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INTRODUCTION

Diabetic kidney disease (DKD) is one of  the 
most serious microvascular complications 
of  diabetes and is the most common cause 
of  end-stage renal disease.[1,2] The onset 
of  DKD is insidious, and its early clinical 

symptoms are easily ignored, leading to 
an increase in the incidence of  end-stage 
diabetic nephropathy.[3] Studies have shown 
that approximately 30% of  patients with 
type 1 diabetes and 40% of  patients with 
type 2 diabetes develop this microvascular 
complication.[4] Worse, the development of  
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sugar and lipid metabolism, regulation of small guanosine triphosphatase (GTPase) mediated 
signal transduction, G protein-coupled receptor signaling pathway, peroxisome proliferator-
activated receptor (PPAR) molecular signaling pathway, Rho protein signal transduction, and 
oxidoreductase activity. The qRT-PCR results showed that the relative expression of nuclear 
pore complex-interacting protein family member A2 (NPIPA2) and ankyrin repeat domain 36 
(ANKRD36) was notably increased in DKD compared to the control. NPIPA2 was positively 
correlated with the urine albumin/creatinine ratio (ACR) and serum creatinine (Scr) but 
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correlated with the triglyceride (TG) level and white blood cell (WBC) count. Conclusion: 
NPIPA2 expression is closely related to the disease condition of DKD, whereas ANKRD36 may 
be involved in the progression of DKD through lipid metabolism and inflammation, providing 
an experimental basis to further explore the pathogenesis of DKD.
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DKD can significantly increase the risk of  cardiovascular 
disease and mortality, causing a substantial economic and 
social burden.[5,6]

The pathogenesis of  DKD is complex, and there is no 
clear clinical biomarker that reliably predicts the occurrence 
and development of  DKD.[7,8] Most current studies have 
focused on screening differentially expressed genes but 
have ignored the intrinsic correlation between genes. 
Genes with similar expression patterns may be functionally 
significantly related,[9,10] allowing for the exploration of  
effective biomarkers for DKD. WGCNA is a bioinformatics 
method used for analyzing gene expression patterns across 
multiple samples, dividing the gene co-expression network 
of  complex biological processes into highly correlated 
signature modules. Genes within the module change in a 
highly coordinated manner, allowing the identification of  
biomarkers or therapeutic targets by associating specific 
clinical phenotypes to genes with key functions.[11]

WGCNA can quickly extract gene co-expression modules 
related to sample characteristics from complex data and 
is one of  the most effective methods for co-expression 
network analysis. To date, few studies have used WGCNA 
to analyze the pathogenesis and treatment of  DKD. In this 
study, we performed WGCNA to analyze the expression 
profile data of  DKD and used peripheral blood samples 
from patients to verify the selected hub genes via quantitative 
real-time polymerase chain reaction (qRT-PCR) analysis. 
Correlation analysis was then conducted with the clinical 
indicators of  patients with DKD to identify new biomarkers. 
Therefore, this study provides a new experimental basis for 
exploring the mechanisms and elucidating potential markers 
for the early diagnosis of  DKD.

MATERIALS AND METHODS

Gene chip data and patient sample collection
Diabetic nephropathy and diabetic kidney disease were 
used as keywords to search the appropriate data sets in 
the Gene Expression Database (GEO) (https://www.
ncbi.nlm.nih.gov/geo/). The inclusion criteria were: the 
number of  samples from patients was more than 30, the 
expression profile was obtained from kidney tissue rather 
than serum or cell lines, the species studied was human, 
and data processing was performed using common 
sequencing platforms. Thirty-four human peripheral blood 
samples were collected from the First Affiliated Hospital 
of  Zhengzhou University between December 2019 and 
December 2020, including 12 patients in the DKD group, 
11 patients in the diabetes (DM) group, and 11 patients in 
the healthy control (CON) group. Patients in the DKD 
group had diabetic glomerulopathy, as confirmed through 
renal biopsies.[12] The patients in the DM group had at least 

one of  the following classic symptoms: random plasma 
glucose ≥ 200 mg/dL (11.1 mmol/L), fasting plasma 
glucose (FPG) ≥ 126 mg/dL (7.0 mmol/L), 2-h plasma 
glucose (2-h PG) ≥ 200 mg/dL (11.1 mmol/L), or 
A1C ≥ 6.5% (48 mmol/L).[13] The study was approved by 
the institutional review board (Ethical Lot Number:2019-
KY-015), and all participants gave informed consent. 

Data acquisition and preprocessing
Raw data from the GSE96804 dataset, which met the 
screening criteria, were downloaded from the GEO 
database. The dataset included kidney biopsy specimens 
from 41 cases of  DKD and 20 normal cases. The R package 
(R Foundation for Statistical Computing, Vienna, Austria. 
http://www.R-project.org.) was used to convert the probe 
IDs to Ensembl serial numbers, and mismatched Ensembl 
serial numbers were deleted. The HUGO Gene Naming 
Committee (https://www.genenames.org/) was used to 
convert the Ensembl serial number to a common Entrez 
ID, and the Ensembl sequence number was removed 
without pairing the Entrez ID. For multiple identical Entrez 
IDs, the average value of  multiple probes was considered 
the final expression value of  the Entrez ID.

Differentially expressed gene analysis
The “limma” package in R was used to analyze the 
differential gene expression of  the experimental groups 
(DKD tissues vs. normal tissues). The standard for 
interception was |log2FC| > 1.0, with an adjusted 
P-value < 0.01. The “ggplot2” R package was used to 
visualize the results as a volcano map.

WGCNA analysis
The WGCNA package in R was used for this analysis. 
The data were normalized to screen out genes in the top 
75% of  the median absolute deviation (MAD) and MAD 
greater than 0.01. The “goodSamplesGenes” function was 
utilized to detect and process the missing values. Outliers 
were removed using sample cluster analysis to reduce 
errors caused by sample factors. The “pickSoftThreshold” 
function was used to filter the optimal soft threshold β 
value. We then constructed a co-expression network based 
on the β value, divided the resulting modules using the 
“blockwiseModules” function dynamic clipping method, 
indicated the name of  each module with a separate color, 
and visualized the network using a hierarchical clustering 
tree. Taking the occurrence of  DKD as the main external 
biological parameter, module membership (MM) was 
obtained by calculating the gene significance (GS) and 
module significance (MS). According to the MS, modules 
related to the selected clinical phenotype could be selected, 
and genes with high GS and MM were selected as the key 
genes. The “clusterprofiler” package was used for gene 
ontology (GO) enrichment and Kyoto Encyclopedia of  
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Genes and Genome (KEGG) pathway enrichment analysis 
to explore the main biological functions and pathways 
of  the genes related to DKD. The GO and KEGG 
enrichment results were displayed as bar and bubble graphs, 
respectively. The module connectivity of  the key module 
genes was calculated and visualized using Cytoscape 
software. Finally, the top 50 genes were selected as the key 
genes for preliminary screening and were intersected with 
the differentially expressed genes. The intersection genes 
obtained through these two methods were considered the 
hub genes related to DKD.

Total RNA extraction and qRT-PCR analysis
The primary role of  the hub genes in DKD was verified 
using qRT-PCR. Briefly, total RNA from blood samples 
was extracted using TRIzol reagent. The purity and 
concentration of  the RNA samples were measured using 
a UV spectrophotometer, and the samples were used to 
synthesize cDNA. Subsequently, gene expression levels 
were determined using qRT-PCR with the following 
reaction conditions: 95°C for 10 min; then 40 cycles of  95°C 
for 15 s, 60°C for 30 s, and 72°C for 30 s. The sequence 
of  the forward primer used to amplify the human NPIPA2 
gene was 5′-CATCTCCCTCTGCACAAGTTAC-3′ and the 
reverse primer sequence was 5′-TTCCACCTGTCTCCA 
TAAAGTAAA-3′. The sequence of  the forward primer used 
to amplify the human ANKRD36 gene was 5′-TCCTTTAT 
CCACGCTTACTCTG-3′ and the reverse primer sequence 
was 5′-ATTGGTCCCTCCTTTATTTCTG-3′. Human 
GAPDH was used as the internal reference gene (forward 
primer: 5′-CAGGAGGCATTGCTGATGAT-3′; reverse 
primer: 5′-GAAGGCTGGGGCTCATTT-3′.) Finally, the 
relative expression levels of  NPIPA2 and ANKRD36 were 
calculated using the 2-ΔΔCT method and are displayed as fold 
changes. All experiments were repeated thrice.

Clinical data collection, processing, and correlation 
analysis
Upon admission, the initial test results of  the patients were 
collected, including the urine albumin/creatinine ratio 
(ACR), hemoglobin (Hb), serum creatinine (Scr), albumin 
(ALB), triglycerides (TG), total cholesterol (TC), low-density 
lipoprotein cholesterol (LDL-C), high-density lipoprotein 
cholesterol (HDL-C), estimated glomerular filtration rate 
(eGFR), and glycated hemoglobin (HbA1c). Spearman’s 
correlation coefficient was used to analyze the correlation 
between clinical data and relative gene expression and 
identify clinical indicators related to the target genes.

Statistical analysis
Statistical analyses were performed using SPSS 21.0 software 
(IBM Corporation, Armonk, NY, USA). Measurement data 
are expressed as the mean ± standard deviation. An independent 
sample t-test or analysis of  variance was used for comparisons 

between groups. Spearman’s correlation coefficient was 
used for the correlation analysis between clinical data and 
gene expression. Statistical significance was set at P < 0.05.

RESULTS

Differentially expressed genes between DKD and 
normal specimens
According to the screening threshold, 418 significantly 
differentially expressed genes were obtained from 
the GSE96804 dataset. Among these, 123 genes were 
upregulated and 295 were downregulated in the DKD 
group compared to the control group (Figure 1).

Weighted Gene Co-expression Network Analysis 
(WGCNA)
Sample quality inspection
Hierarchical clustering was performed on the 61 samples 
from the GSE96804 dataset. No obvious outlier samples 
were found in the test, indicating that the quality of  the 
original data was good and that a co-expression network 
could be constructed (Figure 2).

Determination of the soft threshold and construction 
of a co-expression network
According to the soft threshold β screening criteria, 
the correlation coefficient R2 was set as 0.85, and the 
“pickSoftThreshold” function was used to calculate the optimal 
soft threshold β as 8. In this case, the scale-free topology 
network construction and connectivity were good (Figure 3).

WGCNA with an optimal soft threshold of  β = 8 was 
then constructed, and the minimum number of  genes in 
the module was set to 30. The dynamic shearing method 
was used to identify gene modules, and 15 gene modules 
were obtained (Figure 4).

Figure 1: The differentially expressed genes are shown as a volcano map. Red 
dots represent upregulated genes, green dots represent downregulated genes, 
and black dots represent genes with no significant difference in expression.
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Correlation analysis between gene modules and 
clinical information
The correlation between the samples, clinical information, 
and gene modules is shown in Figure 5A. Each cell therein 
contains a corresponding correlation coefficient and 
P-value. The darker the color, the smaller the P-value, and 
the higher the correlation. As shown in the figure, there 
was a significant correlation between the green module and 
DKD. Parallel phenotypic data of  vector genes adjacent 
to the heatmap also showed similar results (Figure 5B).

Next, we constructed a scatter plot for the genes in the 
green module based on their gene significance (GS) 
and module membership (MM). The results showed a 
significant positive correlation; the module genes were 
highly correlated with the corresponding modules and the 
corresponding clinical phenotype (Figure 5C).

Gene enrichment analysis of the green module
Gene enrichment analysis of  GO includes three main 
items: biological pathway (BP), cellular component (CC), 
and molecular function (MF). As shown in Figure 6A, the 
enrichment results based on GO_BP showed that the genes 
related to DKD were mainly involved in small-molecule 
catabolic processes, fatty acid metabolic processes, 
regulation of  small GTPase-mediated signal transduction, 
adenylate cyclase-activating G-protein-coupled receptor 
signaling pathway, acyl-CoA metabolic process, cAMP-
mediated signaling, lipid transport, regulation of  GTPase 
activity, and Rho protein signal transduction. The 
enrichment results based on GO_CC showed that the 
genes related to DKD were mainly concentrated in the 
AP-type membrane coat adaptor complex, membrane 
coat, coated membrane, clathrin adaptor complex, 
peroxisomes, microbodies, and mitochondrial matrix 
(data not shown). Further, GO_MF analysis revealed 

Figure 2: Sample hierarchical clustering diagram.

Figure 3: Screening of soft thresholds. Analysis of the scale-free fit index 
(left) and the mean connectivity (right) for various soft-thresholding powers. 

Figure 4: Gene cluster tree. The upper part of the figure is a diagram of the 
cluster tree, and the lower part is a cluster of gene modules with similar 
expression patterns. Different colors represent different modules.
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Figure 5: Correlation analysis between gene modules and clinical information. (A) Module-phenotype correlation diagram. The horizontal axis was for DKD 
and sex, and the vertical axis contained the gene co-expression modules. (B) Adjacent heat map of the featured vector genes. The upper part of the figure is a 
cluster tree composed of the modules and clinical phenotypes of DKD. The lower part of the figure is the corresponding heat map of the cluster tree. (C) Scatter 
plot showing the correlation between the green module genes and DKD. The horizontal axis represents the degree of module membership, and the vertical axis 
represents gene significance. DKD: diabetic kidney disease.

Figure 6: Gene enrichment analysis of the green module. Gene ontology enrichment (A) and Kyoto Encyclopedia of Genes and Genome pathway enrichment 
analysis (B). PPAR: peroxisome proliferator-activated receptor. 

Figure 7: Selection of hub genes. (A) Visualization of the gene co-expression network created using Cytoscape software. The node size represents the 
connectivity between the modules. (B) The intersection between differentially expressed genes (DEGs) and key genes is shown as a Venn diagram. DEGs: 
differentially expressed genes.



Pan et al.: Analysis of WGCNA uncovers potential targets in DKD

364 JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / OCT-DEC 2022 / VOL 10 / ISSUE 4

that these genes might participate as GTPase activator, 
oxidoreductase, aldehyde dehydrogenase (NAD), and in 
nucleoside-triphosphatase regulator activities (data not 
shown). The results of  KEGG analysis suggested that 
the genes related to DKD were primarily involved in fatty 
acid degradation and metabolism, amino acid metabolism, 
glycolysis/gluconeogenesis, regulation of  lipolysis in 
adipocytes, glycerolipid metabolism, ABC transporters, 
lysosome, and the PPAR signaling pathway (Figure 6B).

Network visualization and selection of hub genes
The differential expression data and interaction relationships 
of  the green module genes were imported into Cytoscape 
software for visualization. The top 50 genes with the highest 
connectivity are shown in Figure 7A. The first 50 genes were 
preliminarily screened as key genes, and 14 pivotal genes 
related to DKD were obtained through cross-comparison 
with differentially expressed genes, including (ANKRD36, 
ANKRD36B, ANKRD36C), (NPIPA2, NPIPB3, NPIPB4, 
NPIPB5, NPIPB11, NPIPB13), (SPDYE1, SPDYE3), 
TAS2R31, GOLGA8A, and LINC00342 (Figure 7B).

NPIPA2 and ANKRD36 were highly expressed in DKD
NPIPA2 and ANKRD36, which accounted for the largest 
proportion of  the two gene clusters, were selected for 
expression verification. Blood samples were collected from 
the three patient groups and used for qRT-PCR analysis. 
The results showed that the expression level of  NPIPA2 
was significantly higher in the DKD group and DM group 
than in the healthy control (CON) group (Figure 8A). 
Similarly, ANKRD36 expression was dramatically increased 
in the DKD group compared to the CON group (Figure 
8B). Compared to the other two groups, both NPIPA2 
and ANKRD36 showed the highest expression levels in 
the DKD group.

Correlation analysis between the expression level 
of NPIPA2 or ANKRD36 and clinical indicators 
in patients with DKD
Considering that the expression levels of  NPIPA2 and 
ANKRD36 were significantly increased in the DKD 

group, we investigated whether these two genes were 
correlated with the clinical parameters of  the patients. 
Correlation analysis showed that the relative expression of  
NPIPA2 in patients with DKD was significantly positively 
correlated with the urine albumin/creatinine ratio (r = 
0.7343, P < 0.01) and serum creatinine (r = 0.5874, P < 
0.05), and significantly negatively correlated with albumin 
(r = –0.6503, P < 0.05) and hemoglobin (r = –0.6014, P < 
0.05) (Figure 9). The relative expression of  ANKRD36 in 
patients with DKD was also positively correlated with the 
urine albumin/creatinine ratio and creatinine levels but 
was not statistically significant. We observed a significant 
positive correlation between ANKRD36 expression and 
triglycerides (r = 0.7950, P < 0.05) and white blood cell 
count (r = 0.9667, P < 0.001) (Figure 10).

DISCUSSION

The incidence of  diabetes is rapidly increasing, affecting 
more than 415 million people worldwide.[14] By 2040, the 
prevalence of  diabetes is expected to increase to 642 million 
people, of  whom 30%–40% will develop DKD.[15]  Diabetic 
kidney disease (DKD) is the leading cause of  chronic kidney 
disease, resulting in enormous economic and social burdens. 
However, owing to the complex pathogenesis of  DKD and 
the lack of  specific and effective interventions, therapies 
targeting this disease are not ideal, and the incidence of  
end-stage DKD is still increasing.[16] In this study, a co-
expression network related to DKD was constructed 
through WGCNA analysis. Potential therapeutic targets 
were screened, providing a new paradigm for an in-depth 
investigation of  the pathogenesis and treatment of  DKD.

WGCNA can be used to effectively analyze gene expression 
profile data, with full consideration of  the associated 
gene interactions. It has been widely used in studying the 
molecular pathogenesis of  various diseases, such as cancer, 
stroke, immune diseases, and genetic diseases.[17–20] To better 
understand the pathogenesis of  DKD, we first conducted a 
WGCNA analysis and obtained a total of  15 gene modules. 
We then selected the genes in the green modules closely 
related to DKD for further study. The enrichment analysis 
results showed that the key genes screened were mainly 
involved in sugar and lipid metabolism, regulation of  
small GTPase-mediated signal transduction, the G protein-
coupled receptor signaling pathway, PPAR molecular 
signaling pathway, Rho protein signal transduction, and 
oxidoreductase activity, which is consistent with the results 
of  previous studies. Diabetes-related metabolic changes can 
lead to glomerular hypertrophy, sclerosis, tubulointerstitial 
inflammation, and fibrosis.[3,21] In addition, several 
studies have confirmed that the pathogenesis of  DKD 
is accompanied by serious lipid metabolism disorders, 
suggesting that abnormal lipid metabolism is closely related 

Figure 8: NPIPA2 and ANKRD36 were highly expressed in DKD. The relative 
expression levels of NPIPA2(A) and ANKRD36(B) in each group were detected 
via qRT-PCR. CON: healthy control group; DM: diabetes; DKD: diabetic kidney 
disease. **P < 0.01, as compared to CON.
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Figure 9: Correlation analysis between the relative expression level of NPIPA2 and clinical indicators in patients with DKD. DKD: diabetic kidney disease; ACR: 
urine albumin/creatinine ratio; Scr: serum creatinine; ALB: albumin; Hb: hemoglobin.

Figure 10: Correlation analysis between the relative expression level of ANKRD36 and clinical indicators in patients with DKD. DKD: diabetic kidney disease; 
ACR: urine albumin/creatinine ratio; Scr: serum creatinine; TG: triglycerides; WBC: white blood cells.
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to the progression of  this disease.[22–25] Lipid toxicity and 
deposition can cause podocyte dysfunction and apoptosis, 
while enhanced fatty acid synthesis and oxidation inhibition 
can lead to diabetic lipid kidney damage.[26,27] In addition 
to metabolic pathways, Rho kinase, an effector of  the 
small GTPase binding protein Rho, is also considered an 
important factor in DKD pathogenesis.[28] An imbalance 
in NADPH oxidase activity is another reason for DKD 
caused by oxidative stress.[1] 

Originating from human chromosome 16, the NPIP 
gene family is primate-specific and has undergone 
strong adaptive evolution.[29,30] At present, there are few 
studies on NPIPA2, and some studies have reported 
its role in tumorigenesis.[31,32] Subsequently, to better 
study the relationship between biological traits and gene 
expression, we performed an integrated analysis of  DEGs 
and WGCNA. We selected NPIPA2 and ANKRD36, 
the two gene clusters with the largest proportions, to 
verify their expression in DKD and their correlation with 
clinical indicators. The results showed that NPIPA2 and 
ANKRD36 were significantly overexpressed in DKD, 
which was consistent with the results of  the WGCNA. 
Thus, our study is the first to show that NPIPA2 may be 
closely related to the progression of  DKD. Proteinuria, 
a common clinical manifestation and the main basis for 
diagnosing DKD, is the result of  multiple factors.[33,34] The 
expression level of  NPIPA2 was significantly increased 
in DKD specimens, and the correlation analysis results 
with clinical indicators showed that NPIPA2 had the most 
significant correlation with ACR, suggesting that it may 
play an important role in proteinuria and may be a potential 
biomarker for screening in patients with DKD.

Ankyrin repeat domain proteins (ANKRD) are among the 
most common protein-protein interaction domains and 
exist in 270 human proteins with diverse functions.[35,36] 

ANKRD36, located on chromosome 2, has 36 exons and 
contains six repeating units consisting of  two antiparallel 
helices and a hairpin structure repeatedly stacked on 
the superhelix. To date, there have been few reports on 
ANKRD36, most of  which are correlation studies rather 
than functional studies, so its function in human diseases 
is largely unknown. In renal cell carcinoma (RCC), a high 
expression level of  ANKRD36 is significantly associated 
with poor patient prognosis.[37] In hypertension, ANKRD36 
is involved in blood pressure regulation by interacting with 
YY1.[38] Variations in the ANKRD gene family, particularly 
ANKRD36C and its paralogs, are more prevalent in 
immune-mediated thrombotic thrombocytopenic purpura 
(iTTP) than in healthy controls.[39] Our study showed that 
the expression of  ANKRD36 was significantly higher in 
DKD samples than in normal samples. Considering that 
DKD is a risk factor for hypertension,[40] we would like to 

explore whether ANKRD36 regulates YY1 in future studies.

Previous studies have also shown that ANKRD36 is 
associated with inflammatory responses in patients with 
pneumonia and myocarditis, plays a pro-inflammatory 
role by regulating intracellular NF-κB inflammation-
related signaling pathways, and alleviates LPS-induced cell 
damage by silencing ANKRD36 expression.[41–43] Clinically,  
ANKRD36 expression is significantly positively correlated 
with triglyceride (TG) and white blood cell (WBC) levels, 
suggesting that it may participate in the development 
of  DKD through lipid metabolism and inflammation. 
Therefore, inhibiting ANKRD36 expression to reduce 
inflammatory damage may provide a new strategy for 
treating DKD-related inflammation. Hayward et al. 
found that the cell metabolic state can markedly alter 
the interaction between ANKRD protein and its targets 
and change the functional outcomes caused by such 
interactions.[44] Changes in glucolipid metabolism may also 
be another factor leading to the abnormal expression of  
ANKRD36 in DKD; however, the specific mechanism 
needs to be further explored.

CONCLUSION

In this study, WGCNA was used to comprehensively 
analyze the gene regulatory network related to DKD. The 
high expression of  NPIPA2 and ANKRD36 in DKD was 
elucidated for the first time through clinical specimen 
verification. Moreover, clinical correlation analysis 
revealed that NPIPA2 was closely related to DKD and 
that ANKRD36 may be involved in the progression of  
DKD through lipid metabolism and inflammation. Our 
findings provide novel insights into understanding the 
pathogenesis and treatment of  DKD and a reference for 
future research on the function and mechanism of  NPIPA2 
and ANKRD36 in DKD.
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