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1  |  INTRODUC TION

Angiogenesis, the formation of new blood capillaries from pre-
existing blood vessels, plays an important role in the survival of 

tissues, as the vessels carry blood throughout the body to provide 
oxygen and nutrients required by the resident cells.1,2 Thus, re-
searchers have been putting effort toward targeting angiogenesis 
as a strategy in many contexts, including in both tissue engineering 
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Abstract
Objective: We aim to quantitatively characterize the crosstalk between VEGF- and 
FGF-mediated angiogenic signaling and endothelial sprouting, to gain mechanistic in-
sights and identify novel therapeutic strategies.
Methods: We constructed an experimentally validated hybrid agent-based math-
ematical model that characterizes endothelial sprouting driven by FGF- and VEGF-
mediated signaling. We predicted the total sprout length, number of sprouts, and 
average length by the mono- and co-stimulation of FGF and VEGF.
Results: The experimentally fitted and validated model predicts that FGF induces 
stronger angiogenic responses in the long-term compared with VEGF stimulation. 
Also, FGF plays a dominant role in the combination effects in endothelial sprouting. 
Moreover, the model suggests that ERK and Akt pathways and cellular responses con-
tribute differently to the sprouting process. Last, the model predicts that the strate-
gies to modulate endothelial sprouting are context-dependent, and our model can 
identify potential effective pro- and anti-angiogenic targets under different condi-
tions and study their efficacy.
Conclusions: The model provides detailed mechanistic insight into VEGF and FGF 
interactions in sprouting angiogenesis. More broadly, this model can be utilized to 
identify targets that influence angiogenic signaling leading to endothelial sprouting 
and to study the effects of pro- and anti-angiogenic therapies.
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and cancer treatment.1,2 Specifically, one challenge for the success 
of synthetic tissues is to ensure sufficient transport of nutrients and 
gases such as oxygen to the cells. Thus, stimulating new blood vessel 
formation is an important strategy for the long-term viability of engi-
neered tissue constructs.3 On the other hand, inhibiting angiogene-
sis is an important strategy for cancer treatment, as tumors grow by 
obtaining nutrients and oxygen from the blood delivered by vessels, 
and tumor metastasis is facilitated by the blood circulation.1,4,5

The process of blood vessel formation, particularly for capillar-
ies, is largely initiated and mediated by endothelial cells responding 
to the local physiological conditions.6 Many different pro-angiogenic 
growth factors, such as fibroblast growth factor (FGF), vascular en-
dothelial growth factor (VEGF), and platelet-derived growth factor 
(PDGF), regulate angiogenesis.7,8 These factors promote different 
cellular processes involving endothelial cell survival, proliferation, 
migration, and vessel maturation leading to new blood vessel for-
mation.9,10 Strategies to promote or inhibit angiogenesis focus on 
modulating the effects of these factors to alter the cellular-level 
processes they induce, with a focus on endothelial cells.

However, not all approaches to promote or inhibit angiogenesis 
lead to successful outcomes. For example, clinical trials have shown 
no effective improvement in FGF-11 or VEGF-induced12 angiogen-
esis. Also, bevacizumab, an anti-VEGF agent, has limited effect in 
certain cancer types, and it is no longer approved for the treatment 
of metastatic breast cancer due to its disappointing results.13 Thus, 
there is a need to better understand the mechanism of angiogene-
sis, specifically the molecular interactions and signaling required for 
new blood vessel formation and how they affect cellular behaviors, 
in order to establish more effective therapeutic strategies.

In addition, there is crosstalk between intracellular signal-
ing pathways. The overall response in endothelial angiogenesis 
is dependent on the integrated signals activated by these growth 
factor-mediated pathways to influence cellular decisions, such as 
proliferation, survival, and migration, and further promote or inhibit 
vessel formation. However, the integrated effects of more than one 
factor on intracellular signaling reactions at a detailed level have not 
been studied in great detail. In pro-angiogenic strategies, some syn-
ergistic effects between FGF and VEGF in endothelial angiogenic 
activities have been shown.14–16 However, the mechanism of how 
they act together quantitatively on regulating molecular and cellular 
behaviors is still not clear. Also, in the case of inhibiting angiogenesis, 
tumors often evade the effects of drugs that target a single factor 
by making use of alternate compensatory pathways to activate sig-
naling species needed for proliferation and migration. For instance, 
FGFR activation may play a role in the resistance mechanism of anti-
angiogenic drugs, especially anti-VEGF treatment.17,18 Additionally, 
experiments show high levels of FGFR1 in tumors that continue to 
progress, even during anti-VEGF therapy.19 Thus, it is necessary to 
better mechanistically understand the effects of multiple angiogenic 
factors and their crosstalk in activating angiogenic signaling and fur-
ther cellular responses.

In this study, we are interested in the angiogenic signals required 
to initiate vessel growth. Therefore, we focused on the molecular 

signaling and further cellular responses in the process of endothelial 
sprouting. We consider sprouting promoted by FGF and VEGF, as 
they are particularly important in early stages of angiogenesis.20–22 
We are particularly interested in signaling crosstalk between these 
factors required to initiate vessel growth. FGF and VEGF bind to 
their receptors and initiate signaling through the mitogen-activated 
protein kinase (MAPK) and phosphatidylinositol 3-kinase/protein 
kinase B (PI3K/Akt) pathways to phosphorylate extracellular regu-
lated kinase (ERK) and Akt, respectively. ERK and Akt are import-
ant signaling species in the angiogenesis process that influence cell 
proliferation, survival, and migration. Thus, we aim to quantitatively 
investigate the combination effects of two major pro-angiogenic 
factors, FGF and VEGF, on activating MAPK and PI3K/Akt signaling 
(at the molecular level) and further promoting endothelial sprouting 
(at the cellular level) in endothelial cells.

Given the complexity of biochemical reactions comprising an-
giogenesis signaling networks, a better quantitative understand-
ing of the dynamics of these networks is beneficial for current 
angiogenesis-based strategies. Computational modeling serves as a 
powerful tool to investigate molecular and cellular responses sys-
tematically. There are many published models that predict molecu-
lar23–25 and cellular26,27 responses mediated by angiogenic factors. 
However, such models are mostly designed to predict responses 
upon single agent stimulation. Targeting more than one growth 
factor and exploring their effects in intracellular signaling and cel-
lular responses in detail deserves more attention. In addition, many 
models that focus on specific cellular behaviors significantly reduced 
the intracellular signaling network such that the output signal is sim-
ply linearly proportional to the fraction of bound receptors.26–28 
Therefore, we constructed a hybrid agent-based model to charac-
terize the intracellular signaling interactions of FGF and VEGF and 
utilized downstream signals (maximum pERK and pAkt) as inputs to 
describe angiogenic cellular responses in the process of endothe-
lial spheroid sprouting. Overall, we predict the contributions of: (1) 
cellular processes including cell proliferation, sprout growth, and 
the chance of forming a sprout; (2) mono- and co-stimulation of an-
giogenic factors FGF and VEGF; and (3) underlying molecular sig-
nals (pERK and pAkt) that modulate endothelial sprouting. Thus, we 
generate novel cellular- and molecular-level insights related to cell 
sprouting. In particular, we describe total sprout total length (TL), 
number of sprouts (NS), and average length (AL), which are the well-
studied metrics in in vitro studies, by the mono- and co-stimulation 
of FGF and VEGF. The model predicts that the type and concentra-
tion of ligand, length of growth factor stimulation, and initial number 
of cells are important in endothelial sprouting, and FGF is a dominant 
factor driving the combination effects of FGF and VEGF in endothe-
lial sprouting. Also, the model suggests that proliferation of endo-
thelial cells and the growth of existing sprouts are more important in 
the sprouting process compared to the effect of the chance of form-
ing a new sprout. In addition, the MAPK and PI3K/Akt pathways 
regulate the vessel network in different ways. Specifically, the ERK 
pathway regulates vessel network mainly via regulating cell prolifer-
ation and NS, while the Akt pathway mainly affects vessel network 



    |  3 of 20SONG and FINLEY

via regulating sprout growth. Moreover, the strategies to modulate 
endothelial sprouting are context-dependent, and our model can 
identify potential effective pro- and anti-angiogenic targets under 
different conditions and study their efficacy.

2  |  MATERIAL S AND METHODS

2.1  |  Model construction

We constructed a hybrid agent-based model (Figure 1) that describes 
cellular responses, including cell proliferation, sprout growth, and 
the formation of new sprouts. We note that agents are probabilistic 
discrete cellular responses; however, we do not include spatial ef-
fects. These cellular responses are driven by molecular signals, pERK 
and pAkt, upon the mono-  and co-stimulation of FGF and VEGF. 
The molecularly detailed biochemical reaction network that char-
acterizes the MAPK and PI3K/Akt pathways induced by FGF and 
VEGF is adapted from our previous work,29 which is referred to as 
the ERK-Akt model in this study. In the ERK-Akt model, FGF binding 
to FGFR1 and HSGAG activates FRS2 and then initiates PI3K/Akt 
and MAPK pathways, and VEGF binding to its receptor, VEGFR2, 
phosphorylates VEGFR2 and activates PI3K directly. In addition, ac-
tivated Raf triggers MAPK pathway upon the stimulation by VEGF. 
This network is implemented as an ordinary differential equation 

(ODE) model using MATLAB. The main model includes 97 reactions, 
99 species and 100 parameters (see detail in29).

To link the molecular signals (pERK and pAkt) produced by the 
angiogenic factors (FGF and VEGF) with the short-term cellular 
responses, we made four assumptions: (1) The endothelial cell 
responses (cell proliferation, sprout growth, and probability of 
sprouting) are dependent on the maximum pAkt and pERK levels 
upon the stimulation of FGF and VEGF within 2 h; (2) the intrinsic 
properties of endothelial cells to grow and form sprouts are stable 
within 3 days of simulated cell culture, which leads to a constant av-
erage cell proliferation rate, sprout growth rate, and the probability 
of forming a new sprout within 3  days (described in subsequent 
sections below in detail); (3) daughter cells inherit all the proper-
ties from mother cells, specifically the cell proliferation rate, sprout 
growth rate, and probability of sprouting; and (4) the maximum 
pERK and pAkt drive endothelial cell proliferation and sprouting 
following Hill functions:

where S refers to either pERK or pAkt, [S] is their maximal concen-
tration, Km is the substrate concentration where the proliferation or 
sprouting rate is half of its maximum value, Vmax, and n is the Hill 
coefficient.

f (S) =
Vmax

1 +

(

Km

[S]

)n

F I G U R E  1 Endothelial spheroid sprouting process. (A) Activated endothelial cells become tip cells and start to migrate and the stalk cells 
behind tip cells are proliferative. Finally, the endothelial cells sprout into linear cord-like structures. (B) The sprouting process involves tip cell 
migration, stalk cell proliferation, and elongation. (C) Growth factors, FGF and VEGF, binding to their receptors initiate intracellular signaling 
and regulate cellular responses in all endothelial cells 
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2.1.1  | Module of endothelial cell proliferation

The endothelial cell proliferation module is a hybrid agent-based 
model that simulates each endothelial cell as one agent that has its 
own cell proliferation rate and divides based on its own cell doubling 
time. The pERK and pAkt levels were used to inform the rate of cell 
proliferation, as has been done in other computational work.30 The 
total number of endothelial cells was quantified to account for cell 
proliferation, which is a net result of survival and proliferation of 
endothelial cells in response to FGF and/or VEGF stimulation. The 
ERK-Akt model predicts the dynamics of the molecular signals pAkt 
and pERK within 2 h upon ligand stimulation, which are the inputs to 
calculate the rate of cell proliferation.

Based on the assumptions above, the average cell proliferation 
rate (rcp) is given by

where rcp_basal is the basal cell proliferation rate when no stimuli are ap-
plied, which is not affected by pERK or pAkt levels, kcp_pERK and kcp_pAkt 
are the cell proliferation rate constants, Vmax_pERK_cp and Vmax_pAkt_cp 
are the maximum rates of cell proliferation driven by maximum pERK 
and pAkt, respectively. For simplification, we use VpERK_cp and VpAkt_cp 
to represent kcp × Vmax_pERK_cp and kcp × Vmax_pAkt_cp, respectively. [max 
(pERK)] and [max (pAkt)] are maximum pERK and pAkt levels within 2 h 
upon the ligand simulation, respectively. KmpERK_cp and KmpAkt_cp are 
the maximum pERK and pAkt levels that produce the half maximal of 
the cell proliferation rates, respectively. ncp is the Hill coefficient for 
the cell proliferation rate.

The average cell proliferation rate (rcp) indicates that the aver-
age doubling time for endothelial cells is 1/rcp. To account for the 
cell heterogeneity within a cell population, we assigned a cell pro-
liferation rate chosen from a normal distribution with a mean (μ) of 
the calculated average cell proliferation rate and a standard devia-
tion (σ) to capture 99.7% of the possible values given the range of 
μ ± 25%μ (i.e., μ ± 3σ) for each cell. The baseline values are provided 
in Table S1 and supplementary materials.

The total cell number at a particular time T, Ntot (T), is given by

where cell i from an initial cell population that consists of Nint of 
HUVECs has a cell proliferation rate of rcp_i, T is cell culture time, floor 
(T × rcp_i) rounds (T × rcp_i) to the nearest integer less than or equal to 
(T × rcp_i).

Note that the mean cell proliferation from experimental 
data is usually calculated for several replicates. To compare with 

experimental data, we calculated the average total cell number for 
ten simulations per condition.

2.1.2  | Model of endothelial cell sprouting

Model overview
The endothelial cell sprouting model is also a hybrid agent-based 
model that simulates each endothelial cell as one agent that has its 
own properties and makes its own cellular decisions. The model uti-
lizes a probabilistic approach to model sprouting. The general flow of 
the model is shown in Figure 2.

First, the model checks each cell to see whether it is a tip cell 
(i.e., if it is a leading cell in a trail of cells) and if so, the cell migrates, 
leading to sprout elongation with an assigned sprout growth rate. 
Overall, sprout elongation is due to cell proliferation, migration, and 
stretching. If the cell is not a tip cell, it has a chance to become a tip 
cell based on a certain probability: the model generates a random 
number, and if the random number is greater than the given proba-
bility threshold, then this cell becomes a tip cell and starts migrating 
instead of proliferating. If the random number is not greater than the 
threshold for the probability of becoming a tip cell, the model then 
checks whether at this time, the cell is ready to proliferate based 
on whether the simulated time has reached the assigned cell dou-
bling time. The cell's doubling time is defined by the inverse of its 
cell proliferation rate (refer to above section on the cell proliferation 
module). If the check is yes, the cell divides to generate a daughter 
cell that is assumed to inherit all the properties from the mother cell. 
If the elapsed simulation time is not enough for the cell to proliferate, 
it remains quiescent. The model repeats this process at the next time 
point until the end of the simulation. We update results every hour, 
which corresponds to the time scale over which cellular responses 
are usually studied in vitro.31–33 This model is implemented using 
MATLAB, and model details are provided in the supplementary ma-
terials. Because we only focus on the number of sprouts and sprout 
lengths, which are well-studied metrics in in vitro sprouting assays, 
we do not consider spatial effects for extracellular protein concen-
trations, cells, or sprouting directions in this study.

Initial state
The model is initialized with a specific number of endothelial cells 
(Nint) in a spheroid. Each of the initial cells are assigned a cell pro-
liferation rate (refer to above section on the cell proliferation mod-
ule), sprout growth rate, and a probability of forming a new sprout. 
The average values of the sprout growth rate and probability of 
forming a new sprout for a population of the endothelial cells are 
calculated (described in subsequent sections below in detail). The 
sprout growth rate and a probability of forming a new sprout for 
each cell were chosen from normal distributions, where the mean 
and standard deviation for each is based on the calculated values 
for the population. The mean (μ) is taken as the calculated average 
probability of forming a new sprout and average sprout growth rate, 
and a standard deviation (σ) is set to capture 99.7% of the possible 

rcp= rcp_basal+ rcp_pERK + rcp_pAkt

= rcp_basal+kcp_pERK × fcp (max (pERK)) +kcp_pAkt × fcp (max (pAkt))

= rcp_basal+kcp_pERK ×
Vmax_pERK_cp

1+

(

KmpERK_cp

[max(pERK)]

)ncp
+kcp_pAkt ×

Vmax_pAkt_cp

1+

(

KmpAkt_cp

[max(pAkt)]

)ncp

= rcp_basal+
VpERK_cp

1+

(

KmpERK_cp

[max(pERK)]

)ncp
+

VpAkt_cp

1+

(

KmpAkt_cp

[max(pAkt)]

)ncp

Ntot (T) =

Nint
∑

i=1

2floor(T×rcp_i )
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values given the range of μ ± 100%μ and μ ± 25%μ (i.e., μ ± 3σ) for 
each cell, respectively.

During the first iteration, each of the initial cells is assigned a 
cell proliferation rate, a sprout growth rate, and a probability to be-
come a tip cell, and then all decisions follow the flowchart shown 
in Figure 2. Each cell can only become a tip cell once, and it stops 
proliferating if it becomes a tip cell.

Sprouting
Endothelial sprouting is dependent on cell proliferation, migration, 
and elongation. To quantify endothelial sprouting, we consider 
the formation of a new sprout and the growth of existing sprouts, 
which are determined by the probability of forming a new sprout (p) 
and sprout growth rate (rsg), respectively. We note that the sprout 
growth rate here is the net rate of sprout elongation caused by cell 
proliferation, migration and elongation.

Based on the assumptions made above, the average probability 
of forming a new sprout p from a cell during a 1-h period, ∆t, is:

where pbasal is the basal probability rate of forming a new sprout 
when no stimuli are applied, which is not affected by pERK or 
pAkt levels, kp_pERK and kp_pAkt are the probability constants, and 
Vmax_pERK_p and Vmax_pAkt_p are the maximum probability rates of 
sprout formation driven by maximum pERK and pAkt in an hour, re-
spectively. For simplification, we use VpERK_p and VpAkt_p to represent 

kp_pERK  ×  Vmax_pERK_p and kp_pAkt  ×  Vmax_pAkt_p respectively. KmpERK_p 
and KmpAkt_p are the maximum pERK and pAkt levels that produce 
the half maximal of the probability rates of forming a new sprout, 
respectively. np is the Hill coefficient for the probability rate of form-
ing a new sprout. The baseline values are provided in Table S1 and 
supplementary materials.

The average sprout growth rate (rsg) is

where rsg_basal is the basal sprout growth rate when no stimuli are ap-
plied, which is not affected by pERK or pAkt levels; ksg_pERK and ksg_pAkt 
are the sprout growth rate constants; and Vmax_pERK_sg and Vmax_pAkt_sg 
are the maximum rates of sprout length increase driven by maximum 
pERK and pAkt, respectively. For simplification, we use VpERK_sg and 
VpAkt_sg to represent ksg_pERK × Vmax_pERK_sg and ksg_Akt × Vmax_pAkt_sg, re-
spectively. KmpERK_sg and KmpAkt_sg are the maximum pERK and pAkt 
levels that produce the half maximal of the sprout growth rates, re-
spectively. nsg is the Hill coefficient for the sprout growth rate. Note 
that the sprout growth is a net result of sprout formation, growth, 
degradation, and anastomosis. The baseline values are provided in 
Table S1 and supplementary materials.

Next, we used these three parameters (rcp, p, and rsg) to char-
acterize endothelial cell sprouting: number of sprouts (NS), total 
sprout length (TL), and average sprout length (AL) in a certain pe-
riod of time. The number of sprouts is determined by counting the 
number of tip cells predicted by the model. The total sprout length 

p=pbasal+ppERK+ppAkt

=pbasal+kp_pERK × fp (max (pERK)) +kp_pAkt × fp (max (pAkt))

=pbasal+kp_pERK ×
Vmax_pERK_p

1+

(

KmpERK_p

[max(pERK)]

)np
+kp_pAkt ×

Vmax_pAkt_p

1+

(

KmpAkt_p

[max(pAkt)]

)np

=pbasal+
VpERK_p

1+

(

KmpERK_p

[max(pERK)]

)np
+

VpAkt_p

1+

(

KmpAkt_p

[max(pAkt)]

)np

rsg= rsg_basal+ rsg_pERK + rsg_pAkt

= rsg_basal+ksg_pERK × fsg (max (pERK)) +ksg_pAkt × fsg (max (pAkt))

= rsg_basal+ksg_pERK ×
Vmax_pERK_sg

1+

(

KmpERK_sg

[max(pERK)]

)nsg
+ksg_pAkt ×

Vmax_pAkt_sg

1+

(

KmpAkt_sg

[max(pAkt)]

)nsg

= rsg_basal+
VpERK_sg

1+

(

KmpERK_sg

[max(pERK)]

)nsg
+

VpAkt_sg

1+

(

KmpAkt_sg

[max(pAkt)]

)nsg

F I G U R E  2 Flowchart of the endothelial sprouting agent-based model. The model simulates each endothelial cell as one agent that has its 
own properties and makes its own cellular decisions in every time step 
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is the summation of all sprout lengths. The average sprout length 
is calculated as the total sprout length divided by the number of 
sprouts.

Constraint on probability of forming a sprout

It has been reported that tip cells activate Notch signaling and pre-
vent neighboring cells from becoming a tip cell.34–36 Thus, we ap-
plied a constraint in our model to account for the effects of lateral 
inhibition. We adapted a rate constant Pmax (5 × 10−4 μm−1 h−1), which 
determines the maximum probability of sprout formation per unit 
time and vessel length in a rat corneal assay.27 To match HUVEC 
data,37,38 we adjusted the Pmax to 10−3 μm−1 h−1. Thus, Pmax is used to 
limit the maximum number of sprouts at every time step.

Model outputs

In vitro spheroid assays are usually three dimensional; however, the 
TL, NS, and AL from experimental data are usually obtained by quan-
tifying the sprouts from a two-dimensional image of a focal plane. 
In order to make comparisons to experimental data, we calculated 
the TL, NS, and AL on a focal plane by assuming the sprouts are 
uniformly distributed on a spheroid since our model does not con-
sider spatial effects. Thus, the TL and NS are scaled to the ratio of 
the number of cells on the focal plane and the total number of cells. 
Also, the mean values of TL, NS, and AL from experimental data are 
usually calculated for several randomly selected spheroids per ex-
perimental group. To compare with experimental data, we calculated 
the average TL, NS, and AL on a focal plane for ten simulations per 
condition.

2.2  |  Sensitivity analysis

Before fitting the model to experimental data, we first performed a 
sensitivity analysis to identify the parameters that significantly in-
fluence the model outputs, using the extended Fourier Amplitude 
Sensitivity Test (eFAST)39 method. Since the initial concentrations 
and parameters involved in the ERK-Akt model are adapted from 
previous work,29 we used the median fitted values and held them 
constant during the sensitivity analysis. All remaining model param-
eters were varied simultaneously within two orders of magnitude 
above and below the baseline values, where the baseline values are 
provided in Table S1. In this way, the effects of multiple model in-
puts on rcp, rcp_pERK, and rcp_pAkt in the cell proliferation module and 
rsg, rsg_pERK, rsg_pAkt, p, ppERK and ppAkt in the sprouting model were 
computed. Specifically, the eFAST method gives the total sensitivity 
indices, “Sti,” which can range from 0 to 1, where a higher Sti index 
indicates the input is more influential to the output. We calculated 
the Sti values using eFAST for all the same ligand concentrations as 
the experimental data that were used for model training. The highest 

Sti value (Stimax) across all of the concentrations was selected to rep-
resent the sensitivity index for each parameter.

We also performed eFAST for the trained and validated model 
to identify potential targets for pro- and anti-angiogenic strategies. 
All parameters and initial concentrations in the ERK-Akt model were 
varied simultaneously within two orders of magnitude above and 
below the baseline values. The fitted variables were held constant 
at the median values estimated from model fitting. We calculated 
the Sti values to quantify how all the variables affected rates of cell 
proliferation, sprout growth, and the probability of forming a new 
sprout. Based on the effects in influencing TL, low, intermediate, 
and high levels of FGF and VEGF (Table 1) were selected as repre-
sentative ligand concentrations. We calculated the Sti values using 
eFAST for the nine possible combinations of low, intermediate, and 
high levels of FGF and VEGF stimulation. Again, the Stimax across all 
the combinations were compared for all the variables.

2.3  |  Data extraction

Data from published experimental studies37,38,40,41 were used for 
parameter fitting and model validation. Experimental data from 
plots were extracted using the grabit function in MATLAB.

2.4  |  Parameterization

2.4.1  |  Cell proliferation module

Fitting
The initial concentrations and parameters involved in the ERK-Akt 
model are adapted from previous work.29 Five influential variables 
with Sti values greater than 0.5 were identified by performing 
eFAST in the cell proliferation module (Figure S1A). They were es-
timated against experimental measurements using Particle Swarm 
Optimization (PSO)42 to minimize the objective function (the differ-
ence between model predictions and experimental data). PSO starts 
with a population of initial particles (parameter sets). As the particles 
move around (i.e., as the algorithm explores the parameter space), 
an objective function is evaluated at each particle location. Particles 
communicate with one another to determine which has the lowest 
objective function value. The objective function for each parame-
ter set was used to identify optimal parameter values. Specifically, 
we used PSO to minimize the weighted sum of squared residuals 
(WSSR):

TA B L E  1 Representative low, intermediate, high levels of FGF 
and VEGF

Low (ng/ml)
Intermediate 
(ng/ml) High (ng/ml)

FGF 0.03 0.1 10

VEGF 0.1 4 25
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where Vexp,i is the ith experimental measurement, Vpred,i is the ith pre-
dicted value at the corresponding time point, and n is the total number 
of experimental data points. The minimization is subject to θ, the set of 
upper and lower bounds on each of the free parameters. The bounds 
were set to be two orders of magnitude above and below the baseline 
parameter values, which are listed in Table S1.

The cell proliferation module was fitted 200 times using two 
datasets: the relative proliferation of HUVECs stimulated by 
0.03–1  ng/ml FGF40 and 0.1–1  ng/ml VEGF41 for 48  h, compared 
with the reference FGF and VEGF concentration points of 1 ng/ml, 
respectively (Figure 3A,B). Note that the simulated initial number of 
cells are the same as experimental data: West et al.40 and Jih et al.41 
cultured 104 cells and 5000 cells initially, respectively. The relative 
change of the HUVEC proliferation was calculated as following:

where proliferation(c) is the HUVEC proliferation in response to ligand 
concentration c, and proliferation(cref) is the HUVEC proliferation at a 
reference concentration point cref.

Validation
We then validated the model with three datasets not used in the 
fitting. We predicted results for 1–30 ng/ml FGF- and 1–10 ng/ml 
VEGF-induced HUVEC relative proliferation on Day 2 (using the ref-
erence ligand concentration points of 1 ng/ml) and compared with 
experimental data, specifically the relative proliferation of HUVECs 
stimulated by 1–30 ng/ml FGF,40 0.5–10 ng/ml FGF,41 and 1–10 ng/
ml VEGF41 for 48 h.

For all three datasets,40,41 we simulated the experimental con-
ditions without any additional model fitting and compared to the 
experimental measurements. A total of 21 parameter sets with the 
smallest errors were taken to be the “best” sets based on the model 
fitting and validation (Figure 3A,B and S2A and Table S2), and the 
median values were used for the sprouting model.

2.4.2  |  Sprouting model

Seven influential variables with Sti values greater than 0.75 were 
identified by performing eFAST in the sprouting model (Figure S1B). 
Due to the lack of experimental data, we first estimated all the un-
known parameters 500 times by fitting the model to experimental 
observations: 0–64  ng/ml VEGF-induced total sprout length for 
24 h cultured with a 500-cell spheroid initially.37 After model train-
ing, we validated the model with another dataset not used in the fit-
ting. Specifically, we used the fold change of the average length and 
number of sprouts induced by 25 ng/ml FGF and 25 ng/ml VEGF for 

24 h cultured with a 400-cell spheroid initially compared to the con-
trol38 for validation. We simulated the experimental conditions with-
out any additional model fitting and compared to the experimental 
measurements. A total of 15 parameter sets with the smallest er-
rors were taken to be the “best” sets based on the model fitting and 
validation (Figures S2B and S3 and Table S3). The non-influential pa-
rameters were held constant at the median of the fitted values, and 
the seven influential variables were estimated using PSO 300 times 
using data from Heiss et al. (0–64 ng/ml VEGF-induced total sprout 
length).37 We again compared model predictions to the Liebler et al. 
data38 without any additional model fitting. A total of 18 param-
eter sets with the smallest errors were taken to be the “best” sets 
based on the model fitting and validation (Figure 3C,D and S2C and 
Table S4) and were used for all model simulations presented below.

2.5  |  Model availability

The MATLAB files with all model equations and scripts for simulat-
ing the model are available at: https://github.com/Finle​yLabU​SC/
Endot​helia​l-cell-sprou​ting-model.

3  |  RESULTS

3.1  |  The fitted hybrid agent-based model captures 
the main features of FGF- and VEGF-induced 
endothelial sprouting characteristics

We developed a hybrid agent-based mathematical model that de-
scribes angiogenic cellular responses in the process of endothelial 
sprouting driven by integrating molecular signals, pERK and pAkt, 
upon the mono- and co-stimulation of FGF and VEGF (Figure 1). The 
model focuses on the endothelial proliferation, new sprout forma-
tion, and sprout growth, which are assumed to be dependent on the 
maximum pERK and pAkt levels. The model parameter values are 
given in Tables S1–S4. The molecular-detailed biochemical reaction 
network that characterizes the MAPK and PI3K/Akt pathways in-
duced by FGF and VEGF is adapted from our previous work,29 and 
the parameters and initial concentrations are taken from the median 
of the fitted values.29 The newly introduced parameters were esti-
mated by fitting the model to experimental data, as described below.

3.1.1  |  Cell proliferation module

To identify the influential parameters to the model outputs, rcp, 
rcp_pERK, and rcp_pAkt, we performed the eFAST

39 (see Methods for 
more details) and analyzed the maximal Sti (Stimax) value for the 
newly introduced parameters (Figure  S1A). All five parameters 
(Table S2) were identified as influential and were estimated by fit-
ting the model to experimental measurements40,41 using PSO42 (see 
Methods for more details).

WSSR (�) = min

n
∑

i=1

(

Vpred,i (�) −Vexp,i

Vexp,i

)2

relativeproliferation (c) =
proliferation (c) − proliferation(cref)

proliferation(cref)

https://github.com/FinleyLabUSC/Endothelial-cell-sprouting-model
https://github.com/FinleyLabUSC/Endothelial-cell-sprouting-model
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The fitted model shows a good agreement with experimental 
results (Figure  3A,B). It quantitatively captures the main features 
of FGF-  and VEGF-induced endothelial cell proliferation from ex-
perimental observations.40,41 In addition to matching data used for 
fitting, model predictions were compared to experimental data not 
used in the model fitting40,41 to validate the model (Figure  3A,B). 
Although the model slightly underestimates the relative prolifera-
tion at low VEGF concentration (Figure 3B), the simulated results are 
consistent with experimental observations and can capture the pla-
teau behavior at high FGF and VEGF concentrations (Figure 3A,B). 

The weighted errors for 21 best fits are all approximately 4.1 
(Table S2). Also, the estimated values of the fitted variables show 
good consistency (Figure S2A), and the median values were used for 
the sprouting model.

3.1.2  |  Sprouting model

We again identified seven variables that are influential to rsg, rsg_pERK, 
and rsg_pAkt, p, p_pERK, and p_pAkt with Sti values greater than 0.75 in 

F I G U R E  3 Model comparison to training and validation data for FGF or VEGF stimulation. (A) Relative change of endothelial cell 
proliferation for 104 cells cultured for 48 h in response to 0.01–30 ng/ml FGF stimulation compared with the reference FGF concentration 
of 1 ng/ml. (B) Relative change of endothelial cell proliferation for 5000 cells cultured for 48 h by the stimulation of 0.1–10 ng/ml VEGF, 
compared with the reference VEGF concentration of 1 ng/ml. (C) Total sprout length induced by 0–64 ng/ml VEGF for 24 h cultured with 
500-cell spheroid initially. (D) The fold change of the average length and number of sprouts induced by 25 ng/ml FGF and 25 ng/ml VEGF 
for 24 h cultured with 400-cell spheroid initially compared to the control. Circles, squares, and diamonds in Panels A–C are experimental 
data.37,38,40,41 Circles in Panel A, squares in Panels A and B, and diamonds in Panel C are experimental data from West et al.,40 Jih et al.,41 
and Heiss et al.,37 respectively. The light yellow circles and light blue squares in Panels A, B are experimental data used for model fitting. 
The orange circles and squares and dark blue squares are experimental data used for model validation. Curves in Panels A, B and C are 
the mean model predictions of the 21 and 18 best fits, respectively. Shaded regions show standard deviation of the fits. Solid and dashed 
bars in Panel D are mean ± standard deviation of Liebler et al. data38 and model predictions, respectively 
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the sprouting model using eFAST (Figure S1B). Due to the lack of 
experimental data, we first estimated all the unknown parameters 
by fitting the model to experimental observations showing VEGF-
induced total sprout length.37 We selected 15 “best” fits that 
showed good match to experimental observations38 (Figure S3). The 
non-influential parameters were then set at the median of fitted val-
ues (Figures S1B and S2B) and the influential parameters were esti-
mated 300 times, from which 18 “best” fits were selected (Figure 3C 
and S2C). The fitting results can capture the main features of VEGF-
induced endothelial total length for 24  h (Figure  3C). We again 
compared model predictions to independent experimental data38 
without any additional model fitting. It showed good agreement 
with the fold change of the average length and number of sprouts 
induced by 25 ng/ml FGF and 25 ng/ml VEGF for 24 h compared 
with the control (Figure 3D). The weighted errors for 18 best fits 
are 0.001–0.013 (Table S4). Also, the estimated values of the fitted 
variables show good consistency (Figure S2C). The ability to predict 
experimental data not used for estimating the model parameters 
suggests the model is reliable to make new predictions.

3.2  |  The type and concentration of ligand, 
length of growth factor stimulation, and initial 
number of cells impact endothelial sprouting

3.2.1  | Mono-stimulation

We first compared the effects of four inputs: type of ligand (FGF 
and VEGF), concentration of the ligand (low, intermediate, and high) 
(Table 1), length of growth factor stimulation (1–3 days), and initial 
number of cells (250, 500, and 750 cells) on sprouting characteristics 
(TL, NS, and AL) (Figure 4). Note that AL equals TL/NS, providing 
the relative change in TL compared to NS. A higher AL suggests that 
the TL is due to the growth of existing sprouts, whereas a lower AL 
indicates that the formation of new sprouts plays a more important 
role in TL. Also, we take low, intermediate, and high levels of FGF 
and VEGF based on their effects in inducing TL as representative 
concentrations to study the effects of ligand concentration. Note 
that for the high levels of FGF and VEGF, the total sprout length is 
at a plateau level.

Type of ligand (FGF and VEGF)
Generally, FGF induces greater sprouting responses than VEGF in 
terms of TL (Figure 4A,B) and NS (Figure 4C,D) at the same concen-
trations. On Day 1, FGF shows slightly higher sprouting responses 
compared to VEGF, and the differences between FGF- and VEGF-
induced TL (Figure 4A,B) and NS (Figure 4C,D) increase with time. 
This indicates that FGF-induced TL and NS increase faster than 
VEGF-induced TL and NS, which results in greater sprouting re-
sponses induced by FGF in the long-term, compared to VEGF. In ad-
dition, FGF-induced AL is higher than VEGF for all concentrations 
on Day 1 (Figure 4E,F). On days 2 and 3, FGF showed higher effects 
in AL at low to intermediate concentrations (Figure 4E), while VEGF 

showed higher effects in AL at a high concentration (Figure  4F). 
While increasing FGF and VEGF concentration both lead to greater 
NS and TL, a higher FGF concentration causes a greater increase in 
NS compared to TL, which causes a lower AL (Figure 4A, C, and E). 
The opposite is true for VEGF, where a higher concentration causes 
a greater increase in TL compared to NS, producing a higher AL 
(Figure 4B, D, and F). Thus, increasing concentrations of FGF and 
VEGF affect the average length of sprouts in different ways.

Concentration of the ligands (low, intermediate, and high)
FGF-  and VEGF-induced TL, NS, and AL are dose-dependent 
(Figure  4). Specifically, FGF-  and VEGF-induced TL (Figure  4A,B) 
and NS (Figure  4C,D) increase with increasing FGF or VEGF con-
centration. Also, VEGF-induced AL on Day 1 increases with the in-
crease in VEGF concentration (Figure 4F). Moreover, FGF-induced 
AL has a biphasic dose response over all 3 days of stimulation, and 
VEGF-induced AL shows a biphasic dose response for days 2–3, 
respectively (Figure 4E,F). The dose response of the AL for FGF is 
U-shaped (Figure 4E), while the dose response for VEGF is an in-
verted U (Figure 4F). This is caused by the difference in the relative 
change in TL compared with NS induced by different FGF and VEGF 
concentrations. As explained above, at high FGF concentrations, the 
increase in TL is contributed most by the increase in the formation of 
new sprouts rather than the growth of existing sprouts, while VEGF 
showed opposite effects.

Length of growth factor stimulation (1–3 days)
TL, NS, and AL increase with the increase in length of cell stimu-
lation (Figure 4). Note that since we are studying responses within 
3 days, we assume that anastomosis has not happened yet or is at a 
minimum level. Otherwise, we would expect that the AL reaches a 
plateau and might even decrease in a long term.

Initial number of cells (250, 500, and 750 cells)
TL and NS increase with the increase in the initial number of cells, 
but AL is independent of the initial number of cells (Figure 4). Since 
the characteristics of endothelial sprouting are qualitatively similar 
among the groups of different initial number of cells, we take 500 
cells as a representative initial number of cells to investigate the 
effects of FGF and/or VEGF stimulation for the remainder of this 
study.

3.2.2  |  Co-stimulation

We next studied the effects of FGF and VEGF co-stimulation in 
endothelial sprouting. Generally, we found that similar to mono-
stimulation, TL, NS, and AL are dose-dependent for both FGF and 
VEGF. Specifically, TL and NS increase with the increase in FGF 
or VEGF concentrations, while AL has a biphasic dose response 
(Figure 5). Also, TL, NS, and AL increase with the increase in length 
of cell stimulation (Figure 5). Furthermore, we found that FGF plays 
a dominant role in the combination effects in endothelial sprouting 
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as co-stimulation exhibits the features of FGF-induced sprouting 
(Figures 4, 5, and S4). Specifically, the effects of co-stimulation on 
TL, NS, and AL are more sensitive to FGF concentration change 
compared to VEGF, which shows no obvious differences between 
low, intermediate, and high VEGF levels (Figure  5). Also, TL, NS, 
and AL induced by co-stimulation are approximately the same 
level as FGF stimulation alone, as the ratios of combination effects, 
relative to FGF mono-stimulation, are approximately equal to one 
(Figure S4A–C left). In comparison, TL, NS, and AL induced by co-
stimulation are greater than VEGF stimulation alone, as the ratios of 
combination effects, relative to VEGF mono-stimulation, are greater 
than one (Figure S4A–C right).

In summary, endothelial sprouting is ligand- and dose-dependent 
and has different short-term and long-term responses. In addition, 
the initial number of cells is important in the sprouting process. 
Also, FGF plays a dominant role in the effects of FGF and VEGF 
co-stimulation on endothelial sprouting. Moreover, the predicted 
effects of the co-stimulation by FGF and VEGF on endothelial 

sprouting were not significantly greater than FGF mono-stimulation 
alone.

3.3  |  The cell proliferation and sprout growth of 
existing sprouts are predicted to be more important 
in the sprouting process

To understand the contributions of cellular behaviors in the process 
of endothelial sprouting, we next investigated the effects of FGF and 
VEGF on rcp, rsg, and p. NS is a result of the number of cells and the 
probability of a sprout formation, which are determined by rcp and p 
for a certain number of cells initially present. TL is a result of NS and 
the growth of the sprouts determined by rsg. And AL equals TL/NS. 
Thus, understanding how the rate of cell proliferation, rate of sprout 
growth, and the probability of sprouting depend on growth factor 
concentration gives insight into the observable sprouting features 
(number of sprouts, total sprout length, and average sprout length).

F I G U R E  4 Predicted sprouting responses stimulated by single agents. Response to FGF stimulation, left panels: Predicted TL (μm) (A), NS 
(C), and AL (μm) (E) stimulated by low, intermediate, and high levels of FGF. Response to VEGF stimulation, right panels: Predicted TL (μm) 
(B), NS (D), and AL (μm) (F) stimulated by low, intermediate, and high levels of VEGF. 250-, 500-, and 750-cell spheroid sprouting responses 
when simulated for 1, 2, and 3 days. Bars are mean model prediction + standard deviation of 18 best fits 
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3.3.1  | Mono-stimulation

We studied cell proliferation, sprout growth, and the probability 
of sprouting in response to FGF and VEGF mono-stimulation. We 
found that FGF and VEGF mono-stimulation both show sigmoidal 
dose response curves for cell proliferation (Figure 6A) and sprout 
growth (Figure 6B). Additionally, FGF induces faster cell prolifera-
tion and sprout growth than VEGF at the same concentrations. This 
is because FGF-induced rcp and rsg are higher than VEGF-induced rcp 
and rsg, respectively, at the same ligand concentrations (Figure 6A,B). 
In addition, the large variation in p suggests that the exact value for 
the probability of forming a new sprout does not significantly af-
fect the model predictions (Figure 6C). This indicates that NS is more 
dependent on the number of cells compared to the probability of 
sprout initiation. It also suggests that the number of cells/cell pro-
liferation and the growth of existing sprouts are more important in 
contributing to the TL over time than the chance of forming a new 

sprout. Thus, rcp and rsg are the main focus in the remainder of this 
study.

3.3.2  |  Co-stimulation

Similar to mono-stimulation, we next investigated the effects of 
FGF and VEGF co-stimulation in the rate of cell proliferation, rate of 
sprout growth, and the probability of sprouting. We found that rcp, 
rsg, and p increase as the ligand concentration increases (Figure 6D–
F). Moreover, FGF is dominant in the combination effects, as the 
co-stimulation exhibits the dose-dependent features and approxi-
mately the same magnitude in inducing rcp, rsg, and p as in response 
to FGF mono-stimulation. Specifically, rcp and rsg are more sensi-
tive to FGF concentration and relatively independent of the VEGF 
concentration (Figure  6D–E). Also, the values of rcp, rsg, and p are 
only slightly higher with FGF and VEGF co-stimulation, compared to 

F I G U R E  5 Predicted sprouting responses in response to FGF and VEGF co-stimulation. Co-stimulation of FGF- and VEGF-induced TL 
(μm) on Day 1 (A), Day 2 (D), and Day 3 (G); NS on Day 1 (B), Day 2 (E), and Day 3 (H); and AL (μm) on Day 1 (C), Day 2 (F), and Day 3 (I) 
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FGF mono-stimulation; while with co-stimulation, rcp is significantly 
higher, and the values of rsg and p are also much higher compared to 
VEGF mono-stimulation (Figure S5). It suggests that FGF is dominant 

in promoting cell proliferation, sprout growth, and the probability of 
sprouting in the combination effects. It is also consistent with the 
dominant role of FGF in the combination effects in the sprouting 

F I G U R E  6 Predicted rcp, rsg, and p in response to mono- and co-stimulation of FGF and VEGF. Effects of mono-stimulation of FGF 
(yellow) or VEGF (blue) on rcp (A), rsg (B), and p (C). Effects of co-stimulation of FGF and VEGF on rcp (D), rsg (E), and p (F). Curves in Panels 
A–C are the mean model predictions of 18 best fits. Shaded regions show standard deviation of the fits 

F I G U R E  7 The contributions of 
MAPK and PI3K/Akt pathways to rcp 
and rsg in response to FGF and VEGF 
mono-stimulation. Contributions of 
pERK (purple), pAkt (green), and basal 
(gray) for FGF-induced rates of cell 
proliferation, rcp (A) and sprout growth, 
rsg (C). Contributions of pERK (purple), 
pAkt (green), and basal (gray) for VEGF-
induced cell proliferation, rcp (B) and 
sprout growth, rsg (D) 
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characteristics specifically TL, NS, and AL observed in the previous 
section.

In summary, rcp and rsg are more important in endothelial sprout-
ing compared to p. Moreover, FGF plays a dominant role in the com-
bination effects.

3.4  |  The MAPK and PI3K pathways contribute to 
cell proliferation, sprout growth, and probability of 
sprouting in different ways

We next studied the contributions of MAPK and PI3K pathways in 
rcp, rsg, and p to gain insight into the mechanisms of the endothelial 
sprouting process in response to mono- and co-stimulation of FGF 
and VEGF.

3.4.1  | Mono-stimulation

Cell proliferation
FGF and VEGF stimulate cell proliferation in different ways: FGF-
induced cell proliferation is dominated by pERK, while VEGF-
induced cell proliferation is promoted by pAkt (Figure  7A,B). The 
dose-dependent feature of cell proliferation induced by FGF is 
mostly contributed by ERK phosphorylation, as the rate of cell pro-
liferation influenced by pERK exhibits the dose-dependent feature 
of the overall cell proliferation rate, while the rate of cell prolifera-
tion influenced by pAkt is independent of the FGF concentration 
(Figure 7A). In addition, at low FGF concentrations (<0.12 ng/ml), Akt 
phosphorylation plays a more important role in the cell proliferation 
rate, compared to its impact at high FGF concentrations (Figure 7A). 
As the FGF concentration increases, the impact of rcp_pERK increases 
and eventually surpasses the influence of rcp_pAkt (or Akt activation) 
at higher FGF concentrations (Figure 7A). In contrast, the cell prolif-
eration behavior and dose-dependent feature induced by VEGF are 
mostly contributed by Akt phosphorylation, while ERK phosphoryla-
tion shows a negligible contribution (Figure 7B). Moreover, the ef-
fect of basal cell proliferation minimally contributes to the response 
induced by FGF or VEGF stimulation (Figure 7A,B).

Sprout growth
The MAPK and PI3K pathways contribute differently to FGF-  and 
VEGF-induced sprout growth (Figure 7C,D). First, we found that the 
basal rsg (6.87 μm/h) plays a major role in the overall rsg, account-
ing for 42% and 63% of the FGF- and VEGF-induced rsg at their pla-
teau levels, respectively (Figure 7C,D). In addition to the basal rsg, 
at low FGF concentrations (<0.03 ng/ml), Akt phosphorylation also 
plays a substantial role in rsg (Figure 7C). As the FGF concentration 
increases, the impact of rsg_pERK increases. Eventually, the contribu-
tions of pAkt (height of the green area) and pERK (height of the purple 
area) to the sprout growth rate plateau at 4.07 μm/h and 5.52 μm/h 
(Figure 7C), which are the mean values of fitted VpAkt_sg and VpERK_sg, 
respectively. When VEGF is lower than 3 ng/ml, basal rsg is dominant 

in VEGF-induced rsg (Figure 7D). As VEGF concentration increases, 
rsg_pAkt increases and plateaus at 4.07 μm/h (VpAkt_sg), and rsg_pERK is 
negligible in VEGF-induced rsg (Figure 7D).

3.4.2  |  Co-stimulation

We then investigated the contributions of the MAPK and PI3K 
pathways in rcp and rsg upon co-stimulation with FGF and VEGF. We 
found that ERK and Akt activation contribute differently to cell pro-
liferation and sprout growth, and FGF plays a dominant role of in 
combination effects in cell proliferation and sprout growth.

Cell proliferation
First, rcp, rcp_pERK, and rcp_pAkt stimulated by a combination of FGF and 
VEGF mirror the corresponding responses stimulated by FGF alone 
(Figures  6A,D, 7A and S6A,B). Specifically, the dose-dependent 
manner of the cell proliferation rate induced by FGF and VEGF co-
stimulation is mostly impacted by rcp_pERK, while rcp_pAkt is independ-
ent of the FGF or VEGF concentrations (Figure S6A,B). Also similar 
to FGF mono-stimulation, Akt phosphorylation plays a more sub-
stantial role in the cell proliferation rate at FGF concentrations lower 
than 0.12 ng/ml, while rcp_pERK increases as the FGF concentration 
increases and surpasses the influence of rcp_pAkt at higher FGF con-
centrations (>0.12 ng/ml) (Figure S6A).

Sprout growth
The dose-dependent manner of sprout growth rate induced by 
FGF and VEGF co-stimulation is mostly influenced by rsg_pERK 
(Figure  S6C), while rsg_pAkt is independent of FGF or VEGF con-
centrations (Figure S6D). In addition, Akt phosphorylation is more 
important in rsg at FGF concentrations lower than 0.03 ng/ml, and 
the impact of rsg_pERK increases as the FGF concentration increases 
(Figure S6C,D). These predictions show the same feature as FGF-
induced sprout growth (Figure 7C), indicating the dominant role of 
FGF on sprout growth.

3.5  |  ERK pathway regulates vessel network mainly 
via regulating cell proliferation and NS, while Akt 
pathway mainly affects vessel network via regulating 
sprout growth

We applied the model to identify the parameters and initial concen-
trations in the ERK-Akt model that are influential to the cell prolifer-
ation rate and sprout growth rate. This allows us to gain mechanistic 
insight into how to modulate endothelial sprouting by targeting in-
tracellular signaling pathways. We identified the influential variables 
by performing eFAST and evaluating the calculated Stimax values. 
The variables (Table 2) that have Stimax values greater than 0.3 are 
identified as influential and considered as potential targets for pro- 
and anti-angiogenic strategies. This analysis predicts that ERK and 
MEK influence rcp and rsg, while Akt and Ptase2 influence rsg. We 
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note that no parameter was identified as influential to the probabil-
ity of sprouting, further justifying our primary focus on the rates of 
cell proliferation and sprout growth. The model predictions suggest 
that the MAPK pathway is more influential to rcp, and MAPK and 
PI3K/Akt pathways are both influential to rsg.

However, eFAST only tells us that those variables are influential, 
but the information of how those variables influence model outputs 
are limited. Therefore, we varied two representative influential vari-
ables, ERK and Akt, by 0.1-  and 10-fold and predicted the rcp and 
rsg (Figure 8), as well as TL, NS, and AL (Figures 9 and 10) compared 
to the baseline model predictions. We found that the strategies to 
modulate endothelial sprouting are context-dependent, and ERK 
and Akt pathways regulate vessel network differently.

Varying ERK

In Figure 8A,B, and S7A, upregulating ERK is predicted to be effec-
tive in promoting cell proliferation at low to intermediate but not 
at high FGF concentrations. In contrast, downregulating ERK is pre-
dicted to be more effective in inhibiting cell proliferation at interme-
diate to high FGF concentrations (Figure 8A,B and S7A). In addition, 
upregulating ERK is more effective in promoting sprout growth at 
low FGF concentrations (Figure  8D-E and S7A). Downregulating 
ERK is most effective in inhibiting sprout growth at intermediate and 

high FGF, particularly in combination with low VEGF concentration 
(Figure 8D,E and S7A).

We next investigated how finitely varying ERK affects endothe-
lial sprouting, specifically, TL, NS, and AL on days 1–3 (Figures 9 and 
S7C, E, G). The model showed no obvious effects of increasing or 
decreasing ERK by 10-fold on TL, NS, and AL on Day 1 (Figures 9Ai, 
Bi, and Ci, and S7C). In addition, increasing the ERK level is effective 
in promoting TL at low FGF level and NS at low to intermediate FGF 
levels but has no obvious effects at high FGF concentration on Day 
2 (Figures 9Aii, Bii, and S7E) and Day 3 (Figures 9Aiii, Biii, and S7G). 
Also, decreasing ERK is effective in inhibiting TL at intermediate FGF 
level and NS at intermediate and high FGF levels, but this strategy is 
not very promising at low FGF level on Day 2 (Figures 9Aii, Bii, and 
S7E) and Day 3 (Figures 9Aiii, Biii, and S7G). Furthermore, the in-
crease in TL is less than the increase in NS, which causes a decrease 
in AL (Figures 9Cii, Ciii, and S7E, G) since AL equals TL/NS.

Varying Akt

In Figures 8A, C, and S7B, we did not observe obvious effects in 
rcp when increasing or decreasing Akt by 10-fold. However, down-
regulating Akt is predicted to be effective in inhibiting sprout growth 
at all FGF and VEGF combinations, while upregulating Akt does not 
have obvious effects in rsg (Figures 8D, F, and S7B).

We then investigated how finitely varying Akt affects TL, NS, and 
AL on days 1–3 (Figures 10 and S7D, F, H). We found that increasing 
Akt level has no obvious effects on TL, NS, or AL at any of the sim-
ulated combinations of FGF and VEGF on days 1–3 (Figures 10 and 
S7D, F, H). However, decreasing Akt level leads to a decrease in AL 
and TL at all combinations of FGF and VEGF on days 1–3, but no ob-
vious effects in NS were observed when the Akt level was decreased 
(Figures 10 and S7D, F, H).

TA B L E  2 Influential parameters affecting rates of cell 
proliferation (rcp) and sprout growth (rsg)

rcp rsg

ERK
MEK

Akt
ERK
Ptase2
MEK

F I G U R E  8 Predicted representative targets for modulating rcp and rsg. Predicted rcp (A) and rsg (D) from baseline model. Predicted rcp (B) 
and rsg (E) when ERK is varied by 0.1- (left) and 10-fold (right). Predicted rcp (C) and rsg (F) when Akt is varied by 0.1- (left) and 10-fold (right) 
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In summary, targeting the ERK pathway is predicted to control 
the vessel network mainly via regulating cell proliferation and NS, 
while targeting the Akt pathway mainly influences the vessel net-
work via regulating sprout growth. In addition, the effects of the 
molecular signaling pathways on sprouting are not obvious after 
1  day of stimulation but is more effective in a long-term (days 2–
3). Overall, our model can identify potential effective pro-  and/or 
anti-angiogenic targets and predicts the effects of perturbing those 
targets under different conditions.

4  |  DISCUSSION

We developed a hybrid agent-based model characterizing the en-
dothelial sprouting process driven by integrating molecular signals, 

pERK and pAkt, upon the mono-  and co-stimulation of two pro-
angiogenic factors FGF and VEGF. The intracellular signaling model 
of ERK and Akt activation in response to FGF and VEGF stimulation 
in endothelial cells was adapted from our previous work.29 The en-
dothelial sprouting process was modeled by assuming the cellular 
responses (cell proliferation, sprout growth, and the probability of 
forming a new sprout) are driven by pERK and pAkt, following Hill 
functions. Unknown parameters were estimated by fitting the model 
to experimental data. Additionally, we validated the model using a 
separate set of data.

The fitted model predicts the TL, NS, and AL upon stimulation 
by FGF and VEGF, alone and in combination, on days 1–3. We par-
ticularly focus on TL, NS, and AL because they are metrics exam-
ined most often in in vitro studies.37,38,43–45 The model predicts that 
the type and concentration of ligand, length of cell stimulation by 

F I G U R E  9 Predicted effects of varying ERK. Predicted TL (A), NS (B), and AL (C) when ERK is varied by 0.1- (left) and 10-fold (right), 
compared with baseline model predictions (middle) on days 1–3 (i–iii) 

F I G U R E  1 0 Predicted effects of varying Akt. Predicted TL (μm) (A), NS (B), and AL (μm) (C) when Akt is varied by 0.1- (left) and 10-fold 
(right), compared with baseline model predictions (middle) on days 1–3 (i–iii) 
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the ligand, and initial number of cells are important in endothelial 
sprouting. Importantly, the model provides quantitative insight 
into how these inputs influences sprouting. The predicted dose-
dependent sprouting responses (TL induced by FGF and VEGF in 
Figure 4) are consistent with experimental data, which shows dose-
dependent total tubular length induced by FGF and VEGF.31 Also, 
in the same study, 0.1 ng/ml FGF exhibits approximately the same 
level of increase in proliferation and migration for HUVECs as 25 ng/
ml VEGF after 24 h,31 which agrees with our model prediction that 
FGF induces greater sprouting responses than VEGF at same con-
centrations (Figure  4). Furthermore, our model suggests that FGF 
promotes greater sprouting responses in the long-term compared 
with VEGF (Figure 4). In addition, the model predicts that FGF plays 
a dominant role in the combination effects in endothelial sprouting, 
and co-stimulation of FGF and VEGF only slightly increases TL, NS, 
and AL, compared to FGF simulation alone within 3 days (Figures 4, 
5, and S4). Also, the effects of low FGF concentration in combina-
tion with high VEGF concentration in TL, NS, and AL show no obvi-
ous difference compared to VEGF mono-stimulation within 3 days 
(Figures 4, 5, and S4). This prediction is consistent with experimental 
observations showing no significant increase in HUVEC proliferation 
in 72 h, migration in 8 h, or total tubular length in 24 h stimulated 
by the combination of 0.1 ng/ml FGF and 25 ng/ml VEGF compared 
with their mono-stimulation.31 Moreover, our model can supple-
ment experimental endothelial sprouting assays to differentiate and 
analyze the contributions of cellular and molecular responses during 
the overall sprouting process including cell proliferation, sprout 
growth and formation, and activation of the ERK and Akt pathways. 
Specifically, the model predicts that the ERK pathway regulates ves-
sel network mainly via regulating cell proliferation and NS, while the 
Akt pathway mainly affects vessel network via regulating sprout 
growth (Figures 8–10). These predictions are in line with the liter-
ature results reporting that ERK is believed to mainly promote cell 
proliferation46 and Akt is more important in cell survival47–51 and 
migration.51–53

Compared to other models that study cellular behaviors, our 
mechanistic model considers intracellular signaling and quantita-
tively analyzes cellular responses driven by integrating molecular 
signals, pERK and pAkt. Our model explicitly examines how cellu-
lar behaviors are driven by pERK and pAkt, which are downstream 
signals that regulate angiogenic cellular responses. Thus, we can 
apply our model to mechanistically study the roles of intracellular 
signaling species in affecting endothelial sprouting. Tong and Yuan 
constructed a computational model to study vessel growth in rat 
cornea based on assumptions that cellular responses are only de-
pendent on FGF-bound FGFR, where the probability of sprout for-
mation and the speed of vessel growth are linearly proportional to 
the fraction of FGFR occupied by FGF.27 Our model can complement 
such models to understand intracellular mechanisms that regulate 
cellular responses. In another study, Norton and Popel constructed 
a computational model to study vessel growth in tumors and showed 
that the proliferation rate has a greater effect on the spread and 
extent of vascular growth compared to migration rate.54 Our model 

predictions agree with these previous modeling works, as we pre-
dict that cell proliferation and the number of cells are critical factors 
that contribute to endothelial sprouting (Figure 4) and that varying 
ERK level seems to be more influential in TL than varying Akt level 
(Figures 9 and 10). Our work goes further in that the model consid-
ers the intracellular signaling and provides mechanistic insight into 
the signaling factors driving endothelial sprouting.

Our model can be utilized to study the efficiency of pro- or anti-
angiogenic therapies. The model predicts that potential strategies to 
modulate endothelial sprouting are context dependent (Figures 8–
10), and it can identify potential pro- and/or anti-angiogenic targets 
under different conditions and study their efficacy. The intracellu-
lar angiogenic signals such as pERK and pAkt are believed to play 
important roles in cellular behaviors, especially cell survival, prolif-
eration, and migration.46–53 However, there is limited quantitative 
understanding of how integrating the intracellular angiogenic signals 
affect cellular behaviors, especially in cases where approaches to in-
hibit angiogenesis have counterintuitive effects on pERK and pAkt. 
For example, it has been shown that the MEK inhibitor PD0325901 
upregulates the PI3K pathway signaling.55 Our model can investi-
gate such experimental observations and predict the overall cellular 
responses driven by the integrated molecular signals from pERK and 
pAkt.

This model can be utilized in combination with other model-
ing frameworks that predict intracellular signaling to provide more 
mechanistic insight into certain cellular responses. For example, 
there are models that study pro-angiogenic signaling, including 
sphingosine kinase 1 and calcium responses induced by VEGF, which 
are the downstream signals of ERK1/2,56 and also angiopoietin-Tie 
signaling in endothelial cells,57 which has been shown to be import-
ant in vessel development, permeability, vascular homeostasis, and 
remodeling.57–60 Other models study anti-angiogenic signaling, such 
as TSP1-CD36 signaling that influences endothelial cell apoptosis61 
and antagonizes VEGF-induced eNOS signaling,62,63 as nitric oxide is 
a major vasodilator62 and is important in angiogenesis and vascular 
permeability.64,65 Still other models characterize sprouting angio-
genesis behaviors by considering how Notch signaling in endothe-
lial cells determines the tip cell and vessel branching as reported in 
other studies.35,66–68 Our model can be combined with these exist-
ing models of angiogenic signaling and applied in various way to pro-
vide quantitative insight at both molecular and cellular levels.

We acknowledge some limitations in our model. Although many 
studies reported that pERK and pAkt play important roles in cell sur-
vival, proliferation, and migration, the upstream species in the net-
work (e.g., pVEGFR2, pFGFR1, and PI3K) can activate other pathways 
that are not included in this work but may also contribute to relevant 
angiogenic cellular responses.9,69 Also, to ease model construction, 
we excluded VEGFR1 and neuropilin-1 (NRP1), although their bind-
ing with VEGF contributes to angiogenesis. Moreover, PDGF plays 
an important role in maturing the vessels70; however, to focus on 
the initiation of the vessels, we only explored the effects of FGF 
and VEGF in endothelial sprouting. We can incorporate the contri-
butions of these additional species into the model in future studies. 
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In addition, it has been reported that mechanical and biophysical 
properties of the ECM affect angiogenesis.71–73 Excitingly, there is 
published computational work that focuses on the effects of ECM 
in angiogenesis. For example, Edgar et al. explored the interactions 
between ECM and microvessels during angiogenesis,74 and they 
then studied the effects of matrix density in sprouting angiogene-
sis.75 Similarly, our model can be expanded to consider the effects 
of the ECM. In addition to endothelial cells, other cell types, includ-
ing pericytes,76–78 fibroblasts,76,79,80 macrophages,81,82 and smooth 
muscle cells,83,84 play an important role in angiogenesis. There are 
computational models that studied the interactions between endo-
thelial cells and pericytes,35,85 fibroblasts,86 macrophages,85,86 and 
smooth muscle cells.87 Our model can be expanded to include these 
relevant cell types and capture their interactions and further gain 
quantitative insight into the mechanism of the intracellular signaling 
and resulting cellular functions. Also, mechanical forces, including 
tissue stiffness and fluid shear stress, are important in regulating 
angiogenesis as well.6,88 Our model can be incorporated with other 
models that studied the effects of mechanical forces. For example, 
Edgar et al. investigated the effects of ECM stiffness in regulating 
vascular topology,75 and Koo and co-workers studied eNOS regu-
lation induced by fluid shear stress89 to gain a more comprehensive 
understanding of angiogenesis process.

We also made some assumptions to simplify our model. First, 
the molecular interactions usually happen on the order of seconds 
to minutes. However, it usually takes hours or even days to respond 
on a cellular level. To bridge the difference in time scale, we assumed 
that the cellular behaviors in short term are driven by the molecular 
signals within 2 h, specifically the maximum pERK and pAkt levels. 
Other computational models have made similar assumptions. For 
example, Adlung et al. correlated the molecular signals, cyclin D2, 
cyclin G2, p27, and pS6, which were characterized within 60 min, to 
markers of cell proliferation mCFU-E, BaF3-EpoR, and 32D-EpoR, 
which were analyzed after 14–20, 62, and 38 h, respectively.30 In 
addition, Tong and Yuan assumed cellular responses are only depen-
dent on the fraction of FGF-bound FGFR, and that ligated FGFR and 
the cellular response are linearly related, to investigate FGF-induced 
angiogenic dose responses in rat corneal pocket assay.27 They ana-
lyzed migration distance, total and average vessel length, and total 
number of vessels at times from 0 to 120 h, while the time for FGF-
bound FGFR to reach 90% of steady-state value was reported to 
be within 25 min.27 Also, Padera et al. constructed a mathematical 
model to study FGF-mediated cellular response by assuming the sig-
nal that drives proliferation of cultured cells from the F32 cell line 
is only dependent on ligand bound receptor signaling complexes.26 
The model was validated with F32 cell proliferation data, which were 
evaluated by counting the cell number after 72-h incubation.26

Moreover, our main focus is to study the intrinsic properties of 
endothelial cells responding to FGF and/or VEGF stimulation. Of 
course, the experimental setup in in vitro studies may involve envi-
ronmental factors that influence cell behaviors other than our focus, 
FGF and VEGF. For example, to maintain sufficient nutrient supply, 
cell culture media is typically changed every 3  days, which would 

inevitably induce a change in temperature and air composition, af-
fecting cellular behaviors. In addition, cell proliferation,40,41,90 migra-
tion,32,33,91 and sprouting assays37,43,90 are usually conducted in a 
short period of time following cell culture, typically within 3 days. 
Thus, to reduce the effects of other possible factors, we only stud-
ied short-term cellular behaviors, specifically 3 days, when nutrients 
and space are still sufficient. We assumed the cell intrinsic proper-
ties, specifically the cell proliferation rate, sprout growth rate, and 
probability rate of forming a new sprout, remain constant within 
3  days considering a relatively stable experimental environment. 
Other computational studies have also made similar assumptions. 
For example, Norton and Popel investigated the effects of endo-
thelial proliferation and migration rates on vascular growth by simu-
lating vasculature using various time-independent proliferation and 
migration rates for times up to 200  days.54 In addition, Tong and 
Yuan studied FGF-induced angiogenic dose responses in rat corneal 
pocket assay for up to 5 days.27

In addition, we assumed the daughter cells inherit the same 
cell proliferation rate, sprout growth rate, and the probability rate 
of forming a new sprout from the mother cells, again considering 
a relatively stable experimental environment within 3 days. Similar 
assumptions have also been made by other computational work. For 
example, Roy and Finley built a multiscale computational model to 
study pancreatic tumor growth with an assumption that the daugh-
ter cell inherits all cell properties and the last intracellular metabolic 
state of the parent cell.92 Letort et al. built a multiscale agent-based 
model assuming a daughter cell inherits its signaling network state 
from the mother cell, and they applied the model to study the ef-
fects of cell heterogeneity in tumor growth in response to tumor 
necrosis factor treatment.93

Last, we assumed that the maximum pERK and pAkt drive endo-
thelial cell proliferation and sprouting follow Hill functions. There are 
indeed some computational studies that apply a threshold function 
to decide if a cell is eligible to migrate or proliferate.94,95 However, 
HUVECs have been reported to respond to low levels of FGF or 
VEGF stimulation. For example, Bai et al. showed that FGF concen-
tration as low as 0.1 ng/ml significantly increased HUVECs total tu-
bular length compared to control on Matrigel for 24 h.31 VEGF has 
been shown to induce a half-maximal effect on tubule formation on 
Laponite substrates at 0.01 μg/ml.96 Also, Wolfe et al. showed that 
the EC50 value for VEGF-induced tube length response is 0.67 ng/
ml for HUVECs co-cultured with normal human dermal fibroblasts.97 
In addition, angiogenic cellular responses, for instance endothelial 
sprouting14,31 and vessel density,98 have been shown to be FGF and 
VEGF dose dependent and will reach a plateau if FGF or VEGF con-
centration is higher than a certain saturation level. Thus, we decided 
not to use a threshold function for angiogenic cellular responses. 
We instead applied a Hill function to account for the observed an-
giogenic cellular responses, even for low growth factor concentra-
tions. We can expand the model as more mechanistic information 
becomes available. Despite these limitations, our model provides 
quantitative insight into angiogenic signaling and cellular responses 
and can be utilized as a framework for future mechanistic studies.
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4.1  |  Perspectives

In conclusion, we developed a mathematical model to characterize 
endothelial sprouting driven by pERK and pAkt in response to the 
stimulation of two main pro-angiogenic factors, FGF and VEGF. The 
model quantitatively studied FGF-  and VEGF-mediated cell prolif-
eration, sprout growth, and formation of new sprouts and provided 
mechanistic insight into endothelial sprouting. The understanding of 
the regulation of angiogenesis signals on a molecular scale, and fur-
ther on a cellular level, can better aid the development of pro- and 
anti-angiogenic strategies.
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