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Abstract

Motivation: As sequencing technologies improve their capacity to detect distinct transcripts of the

same gene and to address complex experimental designs such as longitudinal studies, there is a

need to develop statistical methods for the analysis of isoform expression changes in time series

data.

Results: Iso-maSigPro is a new functionality of the R package maSigPro for transcriptomics time

series data analysis. Iso-maSigPro identifies genes with a differential isoform usage across time.

The package also includes new clustering and visualization functions that allow grouping of genes

with similar expression patterns at the isoform level, as well as those genes with a shift in major ex-

pressed isoform.

Availability and implementation: The package is freely available under the LGPL license from the

Bioconductor web site.

Contact: mj.nueda@ua.es or aconesa@ufl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative splicing (AS) is a common mechanism of higher eukary-

otes to expand transcriptome complexity and functional diversity.

The expression of alternative isoforms of many genes respond to de-

velopmental regulation (Vuong et al., 2016) and to environmental

cues (AlShareef et al., 2017) and hence, there is an interest in study-

ing the dynamics of AS by RNA-seq. While many algorithms have

been developed for differential AS analysis most of these approaches

target pair-wise comparisons. Dedicated methods for time series AS

analysis either restrict to the estimation of isoform levels (Huang

and Sanguinetti, 2016) or require large datasets to model time pro-

files (Topa and Honkela, 2016).

The analysis of differential isoform expression in time course ex-

periments poses a number of specific challenges. Different tran-

scripts of the same gene may vary in their time trajectories and the

analysis algorithm should be able to identify those genes where iso-

form profiles change differently in a significant manner.

Additionally, clustering is complicated by the fact that genes have

different number of isoforms and hence data do not fit into the

structure of traditional clustering, where the same number of data

points is required for each feature. Therefore, novel clustering strat-

egies should be envisioned. Finally, transcripts of the same gene

have frequently very different expression levels, with one ‘major’

isoform being most expressed and alternative isoforms having lower

expression. Ideally, analysis approaches should be able to account

for this.maSigPro is an R package designed for the analysis of mul-

tiple time course transcriptomics data (Nueda et al., 2014). We pre-

sent here Iso-maSigPro, a further adaptation of this method to study

differential isoform usage in time course RNA-seq experiments.

More elaborated motivation and details on the algorithm can be

found in Supplementary Materials.
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2 Methods

Following the generalized linear model (GLM) described in Nueda

et al. (2014), for each multi-isoform gene two GLM models are cre-

ated, identifying J isoforms with J � 1 binary variables (I1,. . ., IJ�1 ).

The reference model, M0, considers there exist only constant differ-

ences between isoforms and the global gene model, M1, considers

the possibility of a time versus condition versus isoform interaction.

For instance, for a gene with two isoforms, two experimental condi-

tions or series and linear effects:
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being g the ‘link function’ that characterizes the GLM, lij ¼ EðyijÞ
the expected value of isoform expression yij for observation i and

isoform j, tij the time and z1
ij the binary variable that identifies the

experimental condition. The significance of the interaction is esti-

mated based on log-likelihood ratio statistic of the two models

(Supplementary Materials). Iso-maSigPro takes as input a transcript-

level expression data frame including a column with gene assign-

ments. Seven new functions enable analysis of differentially ex-

pressed isoforms (Fig. 1 and Supp. Materials):

1. IsoModel() implements the DS models M0 and M1 for each

multi-isoform gene, using the polynomial model obtained with

the generic make.design.matrix() maSigPro function that best

describes the experimental design. The comparison of both mod-

els gives as a result a FDR-corrected P-value of differential splic-

ing. Transcripts from significant DSGs are then subjected to

regular Next-maSigPro analysis to detect differentially expressed

transcripts (DETs).

2. IsoModel() returns a list of DSGs together with the estimated

models of associated isoforms to be used as input in getDS()

function to obtain a selection of DSGs at a pre-established level

of goodness of fit.

3. seeDS() creates a clustering of all differential transcripts (regard-

less their genes) and tableDS() identifies the cluster assignment

of major and secondary isoforms for each gene. Genes with spe-

cific profiles in their isoforms can be selected with the function

getDSPattern() and visualized with IsoPlot()

4. PodiumChange() identifies DSGs with a switch of major isoform

at the specified time points.

3 Results

Iso-maSigPro was applied to the analysis of a public RNA-seq data-

set (GEO accession GSE75417) describing a mouse six time points

B-cell differentiation course triggered by the expression of the tran-

scription factor Ikaros. Transcripts were quantified with eXpress

(Roberts and Pachter, 2013) to find a total of 34 156 transcripts be-

longing to 12 572 genes, of which 6882 genes are multi-isoform.

The IsoModel() function gave as overall result the selection of

347 DSGs containing a total of 1239 transcripts. Of these, 665 also

had significant time course changes (DETs) (Supplementary Table

S1). seeDS() grouped these 665 DETs into 6 clusters (Supplementary

Fig. S1 and Table S2) and tableDS() identified the cluster assignment

of major and minor forms to reveal that for most DSGs, differential

IsoModel() 
fits model for DS 

getDS() 
selects significant  
DSGs and DETs 

tableDS() 
identifies cluster location 

of major and minor isoforms 

seeDS() 
clusters DETs  

PodiumChange() 
finds DSGs with major isoform switch 

getDSPattern() 
extracts genes with specific 
isoform clustering pattern 

IsoPlot() 
shows expression  
of indicated DSG 

Fig. 1. Workflow for Iso-maSigPro analysis
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Fig. 2. IsoPlot() examples of the two major Iso-maSigPro DSG functionalities. (A) Nfkb2 has isoforms in cluster 1 and 4. (B) Mxi1 is a podium change gene. Ctr,

Control, Ik, Ikaros
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isoforms did express similar trajectories (Supplementary Table S3).

However, Iso-maSigPro functions facilitated the identification and

visualization of genes with biologically interesting isoform expres-

sion changes. Figure 2A shows the expression of Nfkb2 identified

with getDSPattern() as a DSG with significant transcripts in two dif-

ferent seeDS() clusters (major isoform in cluster 4 and minor iso-

form in cluster 1, respectively down and up regulation patterns after

Ikaros induction). PodiumChange() helped to locate 37 genes with

major isoform switches at the latest time points (Supplementary

Table S4 and Fig. S2). Figure 2B shows an example of one such gene

(Mxi1), transcriptional repressor involved in B-cell differentiation

(see more in Supplementary Fig. S3).

4 Discussion

The Iso-maSigPro set of functions updates the maSigPro framework

to analyze isoform changes in time course transcriptomics data. We

model differential isoform utilization as the interactions between the

isoform, experimental condition and time, and evaluate significance

with the log-likelihood ratio statistic of the models including or not

this interaction. To extract biologically meaningful changes in rela-

tive isoform abundances, we introduced new clustering and query-

ing functions. seeDS() and tableDS() help to find genes with

substantial isoform profile differences in time, while

PodiumChange() identifies those cases with a switch in the most ex-

pressed transcript. We showed examples where these functions

helped to select genes with functionally relevant isoform changes.

maSigPro is the first Bioconductor package with specific functions

for the analysis of time course alternative isoform expression.
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