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Accumulating evidence has proved that aberrant methylation of enhancers

plays regulatory roles in gene expression for various cancers including lung

adenocarcinoma (LUAD). In this study, the transcriptome and methylation

data of The Cancer Genome Atlas (TCGA)-LUAD cohort were

comprehensively analyzed with a five-step Enhancer Linking by

Methylation/Expression Relationships (ELMER) process. Step 1:

131,371 distal (2 kb upstream from the transcription start site) probes were

obtained. Step 2: 10,665 distal hypomethylated probes were identified in an

unsupervised mode with the get.diff.meth function. Step 3: 699 probe-gene

pairs with negative correlations were screened using the get.pair function in

an unsupervised mode. Step 4: After mapping with probes, 768 motifs were

obtained and 24 of them were enriched. Step 5: 127 transcription factors (TFs)

with differential expressions and negative correlations with methylation levels

were screened, which were corresponding to 21 motifs. After the ELMER

process, a prognostic “TFs-motifs-genes” regulatory network was

constructed. The Least absolute shrinkage and selection operator (LASSO)

and Stepwise regression analyses were further applied to identify variables in

the TCGA-LUAD cohort and an eight-gene signature was constructed for

calculating the risk score. The risk score was verified in two independent

validation cohorts. The area under curve values of receiver operating

characteristic curves predicting 1-, 3-, and 5-years survival ranged from

0.633 to 0.764. With the increase of the risk scores, both the survival

statuses and clinical traits showed a worse tendency. There were

significant differences in the degrees of immune cell infiltration, TMB

values, and TIDE scores between the high-risk and low-risk groups. Finally,

a better-performing prognostic nomogram was integrated with the risk score

and other clinical traits. In short, this multi-omics analysis demonstrated the

application of ELMER in analyzing enhancer-associated regulatory network in
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LUAD, which provided promising strategies for epigenetic therapy and

prognostic biomarkers.
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lung adenocarcinoma, enhancer, methylation, regulatory network, gene signature,
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Introduction

Enhancer is a DNA sequence in the genome with a length of

50–1,500 bp, which can bind with transcription factors (TFs) to

promote the transcription of the target gene. The position of

enhancer is not fixed and can be at the near end or the far end of a

target gene. The enhancer may be upstream or downstream of its

regulatory gene (Field and Adelman, 2020).

Enhancers have been reported to reflect normal and

pathogenic cellular conditions (Fishilevich et al., 2017). Some

high-throughput identification approaches have been developed

to predict the enhancers and corresponding functions

(Kleftogiannis et al., 2016). With the progress of functions,

enhancers have been found to link with several diseases

(Wang et al., 2018). Researchers have tried to build a database

for disease-associated enhancers: DiseaseEnhancer (Zhang et al.,

2018).

Reviews are describing the roles of enhancers in tumors (Sur

and Taipale, 2016). As important regulatory elements of DNA,

enhancers participate in several comprehensive regulatory

networks of cancer-associated genes. Mutations in tumors

often lead to aberrantly regulated enhancers, as well as

abnormal expression of growth-related genes (Adhikary et al.,

2021). The abnormal regulation can be trans-action, such as the

activation of a transcription factor or apparent regulatory factors

that control enhancer activity. Similarly, abnormal regulation can

also be cis-action, such as mutation to change enhancer activity

or its specificity to the target gene (Chen and Liang, 2020).

Investigating the activity regulation and related mechanism of

tumor type-specific enhancers at the molecular level may be

applied for screening therapeutic targets.

Accumulating evidence has suggested that many aberrant

methylation sites have been observed on enhancer sequences

in cancer cells (Herz, 2016). These abnormal methylations

have been proven to link with the expression of a target gene,

as well as the disease progression. The methylation state of

enhancer regions is the promising next generation of

epigenetic biomarkers (Clermont et al., 2016). One study

has revealed the abnormal enhancer of hepatocellular

carcinoma (HCC) based on multi-omics data (Xiong et al.,

2019). By comprehensive analysis of ChIP-seq data,

transcriptome data, DNA methylation data, and HiC data,

the abnormal enhancer and related transcription disorders in

HCC have been described, and the differentially methylated

enhancer and its target genes were identified. A prognostic

model based on these differentially expressed genes (DEGs) of

abnormal enhancers was constructed, which predicted the

prognosis of HCC. It was beneficial to the development of

epigenetic therapy for HCC (Huang et al., 2022). However, the

epigenetic regulation and function of transcription enhancers

have been still unclear.

Lung cancer is the leading cause of cancer mortality. It is

classified into various histologic subtypes, including

adenocarcinoma, squamous carcinoma, non-small cell lung

cancer, and small cell lung cancer (Ruiz-Cordero and Devine,

2020). Lung cancer exhibited a good response to novel targeted

therapies, such as checkpoint immunotherapy. With the

advances in knowledge on molecular characteristics of lung

cancer, researchers have found different treatment decisions

should be provided to patients with varied gene expression

profiles (Chen et al., 2020). For example, some patients may

show a better response to immunotherapy, while others should

receive targeted therapies and chemotherapy before considering

immunotherapy as a single agent (Mazieres et al., 2019). Drug

resistance should also be considered (Denisenko et al., 2018).

Some studies have tried to find the diagnostic and prognostic

prediction markers for lung cancers, such as the immune-related

genes signature (Yi et al., 2021), m6A modification (Li et al.,

2021), and costimulatory molecule-based signature (Zhang et al.,

FIGURE 1
The workflow for obtaining enhancer-associated prognostic
signature.
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2020). All these efforts have contributed to the precision and

individual treatment of patients with tumors.

This study aims to find enhancer-associated prognostic

biomarkers. The transcriptome and methylation of lung

adenocarcinoma (LUAD) cohorts have been integrated. The

enhancer-associated regulatory network was constructed after

Enhancer Linking by Methylation/Expression Relationships

(ELMER) analysis. An enhancer-associated prognostic gene

signature has been constructed with the screened target

transcription factor and target genes, exhibiting good

prognostic prediction performance for patients with lung

cancers. The complete analysis route of this study has been

provided in Figure 1.

Materials and methods

Datasets

Three cohorts were applied: The Cancer Genome Atlas

(TCGA)-LUAD, GSE31210, and GSE8894. Both the

transcriptome and methylation data of TCGA-LUAD were

retrieved from the UCSC Xena website, and the

transcriptome data of GSE31210 and GSE8894 were

obtained from the Gene Expression Omnibus (GEO)

database. The clinical features were also obtained, and the

data from patients with overall survival of <30 days were

removed. All transcriptomic data were normalized with log2
(x+1) method and the combat function of the sva R package

was used to exclude batch effects (Leek et al., 2012). The

methylation data were normalized with the champ.norm

function of the ChAMP R package, and the missing values

in methylation data have been filled with function

impute.knn (Tian et al., 2017).

Enhancer-associated regulatory network

With the gene methylation and transcription levels of the same

batch of samples in the TCGA-LUAD cohort, the sequences of the

differential methylation probes were screened with the ELMER R

package (Silva et al., 2019), found the enriched motifs, and further

predicted the TFs interacting with these motifs. Finally, the “TFs-

motifs-genes” regulatory network was constructed. ELMER’s main

analysis process consisted of the following five parts: 1) Identification

of distal probes (probes larger than 2 kb upstream from the

transcription start site) from methylation chip data; 2)

identification of differences in methylation levels between normal

and tumor groups; 3) identification of target genes for differentially

methylated probes; 4) identification of motifs enriched with both

differentially methylated and target gene-related probes; 5)

identification of TFs based on transcriptional differences.

Identification of prognostic regulatory
network and tumor subtypes

Based on the transcriptional level of genes included in the

regulatory network, we first conducted the univariate analysis

to screen prognostic genes, and then performed the

unsupervised clustering in the three cohorts with the

ConsensusClusterPlus R package by the k-means method

(Wilkerson and Hayes, 2010). The clustering process was

carried out 1,000 times, involving 80% samples in each

iteration. Subsequently, survival analyses were performed

for different subtypes.

Construction of enhancer-associated
prognostic signature

TCGA-LUAD was applied as the training set,

GSE31210 and GSE8894 were applied as the validation sets.

Least absolute shrinkage and selection operator (LASSO) and

Stepwise regression analyses were applied to further

streamline prognostic variables in the TCGA-LUAD cohort

and construct a multi-gene COX signature for calculating the

risk score of each patient (Tibshirani, 1997). Patients were

divided into high-risk and low-risk groups based on the

median risk score. Then Kaplan–Meier (KM) survival

curves and Receiver Operating Characteristic (ROC) curves

were plotted to assess the prediction effect of the model.

Independent prognostic analyses were applied for validating

the independence of the risk score compared with other

clinical features in the three cohorts. The Wilcoxon rank

sum test was applied to evaluate correlations between risk

score and clinical features in TCGA-LUAD cohort.

Analysis of tumor mutation burden (TMB), tumor immune

dysfunction and exclusion (TIDE), and immune micro-

environment.

The mutation data of TCGA-LUAD based on VarScan2

(Koboldt et al., 2012) were obtained from TCGA Database.

Non-synonymous mutations were calculated and the TMB

scores were obtained with the number of variants/the length

of exons. Wilcoxon test was used to analyze the difference in

TMB values. The Maftools R package was used to calculate and

plot the somatic alterations landscapes (Mayakonda et al., 2018).

The TIDE scores of the TCGA-LUAD cohort were obtained from

TIDE (Jiang et al., 2018). The differences in the immune micro-

environment were compared with the proportions of 22 types of

immune cells estimated by Cibersort (Chen et al., 2018). The

Cibersort R package was applied. The simulation was conducted

1,000 times with the parameter of perm = 1,000, QN = True. The

samples with p > 0.05 were rejected and removed. The correlation

between risk scores and various immune cell infiltration was

further analyzed with the Spearman correlation test.
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Analysis of tumor immunogenicity and
drug susceptibility

The tumor immunogenicity was analyzed in patients

from high-risk and low-risk groups, which was divided by

the median value of the risk score. The immunophenotype

scores (IPS) of TCGA-LUAD cohort were downloaded from

The Cancer Immunome Atlas database (https://tcia.at/

home). Based on the expression status of CTLA4 and PD1

(Charoentong et al., 2017), the high-risk and low-risk groups

were further classified into four subgroups: positive

CTLA4 and positive PD1; positive CTLA4 and negative

PD1; negative CTLA4 and positive PD1; negative

CTLA4 and negative PD1. The Wilcoxon nonparametric

test was used to compare the differences in IPS between

high-risk and low-risk groups in each subgroup. The drug

susceptibility has been explored in patients from high-risk

and low-risk groups. The pRRophetic R package was applied

to analyze IC50 values of six commonly used drugs

(Cisplatin, Docetaxel, Erlotinib, Gefitinib, Gemcitabine,

and Paclitaxel).

Integration of the enhancer-associated
prognostic nomogram

The predictive efficacy of the risk score for other clinical

symptoms was assessed by ROC curves for 1, 3, and 5 years of

survival. The risk score and clinical features (Gender, Age,

Stage, Prior-malignancy) were integrated into a nomogram

using the “rms” R package. The ROC curves of the nomogram

and clinical features for the 5-year survival were plotted with

the survivalROC R package. The performance of the

nomogram was also confirmed by both the KM and

calibration curves.

Statistics

Statistical analysis was conducted with the R 4.0.3. The

survival analyses were performed with the log-rank test. The

comparison between the two groups was executed with the

Wilcoxon test or t-test. p < 0.05 was considered to be

significant.

FIGURE 2
Enhancer-associated regulatory network was constructed with ELMER. (A) The heatmap of methylation and transcriptomic data in the TCGA-
LUAD cohort. (B) Volcano plot of probes hypomethylated in primary tumor tissues. (C) Example of top ten genes closest to the upstream and
downstream of the differentially methylated distal probes. (D) Odds ratios of the significantly enriched motifs identified by the get.enriched.motif
function. (E) Example of correlation plot between the TF expression level and corresponding average DNA methylation level.
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Results

Construction of enhancer-associated
regulatory network with ELMER

Bothmethylation and transcriptomic data of 463 primary tumor

tissues and 21 normal controls from the TCGA-LUAD cohort were

fed into subsequent ELMER analysis. The heatmap of methylation

and transcriptomic data is plotted (Figure 2A). Distal probes are the

region where enhancers are enriched. Based on the hg38 reference

genome file, we first select 13,1371 distal probes with the

get.feature.probe function (Supplementary Material S1). Then, the

unsupervised mode is used to identify distal hypomethylated probes

with the get.diff.meth function. In detail, for every distal probe, the

methylation levels are sorted in all samples within the primary

tumor and the normal groups separately, and those samples in the

lower quintile (20% samples with the lowest methylation levels) of

each group are used to identify whether the probe is hypomethylated

in the tumor group, thus obtaining 10,665 distal hypomethylated

probes (Supplementary Material S2) with the threshold of false

discovery rate (FDR) < 0.01 and Δβ < −0.3 (Figure 2B). Next, the

GetNearGenes function is applied to identify the top ten genes

closest to the upstream and downstream of the distal

hypomethylated probes separately, generating probe-gene pairs

(Figure 2C). Then, for each probe-gene pair, the inverse

correlations between the methylation level of the probe and the

expression of the genewere tested. The top 20% and the bottom 20%

of all the samples based on the probe’s methylation level are

extracted as the Methylated (M) group and Unmethylated (U)

group. The gene expression levels between M and U groups are

compared by the Mann-Whitney U test. 669 pairs of statistically

significant probe-gene pairs with negative correlations are screened

by default parameters using the get.pair function in an unsupervised

mode (Supplementary Material S3). Further, the 250 bp base

sequence upstream and downstream of the probes screened in

the previous step are extracted, mapped to 768 motifs

(Supplementary Material S4), and identified 24 significantly

enriched motifs by the get.enriched.motif function (Figure 2D).

Finally, based on the methylation level, the distal probes

corresponding to the same motif were classified as the top 20%

M group and the bottom 20%U group. A total of 127 TFs (Lambert

et al., 2018) with differential expressions in the two groups and

negative correlations with methylation levels are screened by using

the get.TFs function in an unsupervised mode (Figure 2E),

corresponding to 21 motifs (Supplementary Material S5).

Construction of prognostic network and
its contribution to tumor subtypes

With the 21 motifs as links, 127 TFs and 271 target genes

are screened in the enhancer-associated regulatory network.

FIGURE 3
Prognostic network was constructed and contributed to tumor subtypes. (A) Prognostic regulatory network visualized with the Cytoscape
software. (B) Function enrichment performed by Metascape. (C) Heatmaps of unsupervised consensus matrixes in the three cohorts. (D) KM curves
revealed significant survival differences in all three cohorts. Log-rank test.
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According to expression data in the TCGA-LUAD cohort,

25 TFs and 80 target genes are selected as prognostic genes

with the univariate analysis p < 0.05 (Supplementary Material

S6). Then, the prognostic regulatory network is visualized

with the Cytoscape software (Figure 3A). The function

enrichment is performed with the Metascape (Zhou et al.,

2019) webtool (https://metascape.org/). The results show that

the regulatory network mainly affected ribosome biogenesis,

translation, cell aging, cell cycle, E2F pathway, and so on

(Figure 3B). Then, based on the transcriptional data of the

regulatory network, unsupervised clustering analysis is

conducted in the three cohorts respectively. Two stable

subtypes are obtained (Figure 3C), and the KM curves

reveal significant survival differences (Figure 3D).

An eight-gene enhancer-associated
prognostic signature

Next, TCGA-LUAD is applied as the training set, with

GSE31210 and GSE8894 as the validation sets. Relevant

clinical features are presented (Table 1). With the

105 genes in the above regulatory network as the initial

variables, we subsequently conduct Lasso regression

analysis (Figure 4A) and Stepwise regression analysis, and

finally obtain the Cox model consisting of genes. The risk

score = (0.3486 × E2F7) + (0.3011 × EIF3H) + (0.2536 ×

INTS1) + (0.3019 × LPGAT1) + (0.3078 × MCAT) + (0.3006 ×

SEC61G) + (−0.6044 × SS18L1) + (−0.2837 × TNYN1). The

forest plot shows the hazard ratio (HR) of each gene, and the

model’s concordance index reached 0.7 (Figure 4B). Detailed

results of variables within the model are shown in Table 2. The

AUC of ROC curves for 1-, 3-, and 5-years survival are 0.764,

0.709, and 0.635 in the TCGA-LUAD cohort, and ranged from

0.633 to 0.71 in the independent validation cohorts

GSE31210 and GSE8894 (Figure 4C). KM curves show

significant differences between the high-risk and low-risk

groups in all three cohorts (Figure 4D). The expression

heatmaps of eight genes involved in the model and the risk

curves of patients were also visualized. With the increase of

the risk scores, the survival statuses become worse, and the

expression levels of SS18L1 and THYN1 are gradually

decreased, while the expression levels of the other six genes

are gradually increased (Figure 4E). The results are consistent

with the HR value of each gene in the model. Based on the

results of multi-cox prognostic analyses, the risk score is an

indicator independent of other factors (p < 0.05) for

predicting the survival in all three cohorts (Figure 5A).

Correlation analysis with clinical traits shows that with the

increase of tumor stages and degrees of metastasis, the risk

scores exhibit a gradually increasing trend, and the risk scores

of patients with PD responses to the primary therapy exhibit

significant improvement compared to those with complete

response (CR), partial response (PR), and stable disease (SD)

responses (Figure 5B).

Differences in TMB, TIDE, and immune
micro-environment

TMB score represents the density of non-synonymous

mutation distribution in the protein-coding region, which is

calculated with the number of non-synonymous mutation

sites/the total length of exons. TMB is an effective index to

predict the response of immunotherapy, and higher TMB

indicates a better immune response. TIDE is the

TABLE 1 Clinical characteristics.

Feature TCGA-LUAD (N = 487) GSE31210 (N = 226) GES8894 (N = 63)

Age

>65 230 (47.23%) 50 (22.12%) 18 (28.57%)

≤65 247 (50.72%) 176 (77.88%) 43 (68.25%)

Unknown 10 (2.05%) NA 2 (3.17%)

Gender

Male 226 (46.41%) 105 (46.46%) 34 (53.97%)

Female 261 (53.59%) 121 (53.54%) 29 (46.03%)

Stage

I 262 (53.80%) 168 (74.34%) NA

II 114 (23.41%) 58 (25.66%) NA

III 79 (16.22%) NA NA

IV 25 (5.13%) NA NA

Unknown 7 (0.01%) NA NA

NA: Not Available.
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computational algorithm for assessing tumor micro-

environment from gene expression profiles. TIDE involves a

set of gene expression markers to evaluate tumor immune

evasion, including dysfunction of tumor-infiltrating cytotoxic

T lymphocytes (CTL) and exclusion of CTL by

immunosuppressive factors. TIDE is a quantitative index of

immune escape, and higher TIDE indicates more serious the

immune escape of the tumor.

To explore the characteristics of the immune

microenvironment in patients with high and low risks, we

compare the TMB values, TIDE scores, and 22 types of

immune cell infiltration in these two groups. The high-risk

group shows significantly higher TMB values (Figure 6A), and

FIGURE 4
An eight-gene enhancer-associated prognostic signature. (A) Lasso regression analysis result. Partial Likelihood Deviance profile (left) and
coefficients profile (right) changing with the log lambda. (B) Forest plot of each gene’s hazard ratio (HR) and themodel’s concordance index. (C) ROC
curves predicting 1-, 3-, and 5-years survival in the TCGA-LUAD, GSE31210, and GSE8894 cohorts. (D) KM curves showed that there were significant
differences in survival between the high- and low-risk groups in all three cohorts. (E) The expression heatmaps of eight genes in the model and
the patients’ risk factor correlation curves.

TABLE 2 Detailed results of variables within the enhancer-associated
signature.

ID Coef HR HR.95 L HR.95H p-value

E2F7 0.3486 1.4171 1.1862 1.6930 1.22E-04

EIF3H 0.3011 1.3514 1.0013 1.8239 4.90E-02

INTS1 0.2536 1.2886 0.9622 1.7258 8.89E-02

LPGAT1 0.3019 1.3524 1.0376 1.7627 2.55E-02

MCAT 0.3078 1.3604 0.9639 1.9200 7.99E-02

SEC61G 0.3006 1.3507 1.0811 1.6876 8.13E-03

SS18L1 -0.6044 0.5464 0.4179 0.7144 9.90E-06

THYN1 -0.2837 0.7530 0.5511 1.0287 7.47E-02
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FIGURE 5
The risk score was an independent factor for survival. (A)Multi-cox analyses of the risk score and other clinical features in the three cohorts. (B)
Differential analyses of the risk scores in patients with different clinical traits. With the increase of tumor stages and degrees of metastasis, the risk
scores showed a gradually increasing trend, and the risk scores of patients with PD responses to the primary therapy were significantly improved
compared to those with complete response (CR), partial response (PR), and stable disease (SD) responses.

FIGURE 6
Differences of tumor mutation burden and immune micro-environment in high- and low-risk patients. (A) The violin diagram shows the TMB
difference between the two groups. (B)Mutation profile of the top 30 genes with the biggest mutation frequency in high-risk samples. (C)Mutation
landscape of the top 30 genes with the biggest mutation frequency in low-risk samples. (D) Violin diagram of the TIDE scores in the two groups. (E)
The violin diagram of the differences between two groups in the infiltration of 22 immune cells.
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higher percentages of gene mutations (Figure 6B), compared

to that of the low-risk group (Figure 6C). The high-risk group

also presents higher TIDE scores than the low-risk group

(Figure 6D). Eight of the 22 immune cell types show statistical

differences in the infiltration degree. Among them,

macrophage M0, macrophage M1, and T cell CD4 memory

activated significantly increase in the high-risk group, while

plasma cells and mast cells resting decrease significantly

(Figure 6E). T cell CD4 memory activated exhibits a significant

positive correlation with the risk score, while mast cells resting

presents a significant negative correlation with the risk score

(Figure 7B).

Tumor immunogenicity and drug
susceptibility

The IPS is included for evaluating tumor immunogenicity.

Higher IPS suggested higher immunogenicity, exhibiting a

potential higher response rate to immunotherapy. The IPS

score of the low-risk group is significantly higher than that of

the high-risk group in subgroups of positive CTLA4 and

positive PD1, negative CTLA4 and negative PD1

(Figure 7A). The results suggest that the patients in the

low-risk group show a better response to immunotherapy.

The IC50 values of six commonly used drugs (Cisplatin,

Docetaxel, Erlotinib, Gefitinib, Gemcitabine and Paclitaxel)

are calculated in low-risk and high-risk groups. For all six

drugs except for Erlotinib, LC50 is significantly higher in low-

risk groups than that of high-risk groups (Figure 7C). It

suggests that the patients in the high-risk group may be

more sensitive to these drugs, which is accompanied by the

high potential of immunosuppression.

An integrated enhancer-associated
prognostic nomogram

We first compare the predictive accuracy of the risk score with

various clinical traits (Age, Gender, Stage, and Prior-malignancy

status). ROC analyses of multiple indicators show that the risk

score is more accurate compared to other clinical traits in

predicting 1- and 3-years survival (Figure 6B–Figure 8A), and

slightly lower than Stage in predicting 5-years survival (Figure 8C).

Then, a nomogram including all the variables in the TCGA-LUAD

cohort is integrated withmulti-cox regression analysis (Figure 8D).

The nomogram exhibited the highest accuracy in the ROC curve

for predicting 5-years survival, higher than the risk score alone

(Figure 8E). And the performance is also validated with the KM

curve (Figure 8F) and the calibration curve (Figure 8G).

FIGURE 7
Tumor immunogenicity and drug susceptibility. (A) IPS score in low-risk and high-risk groups, which were classified into four subgroups:
positive CTLA4 and positive PD1; positive CTLA4 and negative PD1; negative CTLA4 and positive PD1; negative CTLA4 and negative PD1, respectively.
(B) The correlation between risk scores and various immune cell infiltration. (C) The IC50 values of Cisplatin, Docetaxel, Erlotinib, Gefitinib,
Gemcitabine, and Paclitaxel in low-risk and high-risk groups.
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Discussion

Lung cancer has been a common type of cancer (Mao et al.,

2016). Its prognosis has been generally poor, especially for the

advanced stages (Jones and Baldwin, 2018). As a huge burden on

society (Bade and Dela Cruz, 2020; Wu et al., 2021), the high

incidence and mortality of lung cancer put forward higher and

more urgent demands for its early diagnosis and treatment

(Rodriguez-Canales et al., 2016). With the development of

molecular biology tools, the genomic information of lung

cancer has been better profiled at the molecular level, which

provided new treatment options and improved outcomes for

patients (Parikh, 2019). Several studies have tried to find

diagnostic and prognostic prediction markers for lung cancers.

One prospective cohort study included 426 patients with

complete surgical resection of stages I to III LUAD reported

that a computational machine-learning prediction model

integrating genomic and clinicopathologic features could

better predict the risk of recurrence, compared with the

current TNM system. It would provide recommendations for

adjuvant therapy after surgical resection of LUAD (Jones et al.,

2021). Another study performed on LUAD patients in eastern

China detected molecular alterations with a customized DNA

panel. Some of the specific mutations may make effects on the

efficacy of targeted therapies, CCAAT enhancer binding protein

alpha (CEBPA) mutations affected the efficacy of EGFR-tyrosine

kinase inhibitors. The erb-b2 receptor tyrosine kinase 2 (ERBB2),

CEBPA and transcription factor 7 like 2 (TCF7L2) mutated

tumors tend to have higher TMB. The targeted DNA panel

may be helpful for personalized treatment decisions of LUAD

patients (Liu et al., 2021).

For better understanding the molecular characteristics of

lung cancers, several studies have involved various

bioinformatic tools to comprehensively analyze the omics

data based on microarray or sequencing analysis of

patients. Based on the microarray datasets of three cohorts

of lung cancer, a meta-analysis has been performed. There

were 50 upregulated and 87 downregulated genes overlapped

in three datasets, which were included in following analysis.

With the protein-protein interaction (PPI) networks, 22 core

genes were identified, which were all significantly associated

with poor survival. Finally, KEGG pathway enrichment

reanalysis screened five key genes, which exhibit a

relationship with certain drugs. The identified key genes

FIGURE 8
Integration of the enhancer-associated prognostic nomogram. (A) ROC analyses of the risk score with other clinical traits (Age, Gender, Stage,
and Prior-malignancy status) in predicting 1-year survival. (B) ROC analyses of multiple indicators in predicting 3-years survival. (C) ROC analyses of
multiple indicators in predicting 5-years survival. (D) Nomogram including all the variables in the TCGA-LUAD cohort integrated with multi-cox
regression analysis. (E) ROC analyses of the nomogramwith other clinical traits in predicting 5-years survival. (F) KM curve of the high- and low-
risk patients distinguished by the nomogram. (G) Calibration curve of the nomogram for the survival prediction.
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can be candidate targets for both the treatment and prognosis

of lung cancer (Wang et al., 2021). With the synthetic analysis

of the transcriptome sequencing dataset and a non-coding

RNA sequence dataset of small-cell lung cancer, the

differentially expressed genes and miRNAs can be screened.

After function enrichment, the molecular mechanisms were

identified with the PPI network. Finally, 19 overlapping target

genes and 32 corresponding regulatory miRNAs were

screened. The bioinformatics analysis involving multi-omics

data can assist in exploring the roles of target genes, miRNA,

and TFs, which may better understand the potential molecular

pathways (Mao et al., 2019).

After screening the potential candidate genes based on

bioinformatics analysis, they can be further validated

experimentally. A comprehensive bioinformatics analysis revealed

that, the decreased expression of immunoglobulin superfamily

member 10 (IGSF10) was associated with the shortened overall

survival duration of patients with lung cancer. In subsequent

experimental validation, IGSF10-knockout cells presented

significantly increased proliferation and adhesion capability,

revealed by MTT, colony formation assay, and Transwell assay,

respectively. Further, Western blotting suggested that, the IGSF10-

knockout can activate the integrin-β1/FAKpathway, presented as the

upregulated protein expression levels of integrin-β1, phosphorylated
(p)-FAK and p-AKT (Ling et al., 2020). Another study has analyzed

the RNA sequencing data and revealed circXPO1, a novel circular

RNA (circRNA) in LUAD. The circXPO1 was derived from a well-

established cancer therapeutic target, XPO1, which was highly

expressed in LUAD tissues compared with paired controls. High

circXPO1 expression was correlated with worse overall survival.

Mechanically, circXPO1 could bind with IGF2BP1 and enhance

CTNNB1 mRNA stability, and subsequently promote LUAD

progression (Huang et al., 2020). A similar study verified that

circ-CAMK2A enhanced LUAD metastasis by regulating the

miR-615-5p/fibronectin one pathway. Circ-CAMK2A upregulated

the expression level of fibronectin one by spongingmiR-615-5p, thus

promotingMMP2 andMMP9 expression to stimulate themetastasis

of LUAD (Du et al., 2019). In short, the combination of

bioinformatics analysis and experimental verification can better

clarify the significance of certain target biomarkers or promising

pathways.

In our study, the comprehensive multi-omics analysis has also

been applied to screen the target genes, whichmay be significant to

prognosis prediction of lung cancer. The transcriptome and

methylation data of the TCGA-LUAD cohort involving

463 primary tumor tissues and 21 normal controls were

obtained for subsequent ELMER analysis. A total of 127 TFs

corresponding to 21 motifs and 271 target genes were screened

for constructing the subsequent enhancer-associated regulatory

network. 25 TFs and 80 target genes were selected as prognostic

genes with the univariate analysis p < 0.05. With TCGA-LUAD as

the training set, the Cox model involving eight genes was selected

with LASSO regression analysis and Stepwise regression analysis.

The risk score = (0.3486 × E2F7) + (0.3011 × EIF3H) + (0.2536 ×

INTS1) + (0.3019 × LPGAT1) + (0.3078 × MCAT) + (0.3006 ×

SEC61G) + (−0.6044 × SS18L1) + (−0.2837 × TNYN1). With the

increase of the risk scores, the survival statuses became worse, as

well as the clinical traits including tumor stages, metastasis degree,

and treatment responses. The risk score exhibited prognostic

prediction accuracy with GSE31210 and GSE8894 as the

validation sets.

The multi-omics study has been proved as a good tool for the

epigenetic regulation of functional enhancers. In a study on

HCC, methyl-binding DNA capture sequencing was firstly

performed on both tumor and control tissues. The data

revealed abnormal enhancer hypermethylation patterns. Then,

the single-base resolution whole-genome bisulfite sequencing

(WGBS) was performed to screen enhancers with differential

methylation. Then, CCAAT/enhancer-binding protein-beta (C/

EBPβ) enhancer was selected for further function mechanism.

The survival analysis indicated that hypomethylation of C/EBPβ
enhancer was related to the poor prognosis of patients with HCC.

Themechanism has been also investigated experimentally (Xiong

et al., 2019). This study has inspired several studies to perform

multi-omics analysis (Cui et al., 2021). By involving methylome,

transcriptome, and 3D genomic data, the researchers

comprehensively analyzed enhancer methylation regulome and

identified enhancer methylation-enhancer TF-target gene

expression. They found that the enhancer-regulated core TFs

could further shape their enhancer methylation, thus forming the

enhancer methylation-driven core transcriptional regulatory

circuitries, which can be served as innovative therapy targets

and prognostic risk biomarkers (Pan et al., 2022). In another

study integrating ChIP-seq, RNA-seq, and WGBS data, the

enhancers with differential expression and differential

methylation were identified, as well as the associated

differentially expressed genes. A model based on six enhancer-

associated genes was constructed with regression analysis,

exhibiting excellent predictive accuracy (Huang et al., 2022).

In addition to screening biomarkers, the combination of

epigenetic and transcriptional data can also demonstrate the

mechanism. For example, the aberrant methylation of promoters

and enhancers could activate critical cell cycle-related pathways

and inhibit several metabolic pathways, thus affecting the

progression of HCC (Huang et al., 2021). In short, the

integrative analysis of multi-omics data can help us find new

and more effective function targets in various diseases.

One comprehensive study has summarized more than

30 bioinformatics approaches for enhancer identification. With

the advances in biological technologies, several data resources

have been involved for screening enhancers, such as evolutionary

conservation data, histone marks, Open chromatin, Transcription

factor-binding sites, Sequencing features, Screening data, and eRNA

expression. These data types can be combined in different ways to

generate feature vectors that describe DNA regions. After feature

selection, the feature vectors feed computational models that make
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decisions using unsupervised and/or supervised algorithms, such as

Clustering, Classification, Graphical models, and Regression. The

outcome is a list of identified enhancer regions. However, one of the

major challenges is how to assess the correctness of predicted

enhancers, because there is no large, sufficiently comprehensive,

and experimentally validated enhancer set for humans. One possible

way of validation is to link the predicted enhancers to their target

genes (Kleftogiannis et al., 2016). The ELMER analysis applied in

this study has involved five steps, which can construct a “TFs-

motifs-genes” regulatory network. The formation of a regulatory

network integrating TF, motif, and target gene further guaranteed

the correctness of predicted candidates. However, one limitation of

this study may be the lack of experimental evidence for validation.

The prognostic prediction signature for LUAD has been only

validated in patients from another two LUAD cohorts.

Conclusion

This study has comprehensively analyzed the transcriptome and

methylation data of a LUAD cohort. ELMER analysis has been

performed to screen motifs, motif-associated TFs, and target genes.

The “TFs-motifs-genes” regulatory network was constructed. After

regression analysis, the Cox model involving eight genes was

constructed. The enhancer-associated prognostic gene signature

can be applied as a risk score for predicting the survival status of

patients. With the increase of the risk scores, both the survival

statuses and clinical traits showed a worse tendency in patients with

lung adenocarcinoma. The multi-omics bioinformatics analysis can

be a good tool for obtainingmore information at the epigenetic level.
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