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Abstract

Most biological systems are difficult to analyse due to a multitude of interacting components

and the concomitant lack of information about the essential dynamics. Finding appropriate

models that provide a systematic description of such biological systems and that help to

identify their relevant factors and processes can be challenging given the sheer number of

possibilities. Model selection algorithms that evaluate the performance of a multitude of dif-

ferent models against experimental data provide a useful tool to identify appropriate model

structures. However, many algorithms addressing the analysis of complex dynamical sys-

tems, as they are often used in biology, compare a preselected number of models or rely on

exhaustive searches of the total model space which might be unfeasible dependent on the

number of possibilities. Therefore, we developed an algorithm that is able to perform model

selection on complex systems and searches large model spaces in a dynamical way. Our

algorithm includes local and newly developed non-local search methods that can prevent

the algorithm from ending up in local minima of the model space by accounting for structur-

ally similar processes. We tested and validated the algorithm based on simulated data and

showed its flexibility for handling different model structures. We also used the algorithm to

analyse experimental data on the cell proliferation dynamics of CD4+ and CD8+ T cells that

were cultured under different conditions. Our analyses indicated dynamical changes within

the proliferation potential of cells that was reduced within tissue-like 3D ex vivo cultures

compared to suspension. Due to the flexibility in handling various model structures, the algo-

rithm is applicable to a large variety of different biological problems and represents a useful

tool for the data-oriented evaluation of complex model spaces.

Author summary

Identifying the systematic interactions of multiple components within a complex

biological system can be challenging due to the number of potential processes and the
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concomitant lack of information about the essential dynamics. Selection algorithms that

allow an automated evaluation of a large number of different models provide a useful tool

in identifying the systematic relationships between experimental data. However, many of

the existing model selection algorithms are not able to address complex model structures,

such as systems of differential equations, and partly rely on local or exhaustive search

methods which are inappropriate for the analysis of various biological systems. Therefore,

we developed a flexible model selection algorithm that performs a robust and dynamical

search of large model spaces to identify complex systems dynamics and applied it to the

analysis of T cell proliferation dynamics within different culture conditions. The algo-

rithm, which is available as an R-package, provides an advanced tool for the analysis of

complex systems behaviour and, due to its flexible structure, can be applied to a large vari-

ety of biological problems.

Introduction

Experiments often allow time-resolved measurements of individual components of a biological

system. Revealing the most appropriate systematic representation to describe the connectivity

and dynamical interactions of these individual components based on such measurements

represents a major challenge in order to identify important processes that determine the

dynamics. This includes the identification of cell signaling networks based on changing con-

centrations of molecular components [1, 2], the analysis of key processes for intracellular

viral replication cycles [3–5], or the identification of cell differentiation pathways based on the

changing concentrations of cells with different phenotypes [6–8]. In most cases, the underlying

dynamics and interactions are not completely known and one has to gradually infer an appro-

priate representation of the system.

Mathematical models in combination with information criteria, such as the Akaike infor-

mation criterion [9], represent a possibility to evaluate the ability of different hypotheses in

describing the experimental data. However, complex data structures and large numbers of dif-

ferent components easily result in numerous possible descriptions of their systematic interac-

tions (Fig 1A and 1B). For example, considering a system as in Fig 1B but with 5 different

components leads to more than 3.3 × 107 possible models. Despite constant improvement of

computational calculation capacities, these bare numbers in possibilities impair their individ-

ual testing. Even under the assumption that the evaluation of one model would take only one

second, evaluating 3.3 × 107 different models would require more than 1 year in computational

run time, and evaluation times will increase with the complexity of the model structure. Most

studies address this problem by testing only a reduced number of models, i.e., limiting the

number of tested hypotheses based on prior biological knowledge or assumptions [1, 7]. In

case such prior knowledge is lacking, only comparisons between different model structures

allow a data-driven and unbiased inference of important parameters and processes that deter-

mine a systems behaviour. Therefore, there is an increasing need for computational algorithms

that efficiently search large model spaces to provide the best systematic description of experi-

mentally observed dynamics.

There have been different implementations of model search and selection algorithms that

work reliably well for specific model structures, such as generalised linear models or linear

regression [10]. Examples include algorithms presented in the leaps [11], MuMIn [12], FWDse-
lect [13] and glmulti [10] packages in R (for a detailed summary and discussion see [10]). In

many cases, these algorithms work by a step-wise bottom-up or top-down approach in which
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parameters are either added or removed from the model to determine their influence on the

model performance. However, due to their problem specificity, none of these algorithms can

be applied to more complex types of model, such as compartment models based on ordinary

or partial differential equations that are widely used in different research areas, as e.g. systems

biology or physics. Especially for non-linear type of models, in which many processes interact

and might compensate each other, the standard bottom-up or top-down approaches bear the

risk of terminating in a local minimum of the model space by predefining the search direction

of the algorithm. Although there are a number of model selection algorithms available that

are especially designed for the analysis of dynamical systems by providing advanced parameter

fitting routines [2, 14], these algorithms partly rely on exhaustive analyses of the whole model

space, comparing a predefined number of possible model structures. Therefore, the continu-

ous development of improved model search and selection algorithms [15–19] that are able

to handle complex and large model spaces provides an important contribution to various

research questions.

Within this line, we developed a Flexible and dynamic Algorithm for Model Selection

(FAMoS) that was specifically designed for the analysis of complex systems dynamics within

large model spaces, but is also able to handle many diverse mathematical model structures.

This flexibility is achieved by letting the user define its own cost function, including a custom

fitting routine, for calculating the distance between the model and the data and returning

a calculated model selection criterion, e.g. AICc or BIC-values [20–22]. The model selection

procedure is based on a dynamical use of backward- and forward search [23] and includes a

parameter swap search method that effectively improves the chances of finding suitable models

in large model spaces. After validating and testing the robustness and efficiency of FAMoS

using simulated data, as well as showing its flexibility to handle different model structures, we

applied the algorithm to the analysis of experimental data on the proliferation dynamics of T

cells within different environments. Studying CD4+ and CD8+ T cell dynamics within 2D sus-

pension and 3D tissue-like ex vivo cultures, our experimental and mathematical analyses both

revealed heterogeneous proliferation dynamics that are influenced by the culture conditions.

Methods

General concept of FAMoS

Finding the model that is best able to explain a given set of experimental data out of a multi-

tude of possible interacting components and processes often requires the evaluation of a large

Fig 1. Challenges regarding the identification of the interaction between different components of a biological

system. (A) Time-resolved measurements for the concentrations of different biological components and factors lead to

the question on their dynamical interactions. Out of a global model considering all possible interactions and processes

for the different factors within the system (B) one needs to identify the (sub-)model that best explains the experimental

data (C). FAMoS provides a computational method that uses a sophisticated way to search the total model space for the

most appropriate (sub-)model.

https://doi.org/10.1371/journal.pcbi.1007230.g001
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number of different models. FAMoS represents an algorithm to efficiently explore the model

space and aims at identifying models that incorporate the essential processes and parameters

for explaining the observed data. To this end, the algorithm needs a predefined global model

that contains all possible interactions and processes that are thought to play a role in the

observed dynamics. Based on the specific selection algorithm that is outlined in detail below

and shown in Fig 2, FAMoS will then evaluate the model space in order to find the (sub-)

model that is best able to explain the data. During the selection process, models are fitted to

the experimental data by minimizing a cost-function that can be specified by the user. The

ability of a specific model in explaining the experimental data is assessed by a standard infor-

mation criterion, such as AICc, AIC [20, 21] or BIC [22], which is also used for model compar-

isons (see also [9]).

Due to its flexible structure, FAMoS is applicable to a variety of different model structures.

The different elements of the algorithm and their implications are explained in detail in the

following. FAMoS is implemented in R [24] and also provided as an R-package via CRAN

(https://cran.r-project.org/) along with the necessary documentation.

Structure of the selection algorithm

Let~y ¼ ðy1; y2; . . . ; ynÞ be the vector comprising all parameters of the global model. Out of

this global model, different sub-models can be created by either incorporating (i.e. fitting) or

neglecting the processes defined by parameters θj, j 2 {1, . . ., n}. Each sub-model m can be

described by a unique binary identifier α = (α1, . . ., αn), with αi 2 {0;1}. Here, αi = 1 indicates

that the corresponding parameter θi is estimated, while 0 means the process described by this

parameter is either not considered or not allowed to vary, i.e., defined to a default value (see

below), within the specific model.

If S describes all possible permutations for α, the general aim of the analysis is to efficiently

search the model space O ¼ fmðaÞg
a2S for finding the model that best explains the observed

experimental data.

The main part of FAMoS is the automated, successive generation of new models that are

tested against the data. Based on a currently best model, m(αbest) (with αbest ≔ αstart at the

beginning), let S0 and S1 denote the corresponding sets of indices for all non-considered and

considered parameters, respectively. FAMoS will generate a new set of neighbouring models

based on permutations of αbest according to one of the following methods (Fig 2):

(a). Forward search: Add a previously non-fitted parameter to the currently best model, i.e.

set αi = 1, for a particular i 2 S0. This procedure is repeated to create a new model for

every i 2 S0.

(b). Backward elimination: Remove a parameter from the currently best model, i.e. set αi = 0,

for a particular i 2 S1. This procedure is repeated to create a new model for every i 2 S1.

In addition to the two methods mentioned above, we implemented a third method which is

based on the simultaneous addition of novel and removal of existing parameters of the cur-

rently best model, i.e., a replacement of a parameter by another:

(c). Swap search: Replace a parameter of the currently best model by another parameter, i.e.

set αi = 1, for an i 2 S0 and αj = 0 for a j 2 S1. Hereby, both parameters have to belong to

a predefined swap-parameter set that contains both elements (see below). This procedure

is repeated to create a new model for every possible recombination within the predefined

swap parameter sets.
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Fig 2. Outline of the algorithm. (A) Based on a given (sub-)model of the global model, FAMoS works by creating and testing neighbouring models

against experimental data. Thereby, the algorithm distinguishes between three main methods for exploring the model space including (a) forward
search, in which a parameter that was not considered in the previous model is additionally considered, (b) backward elimination, in which a parameter

of the current model is deleted from the analysis, and (c) swap search, in which two parameters out of pre-defined parameter sets are exchanged. (B)

Starting with a pre-defined model and method, FAMoS creates the neighbouring models and compares their ability to describe the experimental data,

with the methods and/or models dynamically updated at the end of each iteration. The algorithm finally returns the model that was found to best

explain the experimental data.

https://doi.org/10.1371/journal.pcbi.1007230.g002
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All models that are created by one of the three methods are then fitted to the data and their

performance in explaining the data compared to the starting model based on a predefined

information criterion is assessed. If a better model is found at the end of an iteration, i.e.,

after evaluation of all newly created neighbouring models, the best model, m(αbest), is updated

and used for comparison during the next iteration of the algorithm. The current method is

kept for the next iteration, with the exception of the swap search method which is changed

into a forward search if the method successfully found a better model (see Fig 2). In case no

better model is found based on the current selection method, the algorithm will update its

selection method to explore another part of the model space O. Therefore, FAMoS keeps track

of methods used in the previous iteration and changes them dynamically (see Fig 2). In the

end, the best model found over all iterations according to the specified information criterion is

returned.

Definition of critical and swap parameter sets

FAMoS distinguishes between different parameter sets that can be predefined before analysis.

To avoid the testing of models that can already be neglected as they lack important structural

parameters, critical parameter sets, Pi
crit � fyjgj2N

; i 2 N, comprising specific parameter com-

binations can be defined. Only models containing at least one parameter out of each critical

parameter set Pi
crit; i 2 N are tested, otherwise these models are discarded (Fig 3A). Critical

parameter sets help to account for pre-knowledge on the importance of particular parameters

and depend on the model structure. For example, if it is known that one model state can ini-

tially only be achieved from one of the other model states (e.g. state B in Fig 3A can initially

only be obtained out of state A or C), only models that consider at least one of the necessary

connections are worth to be tested.

A second type of parameter sets that can be specified before analysis are the swap parameter

sets, Pi
swap; i 2 N. These parameter sets are essential to define the parameters that can be

exchanged by each other when using the swap search-method (Fig 3B). If a parameter of a

swap parameter set Pi
swap is considered within the current model, it can be “swapped”, i.e.,

replaced, by any other parameter of the particular set Pi
swap that is not included in the current

model. The swap parameter sets allow to account for structurally similar parameters that can

compensate each other due to the model structure. The swap search method was developed to

swap between these structurally similar parameters in order to effectively avoid termination of

the algorithm in local minima of the model space. The algorithm allows the definition of sev-

eral swap parameter sets. By default, the swap search method treats all critical parameter sets as

swap parameter sets as according to definition of Pi
crit at least one of the parameters of this set

has to be present. It is also possible to define the complete parameter set as a swap set, meaning

that all parameters can be replaced by each other. However, one has to be aware that in these

cases the number of possible neighbouring models can grow quadratically with the number of

parameters.

Cost function and parameter fitting for each model

Each model is fitted to the experimental data by minimizing a predefined cost function. Given

a set of experimental observations, the cost function needs to calculate the difference of the

model for a given parameter set to the experimental data, e.g. based on a negative log-likeli-

hood function, and needs to return a standard information criterion, i.e. the Akaike (AIC,

AICc) or Bayesian information criterion (BIC), to assess model performance (see [9]).

Dynamic model selection to analyze complex systems
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As a default model fitting routine, FAMoS uses the optim-package provided by R. To

improve the robustness of parameter estimates, each model can be repeatedly fit with different,

randomly sampled starting conditions. During one run, FAMoS will inherit parameter esti-

mates that have been obtained for m(σbest) from previous iterations as one of the starting con-

ditions for subsequent model fits. By this, the algorithm accounts for progressive improvement

of parameter convergence during subsequent iterations. To reduce computation time, FAMoS

is also able to keep track of its history, i.e., remembering models and their outcomes that have

been tested during previous iterations. In this case, models that have been analysed previously

are not re-analysed and their previous results are used for comparison. However, implications

of this feature are discussed in detail below. Besides definition of critical parameters that have

to be included within the individual models, FAMoS also allows the user to specify parameters

that will not be fitted and set to default values, as e.g. based on prior knowledge (see options

do.not.fit and default.var in function famos). This option allows the user to rely on prior

knowledge, as well as implicit model structure conditions, and to reduce the actual model

space that will be searched.

Extensions for parameter fitting methods

As the actual fitting routine represents a crucial aspect for the ability of the algorithm to evalu-

ate individual model performance, the algorithm allows users to specify their own fitting rou-

tine within FAMoS. As a default fitting routine, FAMoS uses the optim-function within R

Fig 3. Specific parameter sets. (A) Importance of critical parameters sets. In the shown example, model state B is

assumed to be achieved initially only from either state A or C. Therefore, the corresponding connections μAB and μCB

are defined as a critical parameter set. Only models containing at least one of the parameters are evaluated. (B)

Definition of swap parameter sets: The transition from A to B, μAB, as well as a multiplication within B, ρB, are

structurally similar parameters that can explain an increase in model state B and define a swap parameter set, i.e.,

parameters can be replaced against each other for model testing.

https://doi.org/10.1371/journal.pcbi.1007230.g003
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with the ability to specify individual fitting methods, such as Nelder-Mead, BFGS or SANN. In

our specific example analysing experimental data on cell proliferation dynamics, each (sub-)

model tested by FAMoS is fitted to the data using an advanced setup consisting of (multiple)

optim-evaluation(s) based on the Nelder-Mead algorithm. As this algorithm exhibits—at

least in our experience—a very slow convergence speed, we tweaked it in several ways. First,

every individual fitting routine is interrupted after 1000 iterations, which in many cases is

before optim converges naturally. The resulting parameters are then used as the starting

values for the next optim-run, and so on. This process is halted once a specified convergence

tolerance has been reached, which in our case defines the difference in the negative log-likeli-

hood between the previous and current optim-run. As the simplexes used in the beginning

of an optim-run are larger, halting and re-starting the algorithm effectively covers a broader

area in the parameter space. Second, the model fitting routine is repeated several times with

randomly sampled initial conditions. In case a better fit is found during one of these runs, the

previous fit will be discarded. The user is able to specify the number of runs of optim per

evaluation within the famos-function (i.e. argument optim.runs). While all these tweaks are

supposed to help finding a good fit even for more complex models, sometimes a different

setup for optim might be more suitable. Therefore, all the options mentioned previously, e.g.

the fitting algorithm, step size selection or convergence tolerance, can be redefined by the user.

Parallelisation

FAMoS is designed to effectively search a large model space by reducing the total number of

models that need to be tested. Nevertheless, dependent on the model structure, it still might

require the testing of a large number of possibly computationally expensive models in their

ability to explain the experimental data. Therefore, FAMoS allows to parallelise the model

selection process and to evaluate many different models within one iteration step simulta-

neously. To this end, the algorithm uses future-objects as provided by the future-package from

Henrik Bengtsson [25] which reduces the total running time of the algorithm drastically if a

processing unit with multiple cores or a cluster network is available for computation.

Selection of a starting model

The choice of the starting model can influence the performance of the selection algorithm as

progression through model space is mostly local for each FAMoS run and relies on investigat-

ing neighbouring models. Therefore, it is usually recommended to run FAMoS with several

starting models to verify the consistency of results. FAMoS provides different options for the

selection of the starting model, i.e. using the global model, sampling a random starting model,

or starting with a user specified model, e.g., a model containing one parameter out of each crit-

ical parameter set. Based on our experience, we generally recommend to verify the consistency

by running FAMoS with a certain starting model, and then to perform additional runs by

using corresponding complementary models, i.e. by using a model that shows the largest dif-

ference to all previously tested models (e.g. by using the built-in option “most.distant”). If the

individual runs converge towards the same final model, it might serve as an indication of the

goodness of the best model.

Additional materials and methods for the application examples of FAMoS

Generation of simulated data for 4 compartment model. The sub-model describing the

interaction between the four different components A, B, C and D as shown in Fig 4B is defined

Dynamic model selection to analyze complex systems
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Fig 4. Evaluation of a 4-compartment model using FAMoS. (A) The global model containing all possible interactions between and within the 4 different

compartments considering multiplication and transition processes. (B) Simulated data for the dynamics of the different components using a sub-model as shown on

the right (true model). The different crosses indicate the mean over 10 independent measurements at each time point for each compartment (see Methods for model

parameterization). (C) Evaluation of all possible models of (A) against the simulated data with the 5000 best models ranked according to their AICc-values. (D) Sketch

of a single FAMoS run starting with a specified model and showing the convergence towards the final selected model over time. Individual iterations indicate the

changes in the selected models after each iteration by adding (red), removal (green) or swapping (blue) of individual parameters. (E) Comparing the performance of

Dynamic model selection to analyze complex systems
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by the following system of ordinary differential equations:

dA
dt
¼ � mABA ð1Þ

dB
dt
¼ mABAþ rBB � ðmBC þ mBDÞB ð2Þ

dC
dt
¼ mBCBþ rCC ð3Þ

dD
dt
¼ mBDB ð4Þ

The parameter ρX describes the multiplication rate of the corresponding compartment X,

while μXY defines the transition rate from compartment X to compartment Y. The system is

parameterized with μAB = 0.1, ρB = 0.1, μBC = 0.05, μBD = 0.2 and ρC = 0.1 using arbitrary units.

Initial population sizes are defined by A0 = 100, while all other compartments are empty, i.e.,

B0 = C0 = D0 = 0. The system is simulated stochastically using the Gillespie-Algorithm with

adaptive-τ-leaping [26]. For each of 30 equidistant time points 10 independent simulation

runs were evaluated and the compartment sizes were measured to ensure independence

between data points.

Experimental data. Peripheral blood mononuclear cells served as a source for primary

human CD4+ and CD8+ T cells. Cells were isolated by Ficoll gradient centrifugation from

buffy coats of blood donations from healthy individuals and split into three fractions for indi-

vidual stimulation with 0.5 μg/ml PHA, 5 μg/ml PHA and surface-immobilized anti-CD3

mAb in RPMI 1640 supplemented with 10% FCS, 1% penicillin/streptomycin and 10 U/ml IL-

2. After 72 h, fractions were pooled again to result in approx. 95% of CD3 T lymphocytes with

typically 70-80% CD4+ T cells and 20-30% CD8+ T cells. To analyse proliferation, cells were

stained with PKH 26 in Diluent C (both Sigma Aldrich), according to manufacturer’s instruc-

tions (2.5 × 107 cells in a total volume of 4 ml Diluent C with 2 μM PKH 26 for 2 min at room

temperature). Labelling reaction was stopped with FCS for 1 min, followed by washing steps in

serum containing medium. Cells were then subjected to suspension and collagen cultures at

1 × 105 cells/100μl as described [27, 28]. Briefly, collagen gels (1.6 mg/ml) were prepared by

mixing bovine collagen I (PureCol, Advanced Biomatrix) with bicarbonate-buffered MEM on

ice (10μl 10× MEM, 5μl 7.5% NaHCO3 and 75μl collagen I). Subsequently, cells were added

(45 μl of 3 × 106 cells/ml) to yield a final concentration of 1 × 105 cells/100μl gel and cultures

were overlain with 100 μl media, which was exchanged every 2-3 days. Cells were cultured in

suspension or collagen for 0, 2, 4 and 7 days. At these time points cells were released by colla-

genase digestion (100U/100μl culture; 30 min at 37C), washed in PBS and stained to exclude

dead cells and distinguish CD4+ (CD3+, CD8−) and CD8+ T cells (CD3+, CD8+) (30 min: dead

cell exclusion by fixable viability dye eFluor 450, 1:1000 (ebioscience); 30 min antibody stain-

ing: CD8 PE-Vio770, 1:100 (Miltenyi-Biotec), CD3 PE, 1:100 (biolegend)). Cells were fixed

with 3% paraformaldehyde in PBS and analysed using a FACSVerse equipped with FACSuite

software. Generations were modeled using ModFit LT (Verity Software). For each time point

and culture condition, three replicates of the experiment were performed and analysed.

FAMoS with and without using the swap search-method based on a total of 65.535 runs, i.e., starting FAMoS with every possible (sub-)model of the global model

shown in (A).

https://doi.org/10.1371/journal.pcbi.1007230.g004

Dynamic model selection to analyze complex systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007230 August 16, 2019 10 / 23

https://doi.org/10.1371/journal.pcbi.1007230.g004
https://doi.org/10.1371/journal.pcbi.1007230


Parameter estimates were confined using additional experiments in which the proliferation of

CD4+ and CD8+ T cells was analysed using counting beads (biolegend) for absolute cell counts

at the corresponding time points.

Parameter fitting for dye-dilution experiment. To fit the individual models describing

cell proliferation dynamics to the experimental data using FAMoS, the algorithm relies on a

cost-function that calculates the difference of model predictions to the actual data. For each

time point t the mean, �yiðtÞ, and standard deviation, σi(t), is calculated across the individual

measurements yi(t), with yi(t), i = 0, 1, . . ., 9 denoting the frequency of cells that have divided

i-times until time point t. With mi(t, θ) denoting the corresponding model prediction at time

point t given parameter set θ, the cost-function, Cðy; ~s; yÞ, defined as two times the negative

log-likelihood neglecting the constant factor log(2π), is then given by

Cðy; ~s; yÞ ¼
X

t

X

i

�yiðtÞ � miðt; yÞ
siðtÞ þ ~s

� �2

þ
X

t

X

i

log ððsiðtÞ þ ~sÞ
2
Þ ð5Þ

Hereby, ~s defines an additional factor affecting the empirical standard deviation σi(t) to

account for low sample sizes. The parameter ~s is estimated together with the unknown prolif-

eration and death rates for the particular model, θ, and considered as a critical parameter, i.e.,

each model in the evaluation procedure will contain ~s. Eq (5) is then minimized for θ and ~s

using the optim-function with the Nelder-Mead algorithm as described above.

For the analysis, each model during the individual iterations of a FAMoS run is evaluated

with 5 different starting conditions. For each cell type, i.e., CD4+ and CD8+ T Cells, FAMoS is

run 5 times with the most distant model compared to the previous model runs used as a novel

starting model. The best model according to the corrected Akaike information criterion is

returned and shown. Parameter identifiability for the individual parameters of the best model

is determined based on profile likelihood analysis [29].

Results

Testing the robustness of FAMoS in evaluating the model space

To test the reliability and the robustness of the selection methods implemented in FAMoS,

we defined a system comprising four different compartments. We consider multiplication

processes within and transmission processes between these different compartments, e.g.

resembling proliferation and migration dynamics of cells in different organs or various cell dif-

ferentiation steps. Considering all possible interactions between the different compartments,

with 4 multiplication and 12 transmission rates, we obtain a global model that contains about

6.5 × 104 different sub-models (Fig 4A).

We selected one specific sub-model (Fig 4B) to generate simulated data which were used to

assess the qualitative performance of FAMoS in determining the systematic interactions of the

different components (see Methods). To this end, we successively used each of the possible

sub-models as a starting model for FAMoS and determined the selected model returned by

each run of the algorithm. For the first evaluation, we restricted our analysis to the use of the

forward search and backward elimination methods, also neglecting the specification of any crit-

ical or swap parameter sets. We found that about 79% of all runs returned the model used for

data generation, additionally recapturing the parameter values that were previously used. This

model also yielded the lowest Akaike information criterion (AICc = 23.7, model 1) of all tested

models (Fig 4C). The remaining 21% of all FAMoS runs all terminated in a different local min-

imum, which showed a slightly impaired fit of the data (AICc = 28.9, meaning ΔAICc = 5.2 to

the best model, i.e., model 1). However, as this second model has two additional parameters
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compared to model 1 (Fig 4C), the increase in AICc is almost exclusively caused by the more

complex model structure as both models capture the simulated dynamics equally well. The

vast majority of FAMoS-runs evaluated about 90 different models per run. This corresponds

to searching roughly 0.1% of the model space per run which indicates the efficiency of the

model selection algorithm.

Swap search-method increases robustness of the model selection algorithm

To test the ability of the swap search-method in improving the analysis of the total model

space for finding the most appropriate model, we repeated our analysis of the simulated data

with the additional definition of four individual swap parameter sets. If ρX denotes the multi-

plication rate in compartment X and μXY the transition rate from compartment X to compart-

ment Y, then the swap parameter set corresponding to cell compartment A is defined by

PA
swap ¼ frA; mBA; mCA; mDAg. With this definition, the set PA

swap combines all parameters that

lead to an increase in compartment A, which can be explained by multiplication within the

compartment, ρA, and/or influx from one of the other compartments, μXA. Thus, these param-

eters represent structurally similar parameters for compartment A. The sets corresponding to

the other cell compartments B, C and D were defined accordingly.

Using these swap parameter sets, we re-ran the analysis by FAMoS also including the swap
search-method. Here, we found that all of the runs which previously terminated in a local min-

imum (model 2) now ended in the globally best model (model 1), which was also the model

used to generate the data, and returned this model as the final result (Fig 4D and 4E). Fig 4D

shows that the crucial steps for leaving the local minimum defined by model 2 is the replace-

ment of the parameter μDC by μBC and then the removal of two redundant parameters. Thus,

our analysis shows that the swap search-method can prevent the algorithm from ending up

in a local minimum of the model space and improves the robustness of FAMoS for model

selection.

However, the specific choice of the swap parameter sets will influence the performance

of the algorithm. For example, using sets defined as PA
swap ¼ frA; mAB; mAC; mADg (and corre-

spondingly for the other compartments), does not result in the termination in the global mini-

mum for all starting conditions. Therefore, definition of these sets should be done carefully

dependent on the structure of the model and potential pre-knowledge of the system. If compu-

tationally feasible, the set of swappable parameters can be defined as the set of all available

parameter, meaning any two model parameters can be replaced by each other.

The selection of a final model can be further supported by the calculation of the Akaike

weights for each parameter across all models evaluated by FAMoS, which provide a quantity

for the importance of a parameter for the description of the data [30] (S1 Fig).

Flexibility of FAMoS for analysing various model structures

The development of FAMoS was especially motivated for the analysis of complex dynamical

systems, enabling the exploration of large model spaces. However, due to its flexible structure

the algorithm can be applied to a variety of different problems, in contrast to other available

model selection algorithms that are specifically designed for one particular model structure

[10, 11, 13]. This flexibility is achieved by the ability of the algorithm to allow for individual

fitting routines (see Methods), as well as the possibility to incorporate existing toolboxes for

model definition and parameter fitting, such as dMod [31]. Repeating our analysis of the

4-compartment problem (Fig 4A and 4B) using dMod confirmed our results.
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As an additional example, we also applied FAMoS to the analysis of generalized linear mod-

els (GLM) based on a test problem used in [10, 32]. Re-analzying data to explain the birth

weight of babies given as a binary outcome (low, high) based on 8 predictor variables [10],

FAMoS found a better model than the one identified by an analysis using the glmulti-package

in R, which was especially designed for GLM [10] (see Supporting Information S1 Appendix).

In addition, comparing the run time of both algorithms, FAMoS obtained the result substan-

tially faster with 15 s per run of FAMoS compared to 1-3 minutes per run for glmulti.
In summary, FAMoS represents a flexible and user-friendly toolbox to allow for efficient

model selection given various model structures.

Applying FAMoS to the analysis of cell proliferation data

Having shown the general efficiency, flexibility and robustness of FAMoS, we applied the

newly developed model selection algorithm to analyse proliferation dynamics of cells cultured

under different conditions. In our experiment, activated CD4+ and CD8+ T cells were labelled

with the fluorescent cellular membrane dye PKH which gets diluted as cells divide (Fig 5A).

Transferring 105 cells per 100 μl into either 2D liquid suspension cultures or 3D tissue-like ex
vivo cultures in which cells are embedded in a collagen matrix [27, 33], cell populations were

harvested at different time points and the percentage of cells having undergone a certain num-

ber of divisions was assessed by flow cytometry determining their PKH-profile (see Methods

for a detailed description of the experiment). Cell proliferation profiles 7 days after the start of

the experiment indicated proliferation dynamics which were comparable between CD4+ and

CD8+ T cells, but differed between the different culture conditions (Fig 5B).

Varying mathematical methods have been used to analyse cell proliferation dynamics based

on intracellular dye dilution data (reviewed in [34]). These analyses generally indicated divi-

sion-dependent proliferation and death rates of CD4+ and CD8+ T cells in cell culture assays

[35]. However, as cells can undergo several rounds of division, the identification of the genera-

tions at which cell proliferation and/or death rates change, as well as at which point differences

between the environments might occur, represents a complex scenario with multiple possibili-

ties. In line with previous analyses [35], we developed a mathematical model that assumed

division-dependent cell proliferation, ρi, and death rates, δi, with i indicating the number of

divisions a cell has undergone (Fig 5C). As we are able to distinguish up to 8 individual cell

divisions based on the PKH-profile (Fig 5A and [34]), and with Ti indicating the number of

cells that have divided i times, the corresponding equations are given by

dT0

dt
¼ � ðr0 þ d0ÞT0

dTi

dt
¼ 2ri� 1Ti� 1 � ðri þ diÞTi; i ¼ 1; . . . ; 9:

ð6Þ

All cells having undergone more than 8 divisions are captured within population T9. We

also included a possible adaptation time τE into our model which depends on the environment

E 2 {suspension, collagen} and accounts for the fact that cells are transferred into the respec-

tive environment for culture. During this first time period after transfer, cells are observed to

show a reduced ability to proliferate [27]. Thus, we only allow for proliferation if t> τE (ρi = 0

if t� τE for i = 0, . . ., 9).

Eq (6) represents the global model with additionally assuming different proliferation and

death rates for cells in suspension and 3D collagen environments. With 42 different parame-

ters (10 proliferation, 10 death rates and one adaption time for each environment), we end up

with a total set of more than 1012 different possible models for each cell type, i.e., CD4+ and
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CD8+ T cells. Even if we assume that the evaluation of one model would only take 1 second in

computational run time, evaluating all possible models would require more than 31,000 years

on a single computer. Therefore, we used FAMoS to fit Eq (6) simultaneously to the experi-

mental data of the different environmental conditions in order to determine the most appro-

priate model structure describing the observed cellular turnover, and to detect possible

differences in the dynamics between the different environments.

For the analysis, each generation-dependent proliferation rate, ρi inherits its value from the

previous generation if the algorithm does not select for a model with a change in one of these

parameters for a particular generation, i.e, ρi = ρi−1, i 2 {1, . . ., 9} if the parameter ρi is not

Fig 5. Assessing cell proliferation dynamics by dye dilution experiments within different culture conditions. (A) Representative plot for PKH-distribution and

separation for cellular subsets according to the number of divisions 7 days after the transfer of the cells. (B) Distribution for CD4+ and CD8+ T cells according to

the number of divisions either in 2D suspension (left column) or 3D ex vivo collagen cultures (right column) at 2 and 7 days post transfer of the cells. (C) Schematic

representation of the proliferation dynamics. Cells are assumed to proliferate or die with division dependent proliferation (ρ) and death rates (δ), respectively.

https://doi.org/10.1371/journal.pcbi.1007230.g005
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selected to be fitted within the model. Similarly, parameters in suspension (S) are considered

to be the same as for collagen (C) until the algorithm selects for an environmental difference

in a particular generation, i.e., rS
i ¼ r

C
i , 8i< j if the model selects for a difference between the

environments to appear after generation j (rS
j 6¼ r

C
j ). The same holds true for the generation-

dependent death rates, δi. We define Pcrit ¼ fr
C
0
; d

C
0
g as a critical parameter set as the initial

cell population starts in generation 0. Furthermore, the algorithm is allowed to swap between

any parameters. In summary, the analysis of the cell proliferation dynamics within different

environments by FAMoS utilizes the definition of critical and swap parameter sets in order to

improve model selection analysis.

Cell culture conditions influence cell proliferation dynamics

For each cell type, we used 5 subsequent FAMoS runs always taking the most distant model to

all previously tested models as the starting condition for a new run (see Methods for a detailed

explanation of the fitting procedure). Each FAMoS run comprised on average 35 (range 19-50)

iterations with�1700 (range 559–2516) models tested per run (see S2 Fig for an example of a

single FAMoS run). For CD4+ T cells, 2 out of 5 FAMoS runs (run 4 and 5) converged towards

the same final model, with the results of the other 3 runs only showing minor differences in

the determined parameter structure. This particular model had the lowest AICc-value across

all 8669 models tested within the 5 independent FAMoS-runs with the selected parameter

structure also getting the largest support based on the combined Akaike weights (Fig 6A).

With a total of 8669 (8490) models tested within the 5 independent FAMoS runs for CD4+

(CD8+) T cells, the analysis captured roughly 10−6% of the global model space.

The determined model structure indicates dynamic changes within the generation-depen-

dent proliferation and death rates for CD4+ T cells (Fig 6). Within suspension cultures, the

changes in proliferation rates can be roughly distinguished into 4 different phases: Following a

first decrease after the first division (ρ0 = 0.039(0.032, 0.05)h−1 vs. ρ1 = 0.004(0.003, 0.005)h−1)

proliferation rates gradually increase until reaching a peak after around 4-5 divisions (ρ4-5 =

0.20(0.14, 0.28)h−1). The proliferation rate then substantially decreases within the following

generations to roughly 10% of the value observed at the peak (ρ6−7 = 0.027(0.023, 0.032)h−1)

before stabilizing at a low level (ρ8−9 = 0.003(0.001, 0.005)h−1) (Fig 6B and Table 1, numbers in

brackets represent 95%-confidence intervals of estimates obtained by profile likelihood analy-

sis of the final model). The corresponding death rates indicate similarly 3-4 different phases

with the largest death rates during the generations where the proliferation rates peak simulta-

neously (Table 1).

We find that the observed differences in the proliferation dynamics between the different

culture conditions (Fig 5B) can largely be explained by a slightly reduced proliferation poten-

tial of cells in collagen while the dynamics of the rates follows a similar 4-phase pattern as

observed in suspension (Fig 6A). In addition, our algorithm particularly selects for models

with differences in the length of the adaptation phase between the two culture systems.

Thereby, the length of the adaptation phase is estimated to be slightly shorter in suspension

compared to collagen (τS = 40.6(38.7, 42.2) hours vs. τC = 46.1(42.7, 47.6) hours, numbers in

brackets represent 95%-confidence intervals of estimates). This observation agrees with the

experimental conditions as cell originate from suspension cultures before being transferred

into their respective culture conditions. Despite the complexity of the selected models, nearly

all individual parameters, except for ρ0 in collagen, are identifiable (see Table 1 and S3 Fig).

Model predictions based on the best estimates (Table 1) agree with the observed distributions

for CD4+ T cells for both environments (Fig 6C), with obtained parameter estimates supported

by the Akaike weighted parameter estimates of all evaluated models (S4 Fig).
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For CD8+ T cells, we also find dynamic changes within generation-dependent proliferation

and death rates (S5 Fig, Table 1). However, a similar 3-4 phase dynamics as observed for CD4+

T cells is less pronounced for this cell type, which is mainly due to the fact that the proliferation

rate of the first generation, ρ0, is not identifiable for both environments (S6 Fig). This leads to

less reliable parameter estimates for this cell type (S6 and S7 Figs).

Fig 6. Assessing cell proliferation dynamics of CD4+ T cells by dye-dilution experiments within different culture conditions. (A) Akaike weights for the individual

parameters based on all 8669 model evaluations within the 5 independent FAMoS runs performed for the analysis of the CD4+ T cells. Parameters selected within the

final model (depicted by 2 out of 5 runs) are shown in black, non-selected parameters in orange. A representative FAMoS run is shown in S2 Fig. (B) Determined model

structures and parameter estimates for the generation-dependent proliferation (ρ) and death rates (δ), as well as adaptation time periods (τ) for CD4+ T cells within

suspension (blue) and collagen (red). Points indicate best parameter estimates obtained for each rate with shaded areas defining the corresponding 95%-confidence

intervals obtained by profile-likelihood analyses (see Table 1 and S3 Fig). (C) Observed (grey) and predicted distribution of cell populations for CD4+ T cells using the

determined model structure and the best parameter estimates obtained for each condition (blue = suspension, red = collagen).

https://doi.org/10.1371/journal.pcbi.1007230.g006
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However, given the comparable proliferation structures identified for CD4+ and CD8+ T

cells, our analysis indicates an influence of the culture condition on the cell proliferation

dynamics with cells in 3D collagen showing impaired proliferation capacities.

Discussion

Finding the system that explains observed data out of a multitude of possible scenarios remains

a challenging and computationally intensive task. Therefore, the number of candidate models

in studies is usually limited to allow for timely evaluations and comparisons, as for example for

the identification of cell signaling [1] or cell differentiation pathways [7]. However, pre-selec-

tion of models can bias results and miss appropriate model structures as only a set of models is

evaluated against the data. With FAMoS we present a simple and flexible method to efficiently

evaluate a global model space without the requirement for model pre-selection. FAMoS was

especially designed for the analysis of complex systems, including models based on differential

equations, which are characterized by large model spaces. The presented R-package containing

FAMoS provides a framework that allows for easy parallelisation of analyses on high-perfor-

mance computing platforms and includes several options that aim at improving the model

selection routine if prior-knowledge on the underlying model structure is available.

FAMoS extends previous data-oriented model selection tools that either perform exhaustive

analyses of the total model space or use one-directional search methods, e.g. by increasing or

decreasing model complexity by adding or removing parameters, respectively. While analysis

of all models could be hindered simply due to the large number of possibilities, the latter pro-

cedure might bias results, especially if models contain structurally similar parameters. To

reduce the risk for the search algorithm to end up in a local minimum of the model space,

we implemented a dynamic forward-backward search and added a new method for model

selection within FAMoS, called the swap search-method. While this method is able to

Table 1. Estimated generation dependent proliferation and death rates. The table shows the best estimates for the generation dependent proliferation, ρ, and death

rates, δ (both in ×10−2h−1), as well as the length of the adaptation phase (in h) for both CD4+ and CD8+ T cells based on the cell proliferation data and dependent on the

culture condition. Numbers in brackets denote 95%-confidence intervals obtained by profile likelihood analysis (upper bound of 1 indicates unidentifiability). Estimates

are obtained for the best model identified by FAMoS for each cell type indicating influences of the environment on cell proliferation. In addition, standard deviation of the

data, ~s (in ×10−3), was estimated with ~sCD4 ¼ 8:7 ð7:1; 11:1Þ and ~sCD8 ¼ 2:5 ð1:8; 3:8Þ. A visualization of the estimates can be found in Fig 6B and Panel B in S5 Fig.

CD4+ T cells CD8+ T cells

Suspension Collagen Suspension Collagen

generation estimate generation estimate generation estimate generation estimate

ρ0 3.94 (3.26, 5.00) ρ0 19.8 (7.0, 100) ρ0 100 (68.2, 100) ρ0 100 (68.8, 100)

ρ1 0.42 (0.37, 0.47) ρ1 1.07 (0.99, 1.18) ρ1 0.61 (0.54, 0.68) ρ1−2 1.47 (1.30, 1.68)

ρ2 2.13 (1.65, 2.70) ρ2 0.71 (0.60, 0.88) ρ2 0.97 (0.79, 1.17)

ρ3 7.91 (5.85, 11.25) ρ3 2.78 (1.96, 4.25) ρ3 4.99 (3.80, 6.60) ρ3−4 1.15 (1.02, 1.32)

ρ4−5 20.2 (14.9, 28.2) ρ4−6 9.84 (6.8, 16.1) ρ4 2.21 (1.37, 3.49) ρ5−7 2.02 (1.49, 2.58)

ρ5 9.40 (5.20, 22.1)

ρ6 1.23 (0.79, 2.00)

ρ6−7 2.68 (2.30, 3.20) ρ7−9 0.0 (0.0, 5.70) ρ7 5.29 (3.10, 12.70)

ρ8−9 0.28 (0.10, 0.49) ρ8−9 0.02 (0.0, 0.12) ρ8−9 0.04 (0.0, 0.96)

δ0−1 0.58 (0.53, 0.62) δ0 1.74 (1.60, 2.05) δ0 0.40 (0.25, 0.56) δ0 0.79 (0.51, 1.11)

δ2−4 0.0 (0.0, 0.35) δ1−4 0.0 (0.0, 0.30) δ1−3 0.0 (0.0, 0.04) δ1 0.0 (0.0, 0.25)

δ5−6 20.9 (16.2, 26.3) δ5−9 16.2 (10.7, 27.3) δ4−6 5.36 (3.60, 7.60) δ2 0.81 (0.37, 1.29)

δ7−9 0.0 (0.0, 1.08) δ7−9 0.0 (0.0, 2.00) δ3−9 3.14 (2.36, 4.03)

τ (in h) 40.6 (38.7, 42.2) τ (in h) 46.1 (42.7, 47.6) τ (in h) 47.6 (46.4, 47.6) τ (in h) 47.5 (47.2, 47.5)

https://doi.org/10.1371/journal.pcbi.1007230.t001
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significantly improve the fitting results by increasing the robustness of selecting an appropriate

model (see Fig 4E), a meaningful application of this feature requires some knowledge of the

underlying model structure analysed (see Results). The swap search-method was originally

inspired by the problem of finding cellular differentiation pathways using cell population mea-

surements [6]. As these kind of data combine cell proliferation, differentiation and migration

dynamics, model systems describing the dynamics have to account for many structurally simi-

lar parameters that impair parameter identification. These structurally similar parameters can

be grouped into different sets, which allows FAMoS to find the most reasonable model system

despite parameter similarity (see example for Fig 4E). In general, if the total number of model

parameters is not too large, or if sufficient computational power is available, it is also possible

to define the swap set as the set containing all model parameters. This would allow an unbiased

use of the swap search-method, especially if no prior-knowledge on structural similarities

between model parameters is known. However, such a choice would increase computational

run time which might be unfavorable in case of large model systems.

As it is the case for almost all minimization routines, FAMoS cannot guarantee that the

result returned from one particular run is truly the globally best model. Since the basic model

selection methods (forward search and backward elimination) are local search methods, the

chances of ending up in a local minimum of the model space might be very high. Although

the newly developed swap search-method reduces this risk (see Fig 4D and 4E), it will not

eliminate the possibility of ending up in a local minimum completely. Therefore, re-running

FAMoS with different starting models is a reasonable approach to improve the reliability of

the performed analyses. In order to generate a comprehensive search of the total model space,

the FAMoS-package provides an option to use a starting model that is least similar in terms of

used parameters to all models tested previously (get.most.distant). This allows to start the new

selection process in a different area of the global model space and, thus, provides an extended

search of the total model space.

We followed this approach when analysing the cell proliferation dynamics of CD4+ and

CD8+ T cells based on dye-dilution data by using 5 subsequent FAMoS runs. Assuming a

model that accounts for generation-dependent proliferation and death rates, we identified a

roughly three- to four-phase proliferation dynamics for T cells in 2D suspension cultures,

which was particularly visible for CD4+ T cells (Fig 6B, S8 Fig). Although being in line with

previous observations [35], the number of divisions after which these changes could be identi-

fied differ from the generation marks determined by Yates et al. [35]. This is potentially influ-

enced by the fact that our analyses allowed for more degrees of freedom, i.e., generation-

dependent proliferation and death rates are allowed to change independently, in comparison

to the analysis by Yates et al. which assumed both rates to change simultaneously. Cells in

3D ex vivo collagen cultures were found to follow a similar phase-dependent proliferation

dynamics (Fig 6B, S8 Fig). However, both, the experimental data itself (Fig 5B), as well as the

mathematical analyses indicated a slightly reduced proliferation capacity of cells in collagen

compared to suspension. Thus, extracellular factors, such as local cytokine concentrations

and profiles, that are shaped by the individual culture conditions impact the cell proliferation

dynamics. While in suspension cultures cells sediment due to gravity at high density at the bot-

tom of the culture dish, the 3D collagen matrix provides a scaffold that results in 3D spacing of

the cells. This increased dispersion of the cells would consequently result in diminished local

cytokine concentrations and reduced cell interactions that might impair individual cell prolif-

eration potential [36]. This difference within the proliferation capacity for the two culture

conditions is also reflected in the estimation of a slightly longer adaptation phase for cells in

collagen compared to suspension (46.1 vs. 40.6 hours, Table 1). The consideration of such

an adaptation phase, in which transferred cells show an impaired ability to proliferate while
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adapting to the novel environment, is strongly recommended by the evaluations of the algo-

rithm (Fig 6A). This finding is irrespective of the culture condition and was already noticed

before [35]. Our estimates for the length of the adaptation period are slightly larger than the

values found by Yates et al. [35] (�40-47 hours vs. 36 hours), which also leads to a higher

proliferation probability for cells for the first division (γ0� 0.32 − 0.45, calculated numbers

represent the probability for a cell to divide within a 12h-time step comparable to [35], i.e.,

gi ¼ 1 � e� 12ri with taking the boundaries of the 95%-CI of the estimates into account

(Table 1)). Despite differences in the actual numbers, both analyses (here and [35]) find peak

cell proliferation probabilities for cells after they have undergone an intermediate number of

divisions (γ4−5� 0.83 − 0.97 vs. γ1−3 = 0.41 − 0.43 in [35]).

Besides arguing for generation-dependent proliferation dynamics, our mathematical

analysis could also support the existence of cell populations that are heterogeneous in their

proliferation potential [37]. Cell division rates have been found to be largely correlated within

individual lineages [38–40]. In the modeling framework used here, this heterogeneous prolif-

eration potential of individual lineages will be reflected within the dynamic changes of the gen-

eration-dependent proliferation rates. With the cell proliferation probabilities being found to

be highest at intermediate generations, our analysis arguably supports the existence of two dis-

tinct cell populations with high and low proliferation potential [37]. Given the similar pattern

of the identified proliferation rates for cells in suspension and collagen (S8 Fig), our results

could indicate that culture conditions might largely influence the total proliferation potential

rather than an increase in the heterogeneity of the proliferation potential. Additionally mea-

suring individual T cell clone sizes, as well as accounting for cell populations with different

proliferation potentials [35], or for the dependence of division and death rates on the time

since the last division of a cell within the model structure [41–43], might improve the quantifi-

cation and characterization of the observed proliferation dynamics.

As a general aspect of model selection algorithms, it needs to be mentioned that the “best”

model returned by FAMoS does not necessarily represent the “true” model that generated the

observed data. FAMoS, as well as most other model selection algorithms, work by comparing

models based on standard information criteria, such as the AIC, AICc or BIC [9, 20–22].

These information criteria have been interpreted as determining the model with the least devi-

ation from the true system (AIC, AICc) or with the highest likelihood comparing several mod-

els (BIC) [30]. Each of the information criteria has their advantages and disadvantages, and the

particular differences and individual assumptions have been discussed elsewhere [9, 44, 45].

The used information criteria rely on the likelihood of the model with regard to the data

thereby penalizing for the complexity of the model. As such the ability of the information crite-

rion to detect the “best”/“true” model relies on the assumption that the algorithm returns the

best fit for each of the tested models and, therefore, depends on the performance of the fitting

routine. However, especially for more complex models this assumption might not hold true.

FAMoS features several options to increase the likelihood of finding a reasonable fit, including

refitting of previously analysed models, parameter inheritance for subsequent iterations and

the consideration of different fitting methods (see also Methods). Several existing model selec-

tion algorithms already provide advanced fitting methods for the challenging analyses of

dynamical systems while relying on model comparisons across the whole model space [2, 14,

17, 18, 46]. Extending FAMoS by combining the developed search strategies with these elabo-

rated fitting routines might additionally improve robustness of the estimation and, thus, selec-

tion procedures. In addition, instead of just relying on the single final model returned by

FAMoS, it is recommended to determine the importance of individual parameters for explain-

ing the given data, e.g. based on the Akaike weights calculated across all tested models [30],

which allows a more reliable identification of appropriate model structures (S1 Fig, Fig 6A).
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There are already a number of pre-existing algorithms available that perform model

search and selection based on different methods, most of them suited to address a specific

model structure [10–12]. As such, the currently available packages are designed to handle the

model selection process for their given model structure as efficiently as possible. Addition-

ally, no evaluation function needs to be specified in these packages, making them more

accessible for less experienced users. The here presented FAMoS-package is not intended to

replace these previously established R-packages. FAMoS with its flexible design rather fills a

gap to allow selection on more complex model structures and large model spaces that is not

efficiently possible based on the existing algorithms. Additional algorithms have been devel-

oped recently that work on the identification of dynamical systems using sparse regression

[15], also in combination with information criteria [16]. Kaltenbacher et al. [19] presented

an algorithm based on forward search and backward elimination that showed convergence

for finding sparse solutions of inverse problems, but without the here newly developed

swap-search method that allows to account for prior-knowledge of the analysed system and

improves evaluation of the total model space. The algorithm published by Mangan et al. [16]

works remarkably well in recovering the true underlying dynamics for different theoretical

examples using dynamical systems of varying complexity. However, it remains to be noted

that the successful model identification in these examples relied on a frequent and dense

sampling of the system components, and also neglected systems with possible compensating

effects of parameters (as e.g. cell migration and proliferation dynamics in Fig 4A). Therefore,

the ability of FAMoS, as well as other model selection algorithms, to determine the “true”

dynamics also depends on the quality of the sampled data used for analysis. Dependent on

the data, i.e, frequency and time points of sampling, as well as signal-to-noise ratio, several

models could potentially explain the observed dynamics, especially if these models are struc-

turally similar. FAMoS is designed to account for prior-knowledge within the search and

selection process by the definition of critical and swap parameter sets, which can help to dis-

entangle structural similarities.

In summary, with FAMoS we present a flexible, customized toolbox for model selection

that is applicable to a large number of different scenarios. It is especially useful and designed

for the analysis of complex systems, allowing the efficient evaluation of a high-dimensional

model space. The application to cell proliferation data in this study, as well as the successful

application of an earlier version of the algorithm to the analysis of CD8+ T cell differentiation

and migration dynamics between different organs [6], shows its potential for addressing vari-

ous biological problems. As such, FAMoS provides a useful method for data-driven analyses in

systems dynamics.
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