels70; however, to focus on 
the	 initiation	 of	 the	 vessels,	we	 only	 explored	 the	 effects	 of	 FGF	
and	VEGF	in	endothelial	sprouting.	We	can	incorporate	the	contri-
butions of these additional species into the model in future studies. 
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In	 addition,	 it	 has	 been	 reported	 that	mechanical	 and	 biophysical	
properties	of	 the	ECM	affect	angiogenesis.71– 73	Excitingly,	 there	 is	
published	computational	work	that	focuses	on	the	effects	of	ECM	
in	angiogenesis.	For	example,	Edgar	et	al.	explored	the	interactions	
between	 ECM	 and	 microvessels	 during	 angiogenesis,74 and they 
then studied the effects of matrix density in sprouting angiogene-
sis.75 Similarly, our model can be expanded to consider the effects 
of	the	ECM.	In	addition	to	endothelial	cells,	other	cell	types,	includ-
ing pericytes,76–	78 fibroblasts,76,79,80 macrophages,81,82 and smooth 
muscle cells,83,84 play an important role in angiogenesis. There are 
computational models that studied the interactions between endo-
thelial cells and pericytes,35,85 fibroblasts,86 macrophages,85,86 and 
smooth muscle cells.87	Our	model	can	be	expanded	to	include	these	
relevant cell types and capture their interactions and further gain 
quantitative insight into the mechanism of the intracellular signaling 
and resulting cellular functions. Also, mechanical forces, including 
tissue stiffness and fluid shear stress, are important in regulating 
angiogenesis as well.6,88	Our	model	can	be	incorporated	with	other	
models	that	studied	the	effects	of	mechanical	forces.	For	example,	
Edgar	et	al.	 investigated	the	effects	of	ECM	stiffness	 in	regulating	
vascular topology,75	 and	Koo	and	 co-	workers	 studied	eNOS	 regu-
lation induced by fluid shear stress89 to gain a more comprehensive 
understanding of angiogenesis process.

We	 also	made	 some	 assumptions	 to	 simplify	 our	model.	 First,	
the molecular interactions usually happen on the order of seconds 
to	minutes.	However,	it	usually	takes	hours	or	even	days	to	respond	
on a cellular level. To bridge the difference in time scale, we assumed 
that the cellular behaviors in short term are driven by the molecular 
signals	within	2	h,	specifically	the	maximum	pERK	and	pAkt	levels.	
Other	 computational	 models	 have	 made	 similar	 assumptions.	 For	
example,	Adlung	et	al.	 correlated	 the	molecular	 signals,	 cyclin	D2,	
cyclin	G2,	p27,	and	pS6,	which	were	characterized	within	60	min,	to	
markers	of	 cell	 proliferation	mCFU-	E,	BaF3-	EpoR,	 and	32D-	EpoR,	
which	were	analyzed	after	14–	20,	62,	 and	38	h,	 respectively.30	 In	
addition, Tong and Yuan assumed cellular responses are only depen-
dent	on	the	fraction	of	FGF-	bound	FGFR,	and	that	ligated	FGFR	and	
the	cellular	response	are	linearly	related,	to	investigate	FGF-	induced	
angiogenic dose responses in rat corneal pocket assay.27 They ana-
lyzed migration distance, total and average vessel length, and total 
number	of	vessels	at	times	from	0	to	120	h,	while	the	time	for	FGF-	
bound	 FGFR	 to	 reach	 90%	of	 steady-	state	 value	was	 reported	 to	
be within 25 min.27	Also,	Padera	et	al.	constructed	a	mathematical	
model	to	study	FGF-	mediated	cellular	response	by	assuming	the	sig-
nal	that	drives	proliferation	of	cultured	cells	from	the	F32	cell	 line	
is only dependent on ligand bound receptor signaling complexes.26 
The	model	was	validated	with	F32	cell	proliferation	data,	which	were	
evaluated by counting the cell number after 72- h incubation.26

Moreover, our main focus is to study the intrinsic properties of 
endothelial	 cells	 responding	 to	 FGF	 and/or	 VEGF	 stimulation.	 Of	
course, the experimental setup in in vitro studies may involve envi-
ronmental factors that influence cell behaviors other than our focus, 
FGF	and	VEGF.	For	example,	to	maintain	sufficient	nutrient	supply,	
cell culture media is typically changed every 3 days, which would 

inevitably induce a change in temperature and air composition, af-
fecting	cellular	behaviors.	In	addition,	cell	proliferation,40,41,90 migra-
tion,32,33,91 and sprouting assays37,43,90 are usually conducted in a 
short period of time following cell culture, typically within 3 days. 
Thus, to reduce the effects of other possible factors, we only stud-
ied short- term cellular behaviors, specifically 3 days, when nutrients 
and space are still sufficient. We assumed the cell intrinsic proper-
ties, specifically the cell proliferation rate, sprout growth rate, and 
probability rate of forming a new sprout, remain constant within 
3 days considering a relatively stable experimental environment. 
Other	 computational	 studies	 have	 also	made	 similar	 assumptions.	
For	 example,	Norton	 and	 Popel	 investigated	 the	 effects	 of	 endo-
thelial proliferation and migration rates on vascular growth by simu-
lating vasculature using various time- independent proliferation and 
migration rates for times up to 200 days.54	 In	 addition,	 Tong	 and	
Yuan	studied	FGF-	induced	angiogenic	dose	responses	in	rat	corneal	
pocket assay for up to 5 days.27

In	 addition,	 we	 assumed	 the	 daughter	 cells	 inherit	 the	 same	
cell proliferation rate, sprout growth rate, and the probability rate 
of forming a new sprout from the mother cells, again considering 
a relatively stable experimental environment within 3 days. Similar 
assumptions	have	also	been	made	by	other	computational	work.	For	
example,	Roy	and	Finley	built	a	multiscale	computational	model	to	
study pancreatic tumor growth with an assumption that the daugh-
ter cell inherits all cell properties and the last intracellular metabolic 
state of the parent cell.92	Letort	et	al.	built	a	multiscale	agent-	based	
model assuming a daughter cell inherits its signaling network state 
from the mother cell, and they applied the model to study the ef-
fects of cell heterogeneity in tumor growth in response to tumor 
necrosis factor treatment.93

Last,	we	assumed	that	the	maximum	pERK	and	pAkt	drive	endo-
thelial	cell	proliferation	and	sprouting	follow	Hill	functions.	There	are	
indeed some computational studies that apply a threshold function 
to decide if a cell is eligible to migrate or proliferate.94,95	However,	
HUVECs	 have	 been	 reported	 to	 respond	 to	 low	 levels	 of	 FGF	 or	
VEGF	stimulation.	For	example,	Bai	et	al.	showed	that	FGF	concen-
tration	as	low	as	0.1	ng/ml	significantly	increased	HUVECs	total	tu-
bular length compared to control on Matrigel for 24 h.31	VEGF	has	
been shown to induce a half- maximal effect on tubule formation on 
Laponite	substrates	at	0.01	μg/ml.96 Also, Wolfe et al. showed that 
the	EC50	value	for	VEGF-	induced	tube	length	response	is	0.67	ng/
ml	for	HUVECs	co-	cultured	with	normal	human	dermal	fibroblasts.97 
In	 addition,	 angiogenic	 cellular	 responses,	 for	 instance	endothelial	
sprouting14,31 and vessel density,98	have	been	shown	to	be	FGF	and	
VEGF	dose	dependent	and	will	reach	a	plateau	if	FGF	or	VEGF	con-
centration is higher than a certain saturation level. Thus, we decided 
not to use a threshold function for angiogenic cellular responses. 
We	instead	applied	a	Hill	function	to	account	for	the	observed	an-
giogenic cellular responses, even for low growth factor concentra-
tions. We can expand the model as more mechanistic information 
becomes	 available.	 Despite	 these	 limitations,	 our	 model	 provides	
quantitative insight into angiogenic signaling and cellular responses 
and can be utilized as a framework for future mechanistic studies.
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4.1  |  Perspectives

In	conclusion,	we	developed	a	mathematical	model	to	characterize	
endothelial	sprouting	driven	by	pERK	and	pAkt	 in	response	to	the	
stimulation	of	two	main	pro-	angiogenic	factors,	FGF	and	VEGF.	The	
model	 quantitatively	 studied	FGF-		 and	VEGF-	mediated	 cell	 prolif-
eration, sprout growth, and formation of new sprouts and provided 
mechanistic insight into endothelial sprouting. The understanding of 
the regulation of angiogenesis signals on a molecular scale, and fur-
ther on a cellular level, can better aid the development of pro-  and 
anti- angiogenic strategies.
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