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Abstract
Background Patients with migraine often experience not only headache pain but also cognitive dysfunction, 
particularly in attention, which is frequently overlooked in both diagnosis and treatment. The influence of these 
attentional deficits on the pain-related clinical characteristics of migraine remains poorly understood, and clarifying 
this relationship could improve care strategies.

Methods This study included 52 patients with migraine and 34 healthy controls. We employed the Attentional 
Network Test for Interactions and Vigilance–Executive and Arousal Components paradigm, combined with 
electroencephalography, to assess attentional deficits in patients with migraine, with an emphasis on phasic alerting, 
orienting, executive control, executive vigilance, and arousal vigilance. An extreme gradient boosting binary classifier 
was trained on features showing group differences to distinguish patients with migraine from healthy controls. 
Moreover, an extreme gradient boosting regression model was developed to predict clinical characteristics of patients 
with migraine using their attentional deficit features.

Results For general performance, patients with migraine presented a larger inverse efficiency score, a higher 
prestimulus beta-band power spectral density and a lower gamma-band event-related synchronization at Cz 
electrode, and stronger high alpha-band activity at the primary visual cortex, compared to healthy controls. Although 
no behavior differences in three basic attentional networks were found, patients showed magnified N1 amplitude 
and prolonged latency of P2 for phasic alerting-trials as well as an increased orienting evoked-P1 amplitude. For 
vigilance function, improvements in the hit rate of executive vigilance-trials were exhibited in controls but not in 
patients. Besides, patients with migraine exhibited longer reaction time as well as larger variability in arousal vigilance-
trials than controls. The binary classifier developed by such attentional deficit features achieved an F1 score of 0.762 
and an accuracy of 0.779 in distinguishing patients with migraine from healthy controls. Crucially, the predicted value 
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Introduction
Migraine, a prevalent neurological disorder, affects 
approximately 14% of the global population [1]. Charac-
terized by episodes of severe headaches often accompa-
nied by nausea, migraines impose significant personal 
burdens, impacting not only the individual’s quality of 
life but also contributing to a higher disability adjusted 
life year [2]. Emerging evidence suggests that patients 
with migraine exhibit cognitive impairments, particularly 
in attention, both during the acute migraine attack and 
in the interictal phase [3, 4]. Despite their significance, 
these cognitive deficits remained underrecognized and 
inadequately addressed.

The Attention Network theory [5, 6] proposed that 
attention consists of three independent but interacting 
attentional networks: alerting, orienting, and executive 
control. These networks are crucial for detecting, select-
ing, and organizing internal and external information, 
thereby enabling adaptive behavior. Among these, dys-
functions in the executive control are the most consis-
tently reported in patients with migraine, as evidenced by 
impaired performance on tasks such as the Stroop Task 
[7], Stop Signal Task [8], Frontal Assessment Battery Test 
[9], and Wisconsin Card Sorting Test [10]. Nonetheless, 
these studies primarily focused on executive control, 
neglecting the other attentional functions and integrated 
nature of attentional networks. To address this issue, the 
Attentional Network Test (ANT [11]) has been employed 
to assess the efficiency of each attentional network in 
patients with migraine [12–14]. For instance, Bonsu et 
al. [14] found that the reaction time (RT) to targets of 
patients with migraine was more influenced by whether 
a preceding warning predicts the target onset when com-
pared to healthy controls. Since phasic change in alert-
ness could be produced by setting a warning signal that 
involves preparation for detecting and responding to the 
following expected-target event [5], this finding indicated 
impairments in the alerting network among patients with 
migraine.

However, comprehensive investigations that combine 
clinical assessments with detailed electroencephalog-
raphy (EEG) analyses are scarce. An in-depth investiga-
tion of these networks in patients with migraine could 
shed light on the disorder’s pathogenesis and inform the 
development of targeted interventions. The present study 

aimed to (1) systematically investigate the attentional 
dysfunctions in patients with migraine using both behav-
ioral and EEG measures, and to (2) emphasize the signifi-
cances of these dysfunctions in migraine diagnosis and 
prediction. To this end, the most advanced and detailed 
version of the ANT (i.e., the Attentional Networks Test 
for Interactions and Vigilance–Executive and Arousal 
Components, ANTI-Vea [15]) was employed in con-
junction with EEG recording. This approach allows us to 
assess each attentional function in patients with migraine, 
specifically: (1) phasic alerting, induced by warning sig-
nal alerting individual to the following expected target; 
(2) orienting, induced by location cue facilitating target 
detection or causing reorientation; (3) executive control, 
resolving the conflicts between the targets and the dis-
tractors; (4) executive vigilance, maintaining the ability 
to detect critical signals that occur rarely by executing 
a specific response; and (5) arousal vigilance, maintain-
ing a fast and stable reaction to stimuli occurring rarely 
without specific response [5, 15, 16]. Furthermore, the 
contributions of the possible deficits in these networks to 
the clinical characteristics of migraine were evaluated by 
developing a classification model to distinguish patients 
from healthy controls, as well as a regression model to 
predict clinical characteristics. This study seeks to pro-
vide a better understanding of the attentional dysfunc-
tions in migraine. Such insights could pave the way for 
novel diagnostic and therapeutic approaches, thereby 
improving the quality of life for patients suffering from 
migraine.

Methods
Participants
Patients with migraine were recruited through the Neu-
rology Outpatient Clinic of the Chinese People’s Lib-
eration Army (PLA) General Hospital. Two neurologists 
specializing in headache disorders managed the entire 
enrollment process. All patients with migraine met the 
following inclusion criteria: (1) a confirmed diagnosis of 
migraine without aura, as specified by the International 
Classification of Headache Disorders (the 3rd Edition); 
(2) being in the interictal phase, defined as the period 
between migraine attacks (> 48  h after a migraine epi-
sode and > 48 h before the next episode) [17]; and (3) a 
migraine history of at least one year. Exclusion criteria 

available from the regression model involving attentional deficit features significantly correlated with the real value for 
the frequency of headache.

Conclusions Patients with migraine demonstrated significant attentional deficits, which can be used to differentiate 
migraine patients from healthy populations and to predict clinical characteristics. These findings highlight the need to 
address cognitive dysfunction, particularly attentional deficits, in the clinical management of migraine.

Keywords Migraine, Attention, Electroencephalography (EEG), Vigilance, Hypersensitivity, Machine learning
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included those who had taken preventive migraine medi-
cation within the three months prior to the study and 
individuals diagnosed with other types of headaches. 
Importantly, participants were not restricted to newly 
diagnosed or entirely medication-naïve individuals. 
Healthy participants, without chronic pain or a fam-
ily history of migraines, were also recruited through 
advertisements posted on the hospital bulletin board. 
All participants enrolled in the study were native Chi-
nese speakers and were required to be between 18 and 65 
years old, right-handed, and have normal or corrected-
to-normal vision and hearing. Participants with a diag-
nosis of brain injuries, psychiatric or neurodegenerative 
disease, or any chronic conditions requiring daily medi-
cation were excluded. Written informed consent was 
obtained from all participants prior to the experimental 
procedures. The study was approved by the Ethics Com-
mittee of the Chinese PLA General Hospital in accor-
dance with the ethical principles of the Declaration of 
Helsinki (2023 − 460).

A total of 70 patients with migraine and 40 healthy 
participants were initially recruited. A larger sample 
size for patients due to the high dropout rate based on 
previous research [18, 19]. Follow-up assessments were 
conducted after the experiment to retrospectively iden-
tify participants in the interictal phase. Specifically, two 
patients and two healthy controls did not complete all 
tasks and withdrew from the experiment, and one patient 
was retrospectively identified as preictal and excluded 
from the analysis. Nine patients and two healthy par-
ticipants were excluded due to poor task comprehen-
sion, while six patients and two healthy participants were 
excluded due to a poor signal-to-noise ratio of their EEG 
data. Consequently, 52 patients with migraine and 34 

healthy participants were included in the final analyses. 
Patients (11 males) and healthy participants (11 males; 
χ2

(1) = 1.354, p = 0.245) were matched in terms of sex ratio.

Clinical questionnaires
The clinical characteristics of patients with migraine 
were documented (see Table  1). Patients with migraine 
completed the Allodynia Symptom Checklist (ASC), 
Headache Impact Test-6 (HIT-6), and Migraine Dis-
ability Assessment (MIDAS) to evaluate the severity of 
their headaches and the impact on daily life. Given that 
mood states can influence attention, all participants were 
required to complete the Patient Health Questionnaire-9 
(PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), 
and Perceived Stress Scale-14 (PSS-14) to assess levels 
of depression, anxiety, and stress. The Pittsburgh Sleep 
Quality Index (PSQI) was administered to compare 
sleep quality between patients with migraine and healthy 
controls.

ANTI-Vea task
A modified ANTI-Vea task [16] was employed in this 
study. The task consisted of two trial types: Type-1 trials, 
which assessed phasic alerting, orienting, executive con-
trol, and executive vigilance networks, and Type-2 tri-
als, which assessed arousal vigilance network (see Fig. 1). 
In total, this task included 384 trials, divided into two 
blocks. All trials were presented in a pseudo-randomized 
order across participants.

Type-1 trials
Type-1 trials consisted of 320 trials and began with a 
white fixation cross on a black screen for 400–1600 
ms. Subsequently, a 50 ms warning tone (838 Hz) was 

Table 1 Demographics and clinical characteristics
Patients Healthy controls Z p
Mean SD Mean SD

Age 29.88 7.96 29.62 6.34 0.115 0.908
Height (m) 1.67 0.07 1.68 0.09 1.033 0.301
Weight (kg) 61.14 10.50 62.71 9.09 0.894 0.372
Educational level 4.04 0.63 4.24 0.50 1.548 0.122
PSQI 6.62 4.07 7.09 3.70 0.950 0.342
GAD-7 5.69 5.05 4.50 2.98 -0.568 0.570
PHQ-9 6.90 5.46 5.00 2.93 -1.136 0.256
PSS-14 39.37 9.84 34.74 9.22 -1.866 0.062
Duration of migraine per month in the last 3 months (h) 22.38 20.24 - - - -
History of migraine (year) 9.37 5.04 - - - -
Frequency per month in the last 3 months 4.3 3.67 - - - -
VAS for pain intensity 7 1.66 - - - -
ASC 2.71 3.01 - - - -
HIT-6 66.06 6.31 - - - -
MIDAS 23.56 21.43 - - - -
Notes SD, Standard Deviation; PSQI, Pittsburgh Sleep Quality Index; GAD-7, Generalized Anxiety Disorder-7; PHQ-9, Patient Health Questionnaire-9; PSS-14, Perceived 
Stress Scale-14; VAS, Visual Analogue Scale; ASC, Allodynia Symptom Checklist; HIT-6, Headache Impact Test-6; MIDAS, Migraine Disability Assessment
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presented in half of the trials to induce phasic alerting, 
while the fixation cross remained visible. After 350 ms, a 
visual cue (no cue, double cue, upper cue, or lower cue) 
appeared for 50 ms, followed by a 50 ms fixation cross. 
The target stimulus, a row of five arrows, then appeared 
either above or below the fixation cross (50% each) for 
200 ms. In 80% of the Type-1 trials, participants were 
instructed to determine the orientation of the middle 
arrow as quickly and accurately as possible by press-
ing either the ‘d’ key (left) or the ‘j’ key (right) with their 
index fingers while ignoring the flanking arrows. In the 
remaining 20% of the Type-1 trials, the middle arrow was 
presented off-center, and participants were asked to dis-
regard its orientation but to promptly press the space bar. 
The inter-trial interval was 2000–3000 ms. All combina-
tions of warning stimuli, cue stimuli, and target stimuli 
were presented in Fig. S1. Participants’ RT and accuracy 
(ACC) were recorded.

Type-2 trials
Type-2 trials consisted of 64 trials and started with a 
white fixation cross in the center of a black screen, last-
ing for 800–2000 ms, followed by a 5-s countdown task. 

Participants were required to press any button as quickly 
as possible to stop the countdown, and the RT for each 
trial was recorded. The inter-trial interval was 1000–2000 
ms.

Behavioral variables
General performance was evaluated for Type-1 trials 
using the inverse efficiency score (IES), calculated as RT/
ACC, which measures overall energy consumption dur-
ing the task [20]. Phasic alerting was assessed by com-
paring trials with and without warning tones, as well as 
by contrasting double-cue trials with no-cue trials. The 
orienting function was evaluated by comparing trials 
with valid cues, which correctly indicated the upcoming 
target location, to those with invalid cues. Executive con-
trol was estimated by contrasting trials where the middle 
arrow pointed in the opposite direction (i.e., incongru-
ent) vs. the same direction (i.e., congruent) as the flank-
ing arrows. RT and ACC were calculated to estimate the 
effectiveness of each attentional function (see Table 2).

Executive vigilance decrement was assessed by analyz-
ing the hit rate (executive vigilance-hit) and correct rejec-
tion rate (executive vigilance-CR) over time: the first 15 

Fig. 1 The ANTI-Vea task. The task is comprised of two trial types, 320 trials for Type-1 and 64 trials for Type-2. (A) Type-1 trials, measuring phasic alert-
ing, orienting, executive control, and executive vigilance networks by contrasting different combinations of warning stimuli, cue stimuli, and targets; (B) 
Warning stimulus condition, evaluating phasic alerting (trials with warning stimulus vs. without warning stimulus); (C) Cue stimulus condition, evaluating 
orienting (trials with valid cue vs. invalid cue); (D) Target stimulus condition account for 80%, respectively pressing ‘d’ or ‘j’ button for the left or right middle 
arrow, evaluating executive control (trials with congruent vs. incongruent target); (E) Target stimulus condition account for 20%, ignoring the arrow ori-
entation and pressing ‘SPACE’ button, evaluating executive vigilance; (F) Type-2 trials, pressing any key as quickly as possible, measuring arousal vigilance. 
PA, phasic alerting; EC, executive control; EV, executive vigilance; AV, arousal vigilance
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Table 2 Features and main results for each attentional system
System Behavior EEG

Features Main results Components Window size Electrodes Features Main results
General
1 Averaged all Type-
1 trials
2 Averaged all trials

IES1 Patients > HCs* Prestimulus 
spectrum2

-1000 to 0 ms+ Fz: δ & θ;
Cz: α, β & γ;
Pz: α, β & γ;
Oz: α & γ

PSD Patients > HCs*in 
β-band at Cz

ERP1 0 to 800 ms# Cz Averaged amp Patients > HCs*

γ-ERS1 0 to 300 ms# Cz PSD Patients < HCs*

γ-ERD1 350 to 650 ms# Cz PSD /
α-band activity1 0 to 2000 ms+ primary 

visual area
PSD Patients < HCs*

Phasic alerting
Trials with warning 
stimuli − trials 
without warning 
stimuli

RT / N1 50 to 200 ms+ Cz (1) Peak amp;
(2) Lat

(1) Peak amp: 
Patients > HCs*;
(2) Lat: /

ACC / P2 150 to 300 
ms+

Cz (1) Peak amp;
(2) Lat

(1) Peak amp: /;
(2) Lat:
Patients > HCs**

CNV 300 to 700 ms+ FCz Averaged amp /
Trials with double 
cue − trials without 
cue

RT / P1 50 to 100 ms# primary 
visual area

(1) Peak amp;
(2) Lat

(1) Peak amp: /;
(2) Lat: /

ACC / N1 100 to 150 ms# primary 
visual area

(1) Peak amp;
(2) Lat

(1) Peak amp: /;
(2) Lat: /

Orienting
Trials with valid cue 
− trials with invalid 
cue

RT / P1 50 to 100 ms# primary 
visual area

(1) Peak amp;
(2) Lat

(1) Peak amp: 
Patients > HCs*;
(2) Lat: /

ACC / N1 100 to 150 ms# primary 
visual area

(1) Peak amp;
(2) Lat

(1) Peak amp: /;
(2) Lat: /

P3 350 to 650 ms# Pz Averaged amp /
Executive control
Trials with congru-
ent target − trials 
with incongruent 
target

RT / P1 50 to 100 ms# primary 
visual area

(1) Peak amp;
(2) Lat

(1) Peak amp: 
Patients > HCs’;
(2) Lat: /

ACC / N1 100 to 150 
ms#

primary 
visual area

(1) Peak amp;
(2) Lat

(1) Peak amp: 
Patients > HCs’;
(2) Lat: /

N2 200 to 350 ms# Fz (1) Peak amp;
(2) Lat

(1) Peak amp: /;
(2) Lat: /

SP 500 to 800 ms# Pz Averaged amp /
Executive 
vigilance
First 15 executive 
vigilance-trials (time 
1) vs. last 15 execu-
tive vigilance-trials 
(time 2)

Hit Group × time*:
time 2 > time 1 
in controls***; 
patients < controls’

P1 50 to 100 ms# primary 
visual area

(1) Peak amp;
(2) Lat

(1) Peak amp: 
Group×time’;
(2) Lat: /

CR / N1 100 to 150 ms# primary 
visual area

(1) Peak amp;
(2) Lat

/

P3 350 to 650 ms# Pz Averaged amp /
Arousal vigilance
(1) First 15 arousal 
vigilance-trials (time 
1) vs. last 15 arousal 
vigilance-trials 
(time 2);
(2) Fastest 15 
arousal vigilance-
trials (high state) vs. 
lowest 15 arousal 
vigilance-trials (low 
state)

RT (1) Group:
Patients > HCs*;
(2) Group:
Patients > HCs*

P1 50 to 100 ms# primary 
visual area

(1) Peak amp;
(2) Lat

/

IIRTV (1) Group:
patients > HCs**;
(2) Group: /

N1 100 to 150 ms# primary 
visual area

(1) Peak amp;
(2) Lat

/

P3 350 to 650 
ms#

Pz Averaged amp (1) Group×time: /;
(2) Group×states**:
high state > low 
state in patients**;
patients > HCs 
under high state’

Notes*p < 0.05; **p < 0.01; ***p < 0.001; ’p < 0.1. + time locked to warning signal onset; # time locked to target onset; /, no significant group difference. Features that showed 
significant group differences are highlighted in bold. Primary visual area refers to PO5, PO7, O1, PO6, PO8 and O2 electrodes. Abbreviations: GLM, generalized 
linear model; IES, inverse efficiency score; HCs, healthy controls; PSD, power spectral density; ERP, event-related potential; amp, amplitude; ERS, event-related 
synchronization; ERD, event-related desynchronization; RT, reaction time; Lat, latency; ACC, accuracy; CNV, contingent negative variation; SP, slow positivity; GEE, 
generalized estimate equation; CR, correct rejection rate; IIRTV, intra-individual reaction time variability
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executive vigilance-trials (time 1) vs. the last 15 execu-
tive vigilance-trials (time 2) [16]. By contrast, arousal 
vigilance decrement was measured using the mean RT 
(arousal vigilance-RT) and intra-individual RT variability 
(arousal vigilance-IIRTV; calculated as standard devia-
tion of RT divided by the mean RT [21]) across relevant 
trials over time: the first 15 arousal vigilance-trials vs. 
the last 15 arousal vigilance-trials, as well as under two 
arousal vigilance states: the fastest 15 arousal vigilance-
trials (high arousal vigilance state) vs. the slowest 15 
arousal vigilance-trials (low arousal vigilance state) [16, 
22].

Data acquisition and analyses
After completing the clinical questionnaires, partici-
pants underwent EEG preparation and then completed 
the ANTI-Vea task with continuous EEG recording. Both 
the migraine and control groups were examined by the 
same examiner in the same room, with fully standard-
ized instructions and procedures to ensure consistency 
in data collection. To minimize bias, group labels were 
blinded during data preprocessing and feature extraction, 
before conducting group analyses.

EEG recording and preprocessing
EEG data were recorded using 64 Ag-AgCl scalp elec-
trodes placed according to the International 10–20 Sys-
tem (Compumedics Neuroscan; sampling rate: 1000 Hz, 
online reference: average). All electrode impedances were 
kept below 10kΩ.

EEG signals were preprocessed using the open-source 
toolbox EEGLAB [23], running in the MATLAB environ-
ment (MathWorks, USA). Continuous EEG data were fil-
tered with a 0.1–60 Hz band-pass filter, and a 49–51 Hz 
notch filter was applied to remove 50 Hz powerline inter-
ference. EEG epochs were extracted using a time win-
dow of 3000 ms (1000 ms before and 2000 ms after the 
onset of the events of interest) and baseline corrected 
using the prestimulus interval. Specifically, the events of 
interest were the warning tones for Type-1 trials and the 
countdown challenges for Type-2 trials. All epochs were 
detrended to remove polynomial trends, and those con-
taminated with eyeblinks, movements, or other artifacts 
were corrected using an independent component analysis 
algorithm [23].

Frequency domain analyses
Prestimulus data (-1000 to 0 ms) were extracted and 
transformed to the frequency domain using the periodo-
gram estimate at the single-trial level to obtain the power 
spectral density (PSD) for each frequency point within 
1–60 Hz. Spectrograms at each electrode were averaged 
across all trials at the single-subject level and then aver-
aged across subjects within each group. The spectrum 

was divided into the following bands: δ (1–3  Hz), θ 
(4–7 Hz), α (8–13 Hz), β (14–30 Hz), and γ (31–60 Hz) 
[24]. To investigate the prestimulus attentional processes 
and movement preparation [25–28], the PSD for each 
frequency band was calculated as the average within 
respective band and compared between the two groups 
in regions of interest, that is, δ- and θ-bands at the fron-
tal cortex (Fz electrode); α-, β- and γ-bands at the sen-
sorimotor cortex (Cz electrode) and parietal cortex (Pz 
electrode), and α- and γ-bands at the occipital cortex (Oz 
electrode).

Time domain analyses
Preprocessed EEG signals were further filtered with a 
30  Hz low-pass filter and averaged across trials in the 
time domain, yielding event-related potential (ERP) 
waveform for each condition. In line with behavioral 
measurements, general ERP waveforms were obtained 
by averaging all Type-1 trials, and the 0-800 ms ERP was 
extracted from Cz where the significant inter-group dif-
ferences were most pronounced. ERP waveforms asso-
ciated with phasic alerting, orienting, and executive 
vigilance were generated by averaging Type-1 trials with 
and without warning tones, with valid and invalid cues, 
and with congruent and incongruent targets, respec-
tively. In addition, ERP waveforms associated with exec-
utive vigilance were obtained by averaging the first and 
the last 15 executive vigilance-trials. ERP waveforms 
associated with arousal vigilance were obtained by aver-
aging the first and the last 15 arousal vigilance-trials as 
well as the fastest and the slowest 15 arousal vigilance-
trials. Referring to the previous study and the represen-
tative areas for specific components [16, 29–31], features 
extracted for each attentional system were presented in 
Table 2.

Time-frequency domain analyses
Time-frequency domain analyses were conducted on all 
Type-1 trials. Each Type-1 trial was transformed to the 
time-frequency domain using a short-term Fourier trans-
form with a 400 ms window size to calculate the PSD for 
each time-frequency point at each electrode. The PSD 
for each time-frequency point was then baseline-cor-
rected by subtracting the averaged PSD across baseline 
time window (-800 to -200 ms) at the corresponding fre-
quency point. Event-related synchronization/desynchro-
nization (ERS/ERD) related to motor preparation and 
execution (i.e., γ-ERS [500 to 800 ms, according to the 
first 300 ms after target appearance] and γ-ERD [850 to 
1150 ms, according to 350ms-650 ms after target appear-
ance] at Cz electrode [32]) and visual processing (i.e., 
α-band activity [0 to 2000 ms] at the primary visual area 
[33]) were compared between patients and controls.
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Statistical analysis
Basic analysis
Considering the unequal sample size between the two 
groups and non-normal distribution of the data, all 
dependent variables were analyzed using non-parametric 
methods. Group differences in participant demograph-
ics and migraine characteristics were compared using 
Mann-Whitney U test (e.g., age) or Chi-squared (χ²) test 
(e.g., sex ratio). Age and educational level were consid-
ered as covariates in the following analyses for behavioral 
and EEG data. A generalized linear model (GLM) was 
performed to estimate group differences, and a general-
ized estimate equation (GEE) was conducted to assess 
the main effects and interaction effect of two indepen-
dent variables (e.g., group × time for executive vigilance). 
Pairwise comparisons were performed when there was 
a significant interaction. Coefficient (B) was calculated 
to reflect the effect size. p < 0.05 were considered statis-
tically significant. Bonferroni correction was applied for 
multiple comparisons when necessary.

Spearman rank correlations were estimated between 
features assessing corresponding attentional function, 
separately. Additionally, classification and regression 
models were established to test the potential diagnostic 
and monitoring ability of the dysfunctions in the atten-
tional system revealed by the present study.

Classification modeling to distinguish patients from healthy 
controls
For binary classification, we developed a model based on 
the extreme gradient boosting (XGB [34, 35]) machines 
which performed effectiveness in small and imbalanced 
datasets. Grid search with leave-one-out cross-valida-
tion (LOOCV) was utilized to obtain optimal model 
parameters of XGB classifier developed. Specifically, 
in each iteration, one participant’s data was reserved 
as the validation set, while the remaining participants’ 
data constituted the training set. A classification model 
was developed to predict the outcomes for the valida-
tion data, and this process was repeated until every par-
ticipant had been used as the validation data. This study 
identified the model parameters that yield the highest 
mean F1 score and mean classification accuracy, and the 
corresponding precision and recall values were reported.

Regression modeling to predict clinical characteristics of 
patients
XGB regression was performed to predict clinical char-
acteristics (e.g., headache duration in the past three 
months). The individual prediction values for each clini-
cal characteristic were calculated using LOOCV. To 
assess the performance of the regression model, Spear-
man rank correlation was calculated between the real 
and predicted values for each clinical characteristic.

Results
Demographics and clinical characteristics
There was no significant group difference in terms of 
sex ratio, age, educational level, height, or weight (all 
p > 0.05). Migraine participants reported a higher trend 
in stress level compared to healthy controls, although 
the difference was not statistically significant (p = 0.062). 
Demographics and clinical characteristics of participants 
are summarized in Table 1.

Differences in general response between patients and 
controls
Patients showed a significant larger IES than controls 
(patients: 932.71 ± 203.50 [hereinafter Mean ± SD]; con-
trols: 839.15 ± 97.77; χ2

(3) = 5.443, p = 0.020, B = 78.743; 
Fig.  2A). In line with this observation, GLM revealed 
that patients showing higher prestimulus β-band PSD 
(patients: -7.19 ± 2.35 dB; controls: -8.54 ± 2.53 dB; 
χ2

(3) = 6.389, pcorrected = 0.033, B = 1.352; Fig.  2B-D) and 
larger averaged amplitude of target-locked 0-800 ms 
interval (patients: 0.08 ± 1.61 µV; controls: -0.58 ± 1.23 
µV; χ2

(3) = 3.840, p = 0.050, B = 0.638; Fig. 3A-C) than con-
trols. In the time-frequency domain, group differences 
were signified in γ-ERS (χ2

(3) = 6.197, pcorrected = 0.026, B 
= -0.267; Fig. 3D-F) and high α-band activity (11–13 Hz; 
χ2

(3) = 5.022, p = 0.025, B = -0.723; Fig. 3G-I). Specifically, 
patients (0.14 ± 0.49 dB) showed smaller γ-ERS than 
controls (0.41 ± 0.51 dB) around the motor cortex dur-
ing motor preparation. Additionally, patients (-1.28 ± 
1.09 dB) exhibited larger high α-band activity than con-
trols (-1.98 ± 1.89 dB) around the primary visual cortex 
during visual information processing. No other spectral 
activities showed significant differences between the two 
groups.

Differences in phasic alerting, orienting, and executive 
control between patients and controls
There were no significant group differences in either pha-
sic alerting-RT or phasic alerting-ACC. However, ERP 
analyses indicated that warning tones (versus no warn-
ing tones) evoked a larger N1 amplitude (χ2

(3) = 3.756, 
p = 0.050, B = -1.203; see Fig.  4A-C) in patients with 
migraine (-6.13 ± 2.68 µV) compared to that in con-
trols (-4.89 ± 3.00 µV). Moreover, warning tones evoked 
a delayed P2 latency (χ2

(3) = 8.143, p = 0.004, B = 10.262; 
see Fig.  4A-B, D) in patients with migraine (231.83 ± 
14.32 ms) compared to that in controls (222.68 ± 20.77 
ms). For orienting, patients exhibited a higher orienting 
effect, as reflected by the difference amplitude (valid vs. 
invalid) of target evoked visual P1 (0.23 ± 1.35 µV) than 
controls (-0.27 ± 1.04 µV; χ2

(3) = 4.232, p = 0.040, B = 0.556; 
see Fig. 4E-G). Although the differences (congruency vs. 
incongruency) in target-evoked P1 and N1 amplitudes 
showed a lower trend in patients (see Fig. S2; all p < 0.1) 
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than those in controls, no statistically significant dif-
ference was observed in executive control between the 
two groups. No other behavioral or EEG responses (see 
Table 2) for phasic alerting, orienting, and executive con-
trol systems presented significant group differences.

Differences in maintaining vigilance between patients and 
controls
GEE analyses demonstrated that patients with migraine 
were less vigilant than controls, as revealed by a signifi-
cant group × time interaction of the hit rate in executive 
vigilance trials (χ2

(4) = 4.169, p = 0.041, B = 0.047; Fig. 5A). 

Pairwise comparisons illustrated that the hit rate of the 
last 15 executive vigilance-trials was higher than that of 
the first 15 executive vigilance-trials in controls (pcorrected 
< 0.001), but not in patients (pcorrected = 0.760). Addition-
ally, a marginally significant group × time interaction 
was observed in the P1 amplitude (χ2

(4) = 3.602, p = 0.058, 
B = 1.137; Fig.  5B-C). This interaction was character-
ized by a smaller increase of P1 amplitude from the first 
15 executive vigilance-trials (3.98 ± 2.59 µV) to the last 
15 executive vigilance-trials (4.91 ± 2.58 µV) in patients 
(pcorrected = 0.034) compared to controls (the first 15 exec-
utive vigilance-trials: 2.79 ± 1.97 µV; the last 15 executive 

Fig. 2 Comparisons of prestimulus spectra and general behaviors between patients and healthy controls. (A) Comparison of general IES; (B) Comparison 
of prestimulus β-band PSD; (C) Baseline spectra at Cz electrode at group level, the shadow area highlighting the prestimulus β-band PSD; (D) Topogra-
phies of β-band PSD for patients, healthy controls, and their difference (patients − controls). *p < 0.05, **p < 0.01. IES, inverse efficiency score; PSD, power 
spectral density
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Fig. 3 Comparisons of general ERPs and time-frequency representations between patients and healthy controls. (A) General ERP waveforms at Cz elec-
trode at group level and their difference; (B) Topographies of averaged amplitude across target-locked 0-800 ms; (C) Comparison of general amplitude at 
Cz; (D) γ-ERS at Cz electrode; (E) Topographies of γ-ERS; (F) Comparison of γ-ERS at Cz electrode; (G) High α-band activity at the primary visual cortex (i.e., 
PO5, PO7, O1, PO6, PO8 and O2 electrodes); (H) Topographies of high α-band activity; (I) Comparison of High α-band activity at the primary visual cortex. 
*p < 0.05. PSD, power spectral density; ERS, event-related synchronization; ERPs, event-related potentials
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Fig. 4 (See legend on next page.)
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vigilance-trials: 4.85 ± 2.25 µV; pcorrected < 0.001). Besides, 
the P1 amplitude in patients was higher than that in con-
trols during the first 15 executive vigilance-trials (pcorrected 
= 0.034).

For arousal vigilance, patients showed slower RT 
(χ2

(4) = 6.095, p = 0.014, B = 67.891; Fig.  5D) and a larger 
IIRTV (χ2

(4) = 9.061, p = 0.003, B = 0.090; Fig.  5E) than 
controls across time, as revealed by significant main 
effects of group. Besides, GEE analysis confirmed lon-
ger RT in patients than in controls across arousal vigi-
lance states (χ2

(4) = 4.513, p = 0.034, B = 155.945; Fig.  5F). 
A group × state interaction was found on P3 amplitude 
(χ2

(4) = 10.718, p = 0.001, B = 1.722; Fig.  5F), defined by a 
significant difference between attended-state (i.e., the 
fastest 15 arousal vigilance-trials; 5.13 ± 3.28 µV) and 
unattended-state (i.e., the slowest 15 arousal vigilance-
trials; 4.13 ± 3.54 µV; pcorrected = 0.006) in patients, and 
a trend showing a larger P3 amplitude for patients (5.13 
± 3.28 µV) than for controls (4.04 ± 2.68 µV; pcorrected = 
0.082) under high arousal vigilance state. No other fea-
tures for vigilance illustrated significant abnormal in 
patients (see Table 2).

Classification model and regression model performance
To discriminate patients with migraine from healthy 
controls, all features exhibiting between-group differ-
ences were incorporated into the binary classifier and the 
regression model (see Fig. 6A). The XGB classifier (max 
depth: 3; learning rate: 0.1) achieved the best binary dis-
crimination with an F1 score at 0.762, an ACC at 0.779, 
a precision at 0.774, and a recall at 0.756. The impor-
tance ranking for features is presented in Fig.  6B. The 
first 10 features, in order of their importance, are: IIRTV 
for the first 15 arousal vigilance-trials (10.52%), PSS-14 
score (10.02%), IIRTV for the last 15 arousal vigilance-
trials (7.94%), N1 difference amplitude reflecting alert-
ing (7.19%), general γ-ERS (5.93%), IES (5.80%), RT for 
the last 15 arousal vigilance-trials (5.73%), prestimulus 
β-band PSD (5.42%) and P2 difference latency associated 
with alerting (4.92%).

For regression model, attention deficits found in the 
present study could predict the headache frequency per 
month in the last three months, indicated by the sig-
nificant correlation between the predicted and the real 
values for headache frequency (ρ = 0.314, pcorrected = 
0.024; Fig. 6C). The average gain representing reduction 
in loss across all splits and trees for each feature in the 

regression model to predict headache frequency was pre-
sented in the Fig. 6D.

Discussion
Based on the ANTI-Vea task, we found that patients with 
migraine exhibit hypersensitivity to external stimuli, gen-
eral deficits in attentional networks, and impaired vigi-
lance system at both behavioral and electrophysiological 
levels. Crucially, these impairments could distinguish 
patients with migraine from healthy individuals and pre-
dict headache frequency in those with migraine. The spe-
cific features assessed in the present study may enhance 
the understanding of secondary diagnosis indicators for 
migraine.

Hypersensitivity to external stimuli is a frequently 
reported symptom in patients with migraine [36, 37]. Our 
study corroborated this finding, revealing sensory over-
load across auditory and visual modalities. Specifically, 
while there were no significant corresponding behavioral 
features, the neural hypersensitivities, particularly the N1 
response to auditory stimuli, played a crucial role in dif-
ferentiating patients with migraine from healthy controls 
(see Fig. 6B). Notably, ERP amplitudes are highly variable 
and not consistently increased in all migraine studies, 
depending on stimulus types, specific ERP components, 
and task conditions [19, 38]. Thus, although the hyper-
sensitivity observed in our study showed potential as an 
indicator for diagnosing and predicting migraine charac-
teristics, the specificity and generalizability of these find-
ings need further validation before they can be applied 
clinically [39].

Except for extensively studied finding of hypersensitiv-
ity in migraine patients, the present study highlighted an 
integrate impairment in attention networks revealed by 
enhanced IES scores. Similar findings were reported by 
Bonsu et al. [14] and Chen et al. [13], who demonstrated 
prolonged overall RTs in patients with migraine using the 
ANT task. These findings provide consistent evidence 
that patients with migraine experience concurrent atten-
tion deficits. Supporting this, prestimulus spectral analy-
ses showed increased PSDs across frequency bands in 
patients with migraine, with a significant increase in the 
β-band at Cz (Fig. 2B-D), which was considered to mani-
fest the activity of the parietal attentional network [40]. 
In addition, movement-related γ-ERS, which was dimin-
ished in patients with migraine (Fig.  3D-F), supports 
the idea that patients with migraine may have a reduced 

(See figure on previous page.)
Fig. 4 Comparisons of phasic alerting and orienting systems between patients and healthy controls. (A) ERP waveforms at Cz electrode for trials with 
and without warning stimuli; (B) ERP waveforms at Cz electrode presenting phasic alerting; (C) Topographies of peak amplitude of N1 and comparisons 
of latency of N1 and peak amplitude of N1 extracted from ERP waveforms presenting phasic alerting; (D) Topographies of peak amplitude of P2 and 
comparisons of latency of P2 and peak amplitude of P2 extracted from ERP waveforms presenting phasic alerting; (E) ERP waveforms at the primary visual 
cortex (i.e., PO5, PO7, O1, PO6, PO8 and O2 electrodes) for trials with valid cue and invalid cue; (F) ERP waveforms at the primary visual cortex for trials with 
valid cue and invalid cue; (F) Topographies of peak amplitude of P1 extracted from ERP waveforms for trials with valid cue and invalid cue; (G) Comparison 
of P1 difference amplitude (trials with valid cue − trials with invalid cue). ns., not significant; *p < 0.05
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Fig. 5 (See legend on next page.)
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capacity to allocate cognitive resources for movement 
planning and execution [32, 41].

Enhanced α-band activity at the visual cortex (Fig. 3G-
I) might be another neural basis for the impairment in 
general attention. Alpha-band activity is considered to 
suppress cortical excitability by attenuating neural spike 
timing and firing rate [27, 42–44]. Thus, the continuously 
increased α-band activity in patients with migraine may 
result in facilitated cortical inhibition in the visual cor-
tex during target detection and processing. Abnormal 
resting-state α-band activity has been widely investigated 
in migraine [45–47]. Besides, α-band activity represents 
top-down regulation to the visual cortex during tasks. 
Lisicki et al. [33] recorded feedback volleys from higher-
order visual areas (i.e., V2 to V4) to the primary visual 
cortex, inducing a larger α-band power in patients with 
migraine in interictal phase than that in healthy controls. 
This phenomenon may reflect an increased top-down 
inhibition to against sensory overload as a protective (or 
compensatory) mechanism [33].

The vigilance system was another attentional system 
found to be impaired in patients with migraine. Vigilance 
refers to the ability of maintaining the rapid detection of 
infrequent stimuli from the external environment, which 
is a key distinction from the concept of alerting [15, 48]. 
Although we cannot completely rule out the influence of 
the learning network, presented by increased hit rate in 
healthy participants but not in patients, further ERP anal-
ysis supports the existence of impairment in the mainte-
nance of vigilance in patients with migraine. Specifically, 
P1 amplitude for executive vigilance-trials was increased 
across times both in patients and healthy controls, while 
the significant group difference in P1 amplitude observed 
in time 1 did not show in time 2 (Fig. 5B). Healthy par-
ticipants were able to allocate more attentional resources 
to maintain a high level of performance in the later time 
of the experiment, whereas patients with migraine were 
unable to sustain the same level of resource allocation, 
despite demonstrating hypersensitive to external stimuli 
in the early time of the experiment. This suggested that 
the ability of patients with migraine to sustain executive 
vigilance over time may be impaired.

Similarly, the present study also identified disabilities 
in maintaining arousal vigilance, revealed by P3 compo-
nent. Parietal P3 is an indicator of attentional resource 
allocation to target [49, 50] and has been shown to be 
reduced during mind wandering relative to on-task peri-
ods in patients with migraine [51]. Previous studies have 
reported mixed results with enlarged [51, 52], reduced 
[53, 54], and nonabnormal [53] P3 amplitude in patients 
with migraine, compared to healthy controls, which 
were affected by task types and stages of migraine attack. 
Our results exhibited a higher trend in P3 amplitude in 
patients with migraine, which may illustrate a higher 
demand of attentional resources to maintain attended 
state, compared to healthy controls.

While differences in behavioral and evoked EEG 
responses have been widely investigated in migraine 
research, previous studies often relied on univariate 
analyses, lacking an integration and comprehension of 
complex and high-dimensional features. Machine learn-
ing offers an opportunity to handle such datasets, capture 
non-linear interactions between features, and distinguish 
patients from healthy controls, which is particularly 
meaningful for clinical use. A few studies have developed 
classification models often using somatosensory evoked 
responses [55, 56]. These studies showed good model 
performance, as somatosensory and pain processing 
share similar networks. In contrast, cognitive task evoked 
responses have received less attention in the literature. 
Using an XGB classifier, our binary classification model 
developed with attentional related behavioral indica-
tors and EEG signals, highlighting the potential of using 
attentional features as biomarkers for migraine diagnosis.

On the other hand, several studies have utilized corre-
lation analysis to explore the relationship between atten-
tional deficits and clinical characteristics in migraine [12, 
57] but few research has quantified the influence of these 
attentional deficits. In the present study, attentional defi-
cits were able to predict the headache frequency using 
XGB regression modeling. However, we acknowledge 
that there are noticeable discrepancies between the pre-
dicted and actual values, even though the correlation 
between them was statistically significant (Fig. 6C). The 

(See figure on previous page.)
Fig. 5 Comparisons of executive vigilance and arousal vigilance systems between patients and healthy controls. (A) Hit rate for the first 15-executive vigi-
lance trials (time 1) and the last 15-executive vigilance trials (time 2) with a significant increase in controls but not in patients across times; (B) Left panel, 
topographies of peak amplitude of P1 at time 1 and time 2, as well as their differences for executive vigilance trials; Right panel, group × time interaction 
effect on the peak amplitude of P1 for executive vigilance trials, revealing a larger increase in P1 peak amplitude for healthy controls than that for patients 
across times and a larger P1 peak amplitude for patients than that for healthy controls at time 1; (C) ERP waveforms at the primary visual cortex (i.e., PO5, 
PO7, O1, PO6, PO8 and O2 electrodes) at time 1 and time 2 for executive vigilance trials; (D) Group difference in RT for arousal vigilance trials across times; 
(E) Group difference in IIRTV for arousal vigilance trials across times; (F) Group difference in RT for arousal vigilance trials across attended (fastest 15-arousal 
vigilance trials) and unattended (slowest 15-arousal vigilance trials) states; (G) No group difference in IIRTV for arousal vigilance trials across states; (H) ERP 
waveforms at Pz electrode under two states for both groups; (I) Topographies of averaged amplitude of P3 under two states for both groups; (J) Group × 
state interaction effect on averaged amplitude of P3 for arousal vigilance trials, revealing a significant state difference in patients and a higher amplitude 
trend in patients under attended-state. ns., not significant; *p < 0.05; **p < 0.01; ***p < 0.001. EV, executive vigilance; AV, arousal vigilance; RT, reaction time; 
IIRTV, intra-individual reaction time variability
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small size with large inter-individual variability may have 
been one of the impediments to the regression model 
training. Thus, future studies should increase the sample 
size to further investigate the causality instead of corre-
lations between the attentional deficits and clinical char-
acteristics during migraine development. Nonetheless, 
the regression model in our study captured meaningful 
relationships, which is valuable for understanding general 
trends and identifying important features. In this model, 
arousal vigilance features played crucial roles in the 
regression model (Fig. 6D), indicating the importance of 
long-term monitoring of vigilance function in migraine 
sufferers.

Although our study illustrated the importance of atten-
tional deficits in patients with migraine, an area rarely 
explored before, there were several limitations. Study 
recruitment was limited to patients with migraine with-
out aura who were during the interictal phase, which 
restricts the generalizability of our findings to other 

attack periods. Also, attentional dysfunctions for differ-
ent migraine subtypes (e.g., episodic and chronic) need to 
be contrasted in future studies to enhance precision diag-
nosis and precision medicine. Nonetheless, reanalysis 
showed consistent results after excluding patients with a 
frequency of 15 attacks per month (i.e., chronic migraine; 
see Table S1). Besides, while blinding was implemented 
during data preprocessing and feature extraction, the lack 
of blinding during data acquisition may introduce some 
bias. However, given that both patients and controls fol-
lowed standardized instructions and procedures, we 
believe that the absence of blinding for the examiner is 
unlikely to significantly influence the results. In addition, 
although we employed LOOCV, which is well-suited for 
small datasets by maximizing the use of available data 
while still providing a robust validation framework [58, 
59], the generalizability of the models remains limited 
without external independent validation [39]. Multi-cen-
ter data collection will help validate the generalizability 

Fig. 6 Classification and regression models. (A) Feature selection for developing gradient boosting (XGB) classification model to distinguish patients 
from healthy controls and regression model to predict clinical characteristics of patients; (B) Importance ranking for each feature in the XGB classification 
model; (C) Correlation between real headache frequency and predicted headache frequency estimated by the XGB regression model using leave-one-
out cross-validation; (D) Average reduction in loss for each feature across all splits and trees in regression model for predicting headache frequency. 
*p < 0.05. PSS-14, Perceived Stress Scale-14; IES, inverse efficiency score; RT, reaction time; IIRTV, intra-individual reaction time variability; ERS, event-related 
synchronization; AV, arousal vigilance; amp, amplitude; PSD, power spectral density; lat, latency; EV, executive vigilance; EC, executive control
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of the findings across diverse populations. Furthermore, 
the specificity of these attentional deficits to migraine 
remains in question, which hinders the recognition of 
the related features as migraine diagnostic or predict-
ing biomarkers [39]. Including patients with other types 
of chronic pain, particularly various headache types, will 
help verify whether the identified attentional deficits are 
selective to migraine.

Conclusion
Our study demonstrated significant attentional deficits in 
patients with migraine, primarily characterized by hyper-
sensitivity to external stimuli, general attentional net-
work impairments, and decrements in vigilance function. 
These deficits were effective in distinguishing patients 
with migraine from healthy controls and in predicting 
headache frequency. Increasing attention on the associa-
tion between migraines and attentional deficits may help 
develop more comprehensive treatment therapies that 
focus not only on pain management but also on improv-
ing the overall quality of life for patients.
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