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Abstract

Brain predicted age difference, or BrainPAD, compares chronological age to an age esti-

mate derived by applying machine learning (ML) to MRI brain data. BrainPAD studies in

youth have been relatively limited, often using only a single MRI modality or a single ML

algorithm. Here, we use multimodal MRI with a stacked ensemble ML approach that itera-

tively applies several ML algorithms (AutoML). Eligible participants in the Healthy Brain

Network (N = 489) were split into training and test sets. Morphometry estimates, white

matter connectomes, or both were entered into AutoML to develop BrainPAD models.

The best model was then applied to a held-out evaluation dataset, and associations with

psychometrics were estimated. Models using morphometry and connectomes together

had a mean absolute error of 1.18 years, outperforming models using a single MRI modal-

ity. Lower BrainPAD values were associated with more symptoms on the CBCL

(pcorr= .012) and lower functioning on the Children's Global Assessment Scale (pcorr= .012).

Higher BrainPAD values were associated with better performance on the Flanker task

(pcorr = .008). Brain age prediction was more accurate using ComBat-harmonized brain

data (MAE = 0.26). Associations with psychometric measures remained consistent after

ComBat harmonization, though only the association with CGAS reached statistical signifi-

cance in the reduced sample. Our findings suggest that BrainPAD scores derived from

unharmonized multimodal MRI data using an ensemble ML approach may offer a clinically

relevant indicator of psychiatric and cognitive functioning in youth.
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1 | INTRODUCTION

Human neuromaturation is the complex process that governs the for-

mation and refinement of the structures and connections of the

central nervous system from conception through early adulthood.

Whereas the mechanisms underlying neuromaturation—such as neural

migration, myelination, and synaptic pruning—are relatively conserved

across individuals (Tamnes et al., 2017), the rates at which these pro-

cesses unfold are heterogeneous (Foulkes & Blakemore, 2018). Devia-

tions in the rate of neuromaturation can lead to differences in brainAlex Luna and Joel Bernanke shared first authorship.
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structure, connectivity, and function, with potential implications for

the etiology and phenomenology of cognitive impairments and psy-

chopathology (Shahab et al., 2019). These links, however, between

neuromaturation, cognition, and psychiatric outcomes remain rela-

tively poorly characterized in youth, despite adolescence being the

period when many serious psychiatric conditions emerge and neuro-

maturation is accelerated.

Altered rates of neuromaturation can be estimated by deviations

between an individual's chronological age relative to his or her “brain
age.” Brain age and its utility as a marker of disease have been exam-

ined in adults across neurologic and psychiatric disorders. Generally,

having an “older” brain (i.e., brain age exceeds chronological age) is

associated with disease. To name some examples, patients with

Alzheimer's disease have been shown to have older brains than healthy

controls (Gaser et al., 2013). Increased white matter lesion load in

patients with multiple sclerosis has been associated advanced brain age

(Høgestøl et al., 2019). In the ENIGMA study of 2,533 participants,

major depressive disorder was associated with older brain age (Han,

Dinga, Hahn, et al., 2019). Adults with schizophrenia have also been

found to have advanced brain ages relative to both healthy adults and

adults with bipolar disorder (Nenadic, Dietzek, Langbein, Sauer, &

Gaser, 2017). Finally, in a sample of 45,615 individuals between the

ages of 3–96, increased brain aging was also associated with several

disorders, including schizophrenia, multiple sclerosis, and bipolar spec-

trum disorder (Kaufmann, van der Meer, Doan, et al., 2019).

While the contribution of brain age to psychopathology continues

to be explored in adults, there are fewer studies in children and ado-

lescents. This is a notable omission for three reasons. First, peak inci-

dence for most major psychiatric disorders including depression,

anxiety disorders, schizophrenia, and substance use disorders all occur

during adolescence, the same period that neuromaturation is at an

apex (Walker, Sabuwalla, & Huot, 2004). Second, the research to date

has revealed a generally more complex relationship between brain age

and psychopathology in youth. Third, preliminary work applying

machine learning (ML) algorithms to neuroimaging data in children

and adolescents suggest this approach has promise for prognostica-

tion (Franke & Gaser, 2019).

In contrast to adults, advanced brain age in youth is not uniformly

associated with negative outcomes. For example, older brain age in

children, rather than being linked to diminished cognitive states, as

in adults, was associated with increased processing speed (Boyle, Jol-

lans, Rueda-Delgado, et al., 2021; Erus et al., 2015). Among adoles-

cents, “younger” compared to older functional brain states have been

associated with adverse symptoms, such as increased risk-taking

behavior (Rudolph, Miranda-Dominguez, Cohen, et al., 2017). Con-

versely, a study utilizing structural MRI data found that teenage par-

ticipants at high-risk for psychosis were more likely to become

psychotic if they had older brain ages relative to “normal” brain ages

(Chung et al., 2018). In sum, in youth the associations between brain

age, psychiatric symptoms, and neurocognitive functioning may vary

across psychiatric and neurocognitive domains.

Previous brain age estimation tools have used brain morphology

and functional imaging data, but only a select few have incorporated

white matter connectomes, much less brain morphology and white

matter connectomes together (Brown et al., 2012; Erus et al., 2015).

Studies using MRI-derived whole-brain connectomes suggest that atyp-

ical development of the connectome is associated with long-term diffi-

culties with emotion, cognition, and behavior in infants and adolescents

(Kaufmann et al., 2017). For example, white matter connectomes at

birth were predictive of cognitive performance at age 2 in both full-

term and preterm infants (Girault et al., 2019). Among adolescents with

attentional problems, temporoparietal tracts were found to have lower

fractional anisotropy (Tymofiyeva, Gano, Trevino, et al., 2018). Thus,

the inclusion of white matter connectomes is likely important to studies

characterizing the relationship between brain development and psychi-

atric symptoms, functioning, and cognition in youth.

Previous studies using ML to predict brain age have often employed

a single ML algorithm, such as Support Vector Regression (Franke,

Luders, May, Wilke, & Gaser, 2012; Schnack et al., 2016), Relevance Vec-

tor Regression (Franke et al., 2012), or convolutional neural networks

(Cole et al., 2017). Employing a pipeline that systematically tests multiple

ML algorithms, and chooses the most accurate one, could improve accu-

racy, particularly if there is validation with a held-out sample to diminish

the risk of overfitting (Acion et al., 2017). In addition, ensemble learning

that combines several individual ML algorithms could further improve

accuracy (Wolpert, 1992).

Here, we use an automated ML pipeline that incorporates multi-

ple ML algorithms, including an ensemble method, to estimate brain

age from morphometry estimates and whole-brain white matter con-

nectomes obtained from participants in the Healthy Brain Network

(HBN), a large community-based cohort study of children and adoles-

cents. We then apply the best ML model to a held-out evaluation

dataset of participants with and without a high likelihood for psycho-

pathology to identify associations between deviations in brain age,

cognitive functioning, and psychiatric symptoms. To our knowledge,

this is the first study to use morphometry, white matter connectomes,

and an ensemble ML algorithm to look at broad measures of symp-

toms and functioning in children and adolescents.

2 | METHODS AND MATERIALS

2.1 | Data source

We used neuroimaging and psychometric data from the HBN col-

lected between 2015, when the study was initiated, through 2017,

when HBN neuroimaging data was made publicly available. All pheno-

typic information was obtained in accordance with the Data Usage

Agreement required by the HBN. Briefly, the HBN recruited a

community-based sample of healthy and nonhealthy boys and girls

between ages 5 and 21 in multiple sites in New York City. Participants

were excluded from the HBN if they had immediate safety concerns,

medical conditions that would confound neuroimaging research, or

their symptoms interfered with the participation in the study. Detailed

inclusion and exclusion criteria are available elsewhere (Alexander

et al., 2017).
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2.2 | MRI scanning protocols

Participants in the HBN study were scanned at the following three

sites. The protocols for each site were as follows. Staten Island:

mobile scanner, 1.5T Siemens Avanto, T1: 176 slices, resolution

(mm) 1.0 � 1.0 � 1.0, TR 2,730 ms, TE 1.64 ms, multiband accelera-

tion off; Diffusion Kurtosis imaging: 72 slices, resolution

(mm) 2.0 � 2.0 � 2.0, TR 3,110 ms, TE 76.2 ms, multiband accelera-

tion 3. Rutgers University Brain Imaging Center: Siemens 3T Tim Trio,

T1: 224 slices, resolution (mm) 0.8 � 0.8 � 0.8, TR 2,500 ms, TE

3.15 ms, multiband acceleration off; Diffusion Kurtosis imaging:

72 slices, resolution (mm) 1.8 � 1.8 � 1.8, TR 3,320 ms, TE 100.2 ms,

multiband acceleration 3, 64 directions, b = 0, 1,000, 2,000). And

Citigroup Cornell Brain Imaging Center: Siemens 3T Prisma, T1:

224 slices, resolution (mm) 0.8 � 0.8 � 0.8, TR 2,500 ms, TE 3.15 ms,

multiband acceleration off; Diffusion Kurtosis imaging: 81 slices, resolu-

tion (mm) 1.8 � 1.8 � 1.8, TR 3,320 ms, TE 100.2 ms, multiband

acceleration 3, 64 directions, b = 0, 1,000, 2,000. Additional scan

parameters are listed elsewhere (Protocol HBN, 2017).

2.3 | Quality assessment

To maximize the potential clinical utility of our brain age prediction

model, we aimed to include all participants, regardless of neuroimag-

ing data quality. In addition, quality-related artifacts might contain

meaningful information. Therefore, no manual edits were performed

on the FreeSurfer reconstructions. Rather than excluding participants

with low quality data, we examined to what degree image quality

changed the relationship between predicted age from the optimal ML

model and chronological age. MRIQC was used to estimate the signal

to noise ratio for the structural images, and FSL was used to obtain

the temporal signal to noise ratio for the diffusion-weighted imaging

(DWI) data (Andersson & Sotiropoulos, 2016; Esteban et al., 2017).

Relative motion parameters were obtained using eddy_cuda9.1 as part

of the Mrtrix DWI pipeline. All quality metrics were normalized by

site. Structural signal to noise ratios were normalized by site and T1

image used.

First, we examined whether the quality measures were indepen-

dently correlated with chronological age (p <.20). Metrics associated

with chronological age were then included in a linear model (LM), with

chronological age as the outcome, and predicted age and the relevant

quality metrics as predictors. Finally, we calculated the percentage

change in the coefficient of predicted age in that model compared to

a model without quality metrics. The greater the percentage change,

the more imaging quality, rather than brain features, were driving the

model's performance.

2.4 | Brain morphometry

FreeSurfer v6.0 -(https://surfer.nmr.mgh.harvard.edu/) was used to

generate 678 morphometric estimates from structural MRI (sMRI)

data, including thickness, volumes, surface, and mean curvature, for

each participant. The Desikan–Killiany atlas was used (Desikan,

Segonne, Fischl, et al., 2006). In short, structural image processing

with FreeSurfer included motion correction, removal of nonbrain tis-

sue, Talairach transformation, segmentation, intensity normalization,

tessellation of the gray matter/white matter boundary, topology cor-

rection, and surface deformation. Deformation procedures used both

intensity and continuity information to produce representation of cor-

tical thickness. The maps produced were not restricted to the voxel

resolution of the original scans and were thus capable of detecting

submillimeter differences. Cortical thickness measures have been vali-

dated against histological analysis and manual measurements (Fischl

et al., 2002; Salat et al., 2005). Further information about this process

is provided elsewhere (Dale, Fischl, & Sereno, 1999; Desikan et al.,

2006; Fischl et al., 2002; Fischl & Dale, 2000).

Morphometric data were not normalized for estimated total intra-

cranial volume (eTIV), given our goal of accurate brain age estimation.

Instead, eTIVs were included in the dataset supplied to the ML

pipeline. We then examined whether the optimal ML model did more

than rely on eTIV data (see below).

2.5 | White matter connectomes

To obtain accurate brain phenotypic estimates, we used an individualized

connectome approach, rather than population-based regions of interest

or tracts of interest methods. We used the MrtrixMRI analysis pipeline

to preprocess diffusion MRI (dMRI), estimate whole-brain white matter

tracts, and generate individualized connectome features. Generated fea-

tures included number of estimated streamlines within a given connec-

tion, a commonly used measure of fiber connection strength (Cha

et al., 2015; Cha et al., 2016), and fractional anisotropy (FA) from the dif-

fusion tensor model. dMRI images were de-noised (Veraart et al., 2016),

motion corrected (Andersson & Sotiropoulos, 2016), and then processed

through the Advanced Normalization Tools (ANTs) pipeline using the N4

algorithm (Tustison et al., 2010). Probabilistic tractography was per-

formed using second-order integration over fiber orientation distribu-

tions with a whole-brain streamline count of 20 million (Tournier,

Calamante, & Connelly, 2010).

To discard potential false positive streamlines and improve

biological plausibility, initial tractograms were filtered using

spherical-deconvolution informed filtering with a final streamline

count target of 10 million (2:1 ratio). Using the filtered tractogram,

an 84 � 84 whole-brain connectome matrix was generated for each

participant using the T1-based parcellation and segmentation from

FreeSurfer, which was then registered and warped to the partici-

pant's diffusion MRI (b0 images) using ANTs. With this approach,

each participant's white matter connectome estimates were con-

strained by his or her own neuroanatomy. A total of 7,140

connectome estimates were obtained, weighted by streamline

count and FA. Computation was done on supercomputers at

Argonne Leadership Computing Facility Theta and Texas Advanced

Computing Center Stampede2.
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2.6 | Harmonization of brain data

ComBat (short for Combating batch effects when combining Batches)

can be used to reduce “scanner effects” in processed structural and dif-

fusion imaging data (Fortin et al., 2017; Fortin et al., 2018). ComBat

harmonizes the mean and variance of brain measures across scanners

using a modified linear mixed effects model. However, ComBat harmo-

nization can also attenuate the relationship between brain data and

other measures (Chen et al., 2020). For example, if participants imaged

on one scanner are younger than participants imaged on another, Com-

Bat might misattribute age-related differences in brain volume to a

scanner effect. To protect these relationships, variables of interest

should be included in the ComBat model. In addition, ComBat does not

account for variation in the correlation of brain data and other mea-

sures across scanners. This might limit the effectiveness of some ML

algorithms (Chen et al., 2020). Finally, ComBat cannot handle missing

covariate data; subjects with any missing covariates are dropped.

Here, we use the ComBat package for R to produce two additional

versions of the training, test, and evaluation datasets (Fortin, 2019). First,

we harmonized the brain data for all the eligible participants and included

age in the ComBat model. We report the type and accuracy of the most

accurate age prediction models developed using both the unharmonized

and age-harmonized datasets. Because no age data were missing, there

was no reduction in sample size and the same participants comprised the

training and test datasets for the unharmonized and age-harmonized

datasets. Second, we harmonized the brain data from all the eligible partic-

ipants and included both age and the four exploratory outcome measures

(described below, Section 2.8), in the ComBat model. This resulted in a

reduction in our sample size due to missingness. However, the number of

remaining participants in the training and test set preserved the desired

80%/20% split. Therefore, no participants had to be re-assigned; all

remaining participants retained their original training, test, or evaluation

group assignment. We report the type and accuracy of the most accurate

age predictions model developed using this age-outcome-harmonized

dataset. We also report the associations between BrainPAD values

(defined below) and the four exploratory outcome measures. Additional

details on our use of ComBat are included in the Supporting Information.

2.7 | Brain age model development and
comparison

We first divided the HBN dataset into two groups based on the Child

Behavior Checklist (CBCL) Total Problem T-Score. The CBCL is a well

validated, parent report measure of emotional, behavioral, and social

difficulties in children and adolescents, and Total Problem T-scores of

60 or greater are associated with an increased likelihood of psychopa-

thology (Warnick, Bracken, & Kasl, 2008). To train our brain age pre-

diction on a group of likely typically developing children, we used a

cutoff of 60, such that participants scoring 60 or above were in one

group and below 60 in another.

We then further divided the group with CBCL Total Problem T-

scores below 60 into a training dataset (n = 215), to develop the age

prediction models, and a testing dataset (n = 48), to assess their accu-

racy, using a random 80%/20% split. Lastly, we created an evaluation

dataset (n = 249) that consisted of participants with a high likelihood

for psychopathology (those with CBCL Total Problem T-Scores of 60 or

greater) and a low likelihood for psychopathology (participants from the

testing dataset, all of whom had CBCL Total Problem T-Scores less than

60). By pooling participants with low and high likelihood for psychopa-

thology into our evaluation dataset, we aimed to determine whether

observed relationships between brain age and outcome measures were

robust across the full range of CBCL T scores, and not limited to youth

with or without psychopathology. Participants without age, sex, race,

or ethnicity data were excluded from the evaluation dataset (Figure 1).

We used H2O AutoML, an open-source automatic ML pipeline

(H2O AutoML, ), to develop and select three brain age prediction models,

one for each MRI modality—morphometry (sMRI alone) and connectomes

(dMRI alone)—and a third based on both modalities combined (sMRI and

dMRI combined; The H2O.ai Team, 2015). As noted above, we did this

using the unharmonized brain data, and also the age- and age-outcome-

harmonized brain data. H2O AutoML features multiple ML algorithms

and performs scalable, automated model training and hyper-parameter

tuning. Features with near-zero variance were removed. Random grid

search was performed for hyperparameter optimization by H2O. The

AutoML pipeline includes Gradient Boosting Method, Generalized Linear

Model, Random Forest, “Deep Learning” Multi-Layer Perceptrons, and

Stacked Ensemble ML (SEML). The list of the hyperparameters optimized

for each algorithm in the pipeline is available elsewhere (https://docs.

h2o.ai/h2o/latest-stable/h2o-docs/automl.html).

The pipeline generated, optimized, and tested a series of brain age pre-

diction models using the MRI modalities and algorithms listed above. Each

model was developed using five-fold cross-validation, followed by subse-

quent testing with the held-out testing data set, producing a ranked list of

models. Maximum runtime for AutoML was set to 5 hr. k-fold cross-

validation and the use of a held-out dataset to test model accuracy reduce

the risk of over-fitting. Model accuracy was measured using the mean resid-

ual deviance (MRD) because it is more robust to non-normally distributed

data. We selected the models with the lowest MRD for each modality (sMRI

alone and dMRI alone), and their combination (sMRI and dMRI combined),

for further assessment. The mean absolute error (MAE), which is measured

in years and is more easily interpreted, was also calculated for all models.

Since eTIV and FA are correlated with age (Schmithorst, Wilke,

Dardzinski, & Holland, 2002; Takao, Hayashi, & Ohtomo, 2012), we

verified that the optimal ML model produced more accurate results

than simpler models relying on these data alone. We regressed age on

global FA (mean FA across all white matter tracts), eTIV, and their

combination. Parallel to the development of the ML models, this LM

was first developed using the training dataset, and then applied to the

testing dataset. To compare performance with the ML models, we

also calculated the MAE for this model in the testing dataset.

2.8 | Exploratory analyses: outcome measures

In addition to the CBCL, we used the following outcome measures:

Children's Global Assessment Scale (CGAS), Flanker Uncorrected
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Standard Score, and Strengths and Difficulties Questionnaire (SDQ)

total difficulties score. The CGAS is a clinically administered

assessment of global functioning, with higher scores indicating better

functioning. The Flanker task is a measure of sustained attention, with

higher scores indicating better performance. The SDQ, like the CBCL,

is a general measure of behavioral and emotional symptoms in chil-

dren, but with fewer questions (25 questions) than the CBCL

(118 questions). While there is evidence that the CBCL and SDQ are

similar measures (Goodman & Scott, 1999; Warnick et al., 2008), there

is some evidence that the CBCL better discriminates between com-

munity and referred populations (Dang, Nguyen, & Weiss, 2017), and

is more sensitive (Warnick et al., 2008), while the SDQ is more spe-

cific (Warnick et al., 2008).

2.9 | Exploratory analyses: calculation of brain
predicted age difference (BrainPAD)

We calculated brain predicted age difference (BrainPAD) (Cole, Marioni,

Harris, & Deary, 2019; Franke et al., 2012), to capture the difference

between the predicted and chronological ages for each participant, with

BrainPAD equal to the predicted age minus the chronological age.

BrainPAD was therefore positive when the predicted age was greater

than the chronological age and negative when the predicted age was

less than the chronological age. We calculated BrainPAD scores using

the most accurate models built from the unharmonized brain data and

the age-outcome-harmonized brain data.

2.10 | Statistical analyses

Descriptive statistics were generated for the training, testing, and

evaluation datasets. We used analysis of variance (ANOVA) tests to

evaluate differences in the training, testing, and evaluation groups.

LMs were used to estimate the association between BrainPAD values

and the outcome measures, controlling for age, sex, race, ethnicity,

and scanner (site). These analyses were therefore restricted to partici-

pants with those data. A separate LM was used for each outcome

measure. Plotting and modeling were performed using Rstudio version

1.2.5033 and the R Stats package version 4.0.4 (Team RC, 2012). In

F IGURE 1 Participant selection workflow. In brief, of 498 participants with CBCL-Parent report data available, 263 with a CBCL score <60
were used for modeling with H2O's AutoML function using an 80%/20% train/test split. For statistical analysis, test set participants and
participants with CBCL ≥60 with race/ethnicity data available were combined for a total of 249 participants
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these analyses, we used the CBCL Total Raw score instead of the

Total T-score, as the T-score is already adjusted for age and sex.

Throughout, p-values of less than or equal to .05 were considered sta-

tistically significant. We report both the nominal and Bonferroni

corrected p-values for the four LMs.

3 | RESULTS

3.1 | Participant selection and demographics

Workflow for participant selection and analysis is outlined in Figure 1.

In brief, of the 585 HBN participants initially eligible for this study,

87 did not have CBCL data and were excluded. The age range among

the remaining 498 participants with CBCL data was 5–18. Among the

remaining 498 participants, 263 had CBCL Total T-scores less than

60, and 235 had T-scores equal to or greater than 60. Eighty percent

of the participants with T-scores less than 60 (n = 215) were included

in the training dataset, and 20% (n = 48) in the testing dataset. For

the evaluation dataset (n = 249), only participants with race and eth-

nicity data were included. The evaluation set consisted of 39 partici-

pants from the testing set and 210 participants whose CBCL scores

were equal to or greater than 60. This same workflow is described for

the age-outcome-harmonized dataset in the Supporting Information.

Demographic information for the participants in the training, testing,

and evaluation datasets are displayed in Table 1. Note that while

groups differ on clinical markers, the distributions of age, sex, race,

and ethnicity are comparable across the three groups.

3.2 | Brain age prediction accuracy

Table 2 shows the performance of the most accurate age prediction

models using morphometry (sMRI), connectomes (dMRI), and combined

MRI modalities, with the reported accuracy obtained from the testing

dataset. Using the unharmonized brain data, a SEML-based model,

applied to the combined MRI modalities, was the most accurate overall

(MAE = 1.180, MRD = 1.962). A SEML-based model was also the most

accurate among the tested models using only connectomes. However,

with morphometry data alone, the Deep Learning algorithm performed

best. Notably, all ML models were more accurate than the LMs using

eTIV alone (MAE = 2.591 years), global FA alone (MAE = 2.858 years),

or their combination (MAE = 2.582 years). Figure 2 shows a scatter

plot of the predicted and chronological ages using the SEML-based

multimodal model. The ranked list of the top 5 tested models for the

uni- and multimodal approaches is provided in Tables S1a–c.

Results for the age prediction model developed using age-

harmonized and age-outcome-harmonized brain data (dMRI, sMRI,

and combined) are given in Tables S2a–c and S3a–c, respectively. For

the age-harmonized brain data, a SEML-based model using both MRI

modalities was again the most accurate (MAE = 0.26 years). For the

age-outcome-harmonized brain data, however, a SEML-based model

using only the dMRI data was the most accurate (MAE = 0.78). We

therefore used the dMRI-only model in the exploratory analyses with

the age-outcome-harmonized dataset.

Regarding imaging quality, all three quality metrics—signal to

noise ratio from the structural images, temporal signal to noise ratio,

and relative motion from the diffusion data—were found to be associ-

ated with chronological age (p <.05 in all cases). Specifically, lower sig-

nal to noise ratios, and more motion, were associated with younger

age. For the model built using unharmonized brain data, adding these

terms to a model of chronological age regressed on predicted age

resulted in only a 2% change in the coefficient of predicted age

(Tables S4a–e).

3.3 | BrainPAD, risk of psychopathology,
functioning, and cognition

The relationship between brain age, as measured by the best model built

from the unharmonized brain data, and the outcome measures was

assessed using the evaluation data set (n = 249 after removing partici-

pants with missing race or ethnicity data). Note that, positive BrainPAD

values imply a brain age that exceeds chronological age, while negative

scores imply a brain age below the chronological age. Also, note that

higher CBCL scores imply more symptoms, whereas lower CGAS scores

imply worse functioning (and typically more symptoms). Lower BrainPAD

values were significantly associated with more symptoms on the CBCL

(β = �3.305, p = .003, pcorr = .012) and worse functioning on the CGAS

(β = 1.853, p = .003, pcorr = .012), adjusting for age, sex, race, ethnicity,

and scanner. Higher BrainPAD values were also significantly associated

with better performance on the Flanker (β = 2.224, p= .002, pcorr = .008).

There was no apparent association between BrainPAD value and SDQ

score (β = �.495, p = .072, pcorr = .288). The strength and direction of

these associations was consistent in the age-outcome-harmonized evalu-

ation dataset (n = 125), though only the association with CGAS remained

statistically significant after Bonferroni correction (CBCL β = �3.709,

p = .155, pcorr = .620; CGAS β = 2.799, p = .010, pcorr = .040; Flanker

β = 2.264, p = .051, pcorr = .204; and SDQ β = �1.148, p = .091,

pcorr = .364). CBCL and SDQ scores were correlated in this sample

(Pearson's r = .73, p = <.001).

Scatter plots of BrainPAD values (developed using the

unharmonized brain data) and the four exploratory outcome mea-

sures, along with regression lines, are shown in Figure 3. The plotted

data are adjusted for age, sex, race, ethnicity, and scanner. The plots

demonstrate the inverse associations between BrainPAD and CBCL

(Figure 3a, top left) and Flanker scores (Figure 3c, bottom left), and

the positive association with CGAS scores (Figure 3b, top right). A rel-

atively flat line is observed for the relationship between BrainPAD

and SDQ score (Figure 3d, bottom left).

4 | DISCUSSION

In this study, we predicted brain age in youth with and without a high

likelihood for psychopathology by applying an automated ML pipeline
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to MRI-derived morphometry and white matter connectomes. For the

unharmonized and age-harmonized brain data, we found that mor-

phometry and white matter connectomes together yielded the most

accurate brain age prediction, compared to using either modality

alone, consistent with prior studies comparing uni- and multimodal

approaches (Brown et al., 2012; Erus et al., 2015). Also of note, the

SEML method, which combines multiple ML algorithms, was the best

predictor of brain age. This suggests that integrating multiple ML algo-

rithms might be helpful for accurately modeling the complex

relationship between large-scale, multimodal brain data, and pheno-

typic measurements, like age.

Consistent with work on the accuracy of age prediction models

using ComBat-harmonized brain data, we found smaller MAEs for the

unimodal and multimodal models built using age-harmonized brain

data compared to unharmonized brain data (Pomponio et al., 2020).

Interestingly, in the smaller, outcome-harmonized dataset, a SEML

model built using the white matter connectomes alone was the most

accurate. This might be because white matter connectomes had less

TABLE 1 Healthy Brain Network participant demographics

Training set (N = 215) Test set (N = 48) Evaluation set (N = 249) p-value

Age 1.79 (±2.98) 10.65 (±3.42) 10.97 (±3.29) .74

Sex .90

Male 133 (61.86%) 29 (60.42%) 149 (59.84%)

Female 82 (38.14%) 19 (39.58%) 100 (40.16%)

Race .86

White/Caucasian 93 (43.26%) 21 (43.75%) 127 (51.00%)

Black/African-American 34 (15.81%) 5 (10.42%) 42 (16.87%)

Hispanic 19 (8.84%) 5 (10.42%) 23 (9.24%)

Asian 6 (2.79%) 0 (0.00%) 8 (3.21%)

Indian 6 (2.79%) 1 (2.08%) 1 (0.40%)

Native-American Indian 0 (.00%) 0 (0.00%) 1 (0.40%)

Two or more races 32 (14.88%) 8 (16.67%) 38 (15.26%)

Other race 4 (1.86%) 0 (0.00%) 6 (2.41%)

Unknown 2 (.93%) 0 (0.00%) 3 (1.20%)

Missing 19 (8.84%) 8 (16.67%) 0 (0.00%)

Site .77

CBIC 21 (9.77%) 3 (6.25%) 27 (10.84%)

RU 81 (37.67%) 22 (45.83%) 101 (40.56%)

SI 113 (52.56%) 23 (47.92%) 121 (48.59%)

Ethnicity .94

White/Caucasian 127 (59.07%) 25 (52.08%) 167 (67.07%)

Black/African-American 48 (22.33%) 12 (25.00%) 61 (24.50%)

Hispanic 13 (6.05%) 4 (8.33%) 15 (6.02%)

Asian 4 (1.86%) 1 (2.08%) 6 (2.41%)

Missing 23 (1.70%) 6 (12.50%) 0 (0.00%)

CBCL total raw score 2.22 (±1.09) 19.08 (±10.91) 57.68 (±25.81) <.0001

CGAS total score <.0001

Mean (SD) 67.91 (±11.18) 64.74 (±9.80) 61.08 (±10.19)

Missing 116 (53.95%) 25 (52.08%) 124 (49.80%)

Flanker uncorrected standard score .46

Mean (SD) 87.39 (±13.91) 83.94 (±17.89) 86.04 (±15.71)

Missing 67 (31.16%) 16 (33.33%) 96 (38.55%)

SDQ difficulties total score <.0001

Mean (SD) 8.81 (±4.69) 8.12 (±4.57) 16.38 (±6.32)

Missing 7 (3.26%) 0 (0%) 6 (2.41%)

Note: Between group differences were assessed for the Training Set, Test Set, and Evaluation Set using ANOVA. No significant differences were found for

age, sex, race, ethnicity, or site (scanner).
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outcome-related variability in our sample than the morphometry mea-

sures. In any case, this result reinforces the importance of multimodal

datasets, and white matter connectomes in particular, to ML-based

brain age estimation.

All ML models yielded more accurate estimates of age than the

LMs that used global FA, eTIV, or their combination. The best SEML

model built using the unharmonized data improved the MAE by over

1 year compared to the best LMs suggesting that ML models are

doing more than recapitulating known, gross relationships. Further-

more, the relationship between chronological age and predicted age

was minimally altered when adjusting for quality metrics, suggesting

that neuroimaging quality does not account for our results. Moreover,

this raises the possibility that the SEML model built from the

unharmonized brain data is sufficiently robust to low quality data to

be used in clinical settings.

When applying our brain age prediction model to a held-out eval-

uation dataset, we found associations between deviations from typical

brain age, as measured by BrainPAD, and a measure of symptoms

(CBCL), functioning (CGAS), and neurocognition (Flanker). The overall

strength and direction of these associations was largely preserved in

the smaller, outcome-harmonized evaluation dataset, though only the

association with CGAS remained statistically significant after correc-

tion for multiple comparison.

Our results indicate that BrainPAD is associated with dysfunction

irrespective of reporting source (parents and clinicians) and symptom

domain (psychiatric symptoms and neurocognitive performance). We

F IGURE 2 Scatterplot of
predicted age versus
chronological age. Scatterplot

depicting the relationship
between predicted and
chronological age for the
participants in the held-out test
sets for the best age models built
using the unharmonized (N = 48),
age-harmonized (N = 48), and
age-outcome-harmonized
(N = 23) brain data

TABLE 2 Brain age prediction
accuracy across all models

Model MAE (years) MRD Optimal algorithm

Morphometry + WM Connectomes 1.1801 1.962 SEML—Family

WM alone 1.3494 2.634 SEML—Family

Morphometry alone 1.578 4.301 Deep learning (MLP)

Age-harmonized—Morphometry + WM 0.261 0.128 SEML—Family

Age-harmonized—WM alone 0.332 0.185 SEML—Family

Age-harmonized—Morphometry alone 1.438 3.964 SEML—Family

Outcome-harmonized—Morphometry + WM 0.880 1.270 SEML—Family

Outcome-harmonized—WM alone 0.776 1.246 SEML—Family

Outcome-harmonized—Morphometry alone 1.801 4.152 XGBoost

Global FA + eTIV 2.582 — —

Global FA alone 2.858 — —

eTIV alone 2.591 — —

Note: SEML Models using both morphometry and white matter connectomes performed best when using

the unharmonized brain data (top) and age-harmonized brain data (middle). A SEML model using only the

white matter connectomes performed best when using the outcome-harmonized brain data (middle). All

ML models outperformed linear models using FA and/or eTIV (bottom).

Abbreviations: FA, fractional anisotropy; MAE, mean absolute error; MLP, multi-layer perceptron; MRD,

mean residual deviance; SEML, stacked ensemble machine learning, WM, white matter.
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did not find an association between BrainPAD and SDQ scores, despite

CBCL and SDQ scores being generally well correlated (Goodman &

Scott, 1999; Warnick et al., 2008). One possible explanation is that the

CBCL better discriminated between participants at high and low risk

for psychopathology in this sample. Studies have suggested that the

CBCL is a more sensitive measure relative to the SDQ (Warnick

et al., 2008), which may explain the more robust relationship between

BrainPAD and CBCL than with the SDQ. Taken together, BrainPAD,

derived from unharmonized morphometry and white matter con-

nectomes, may provide a useful objective neuromaturity index that cor-

relates with behavior, functioning, and neurocognition in youth.

Overall, we found that negative BrainPAD values were associated

with more symptoms and poorer functioning, and that positive

BrainPAD values were associated with stronger neurocognitive func-

tion. This pattern appears consistent with the epidemiology of psychiat-

ric disorders linked to delayed versus accelerated neurodevelopment.

Attentional disorders, which are common overall and particularly in chil-

dren (Froehlich et al., 2007), have been associated with delayed neuro-

development (Gallo & Posner, 2016; Rudolph et al., 2017), and possibly

contribute to elevated scores on the CBCL and reduced scores on the

CGAS in this age group. On the other hand, psychotic disorders, which

have been associated with accelerated neurodevelopment (Schnack

et al., 2016), might also be associated with elevated CBCL and reduced

CGAS scores–however, these disorders are less common overall and

markedly less common in children (Courvoisie, Labellarte, & Riddle, 2001),

possibly accounting for the absence of associations between positive

BrainPAD and symptoms or impairment (i.e., CGAS).

Our finding of an association between BrainPAD and Flanker per-

formance is consistent with a previous report linking accelerated neuro-

development with improved cognitive performance (Erus et al., 2015).

In contrast to studies in adults and teens, increased brain age in our

youth sample is associated with better neurocognition, but not with

increased risk of psychopathology or poor functioning. Nonetheless,

our results do not preclude increased brain age being disadvantageous

across other neurocognitive domains, or during other developmental

periods (Cole et al., 2018; Gaser et al., 2013; Kaufmann et al., 2019).

Our study has several limitations. First, as is common to ML stud-

ies, the resulting model is not easily interpreted, and the use of the

SEML algorithm renders the model even less interpretable. Second,

our study sample was large enough to develop the model with

F IGURE 3 Scatterplot of BrainPAD versus outcome measures. Scatterplots depicting the relationship between BrainPAD and (a) CBCL,
(b) CGAS, (c) Flanker, and (d) SDQ scores among participants in the evaluation dataset (N = 249). BrainPAD scores are adjusted for age, sex, race,
ethnicity, and site (scanner)
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subsequent testing in a held-out set but did not have enough partici-

pants with specific psychiatric conditions to assess the relationship

between neuromaturity and individual DSM-based disorders. Hence,

while we detected a general relationship between decreased brain age

and psychiatric symptoms, and increased brain age and cognitive func-

tioning, we are not able to shed light on the particular neuromaturity-

related etiologies of specific disorders, such as schizophrenia (Nenadic

et al., 2017; Schnack et al., 2016). Third, this study relies on cross-

sectional data, and therefore does not clarify the direction of the rela-

tionship between brain changes, symptoms, and functioning. And

fourth, given the amount of missing data, and the limitations of existing

brain data harmonization procedures, including ComBat, we were not

able to replicate our results precisely in an outcome-harmonized

dataset.

Fortunately, we see ample opportunities to address these short-

comings in future work. Regarding interpretability, methods are cur-

rently in development to specifically enhance the interpretability of

the SEML algorithm, such as the use of targeted maximum loss-based

estimation (Van der Laan & Rose, 2011). As to the sample size, the

HBN has continued to collect neuroimaging data. Future studies could

deploy the method described in this article on the updated HBN

dataset to establish the replicability of the brain age model and, with

sufficient sample size, the relevance of neuromaturity-related etiolo-

gies to certain disorders. The ongoing collection and release of data

from the Adolescent Brain and Cognitive Development study (Volkow

et al., 2018), for example, is an opportunity to test the brain age model

and explore the association with long-term outcomes on a larger, pro-

spective, longitudinal dataset. Finally, methodological improvements

in harmonizing brain data specifically for ML pipelines might further

improve accuracy, specificity, and reproducibility.

In conclusion, our study demonstrates that using multimodal brain

imaging, including white matter connectome estimates, and novel, rig-

orous ML methods, such as SEML, has the potential to improve the

accuracy of brain age estimation. Furthermore, BrainPAD shows

promise as a general measure of risk for psychopathology and cogni-

tive impairment, with some evidence for distinct associations between

particular domains and decreased versus increased brain age. Addi-

tional work is needed in larger, longitudinal datasets to replicate this

approach, clarify causal mechanisms, and make more specific associa-

tions between deviations in neuromaturation and specific psychiatric

conditions and neurocognitive impairments.
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