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Abstract

Diffusion tensor imaging (DTI) studies have provided much evidence of white and subcorti-

cal gray matter changes during late childhood and early adolescence that suggest increas-

ing myelination, axon density, and/or fiber coherence. Neurite orientation dispersion and

density imaging (NODDI) can be used to further characterize development in white and

subcortical grey matter regions in the brain by improving specificity of the MRI signal com-

pared to conventional DTI. We used measures from NODDI and DTI to examine white

and subcortical gray matter development in a group of 27 healthy participants aged 8–13

years. Neurite density index (NDI) was strongly correlated with age in nearly all regions,

and was more strongly associated with age than fractional anisotropy (FA). No significant

correlations were observed between orientation dispersion index (ODI) and age. This sug-

gests that white matter and subcortical gray matter changes during late childhood and

adolescence are dominated by changes in neurite density (i.e., axon density and myelina-

tion), rather than increasing coherence of axons. Within brain regions, FA was correlated

with both ODI and NDI while mean diffusivity was only related to neurite density, providing

further information about the structural variation across individuals. Data-driven clustering

of the NODDI parameters showed that microstructural profiles varied along layers of white

matter, but that that much of the white and subcortical gray matter matured in a similar

manner. Clustering highlighted isolated brain regions with decreasing NDI values that

were not apparent in region-of-interest analysis. Overall, these results help to more specif-

ically understand patterns of white and gray matter development during late childhood and

early adolescence.

Introduction

Late childhood and adolescence are periods of significant behavioural, emotional, and cogni-

tive development. Underlying these changes are multiple processes of brain maturation,

which are critical for proper development. Diffusion tensor imaging (DTI) has provided
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much insight into brain development, detailing development trends including increasing

fractional anisotropy (FA) and decreasing radial diffusivity (RD) with age [1–6], changes

suggestive of increasing myelination, axonal packing, and/or axon coherence [7–9]. New

imaging techniques can offer more specificity as to types of changes occurring during this

maturation. For example, neurite orientation dispersion and density imaging (NODDI) is

a multi-component model using MR diffusion data that captures neurite (dendrites and

axons) morphology, providing parameters including neurite density index (NDI) and orien-

tation density index (ODI), which provide more insight than DTI into the changing cellular

architecture [10]. Neurite density increases suggest myelination, axonal growth, or greater

axonal density, while ODI describes the dispersion of the neurites, probing coherence and

geometry.

The increased specificity of NODDI offers promise for better understanding brain devel-

opment, yet only a few studies have used NODDI to study brain development [11–13]. One

study showed increasing intra-axonal water in the corpus callosum and posterior limb of the

internal capsule in the first 3 years of life without accompanying changes in fiber orientation

[13]. Another study used NODDI to examine healthy brain maturation across the white

matter in 66 subjects aged 7–63 years, and found that NDI followed a logarithmic growth

curve, increasing from childhood into adulthood, while ODI followed an exponential curve

that was flat across adolescence and had accelerating increases during adulthood [11]. Spe-

cifically in children and adolescents, one study showed stronger relationships between age

and NDI than between age and fractional anisotropy (FA) within white matter tracts, sug-

gesting that NDI is a better measure of age-related variation across subjects than FA [12].

Though subcortical gray matter undergoes significant maturation during childhood and

adolescence, with large increases in FA and decreases in mean diffusivity (MD) [14], its

development has not been as widely studied. One study used NODDI to show that matura-

tion in the thalamus of preterm infants was driven by increases in NDI [15], but gray matter

changes later in childhood remain unclear.

Maturation trajectories vary regionally across the brain; callosal white matter matures

earliest and frontal-temporal white matter connections mature latest, with developmental

changes continuing into young adulthood [2, 4, 16]. A previous NODDI study also observed

varying growth rates across white matter categories, with limbic and projection fibers show-

ing the highest rates of change in NDI, though specific tracts were not directly compared

and gray matter was not included [11]. The other NODDI study on children and adolescents

also showed steeper growth curves for NDI in the superior longitudinal fasciculus than the

uncinate or cingulum [12]. Data-driven clustering can identify patterns of brain develop-

ment and provide insight into brain organization in a way that may not be apparent when

examining specific structures. For example, clustering methods have been used in imaging

studies to identify patterns of cortical development in childhood and adolescence [17],

microstructural maturation in infants [18], and genetic influence on brain structure [19].

One previous NODDI study noted different patterns in subcortical, cortical, and core white

matter zones [11]; data-driven clustering may provide more insight into these microstruc-

tural patterns.

The goal of this study was to use NODDI and DTI to study white matter and subcortical

grey matter changes during normal late childhood and early adolescent development. Using

NODDI and data-driven clustering, we can better characterize developmental changes during

this period including regional variation, ultimately providing a better understanding of normal

brain maturation. As brain development trajectories can be a sensitive marker of abnormalities

[20], information provided by this research may be useful for future studies to better under-

stand developmental disorders.
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Methods

Subject demographics

27 healthy participants (12 F/15 M) aged 8–13 years (mean +/- SD: 11.3 +/- 1.9 years) partici-

pated in this study. Informed written assent was obtained from each subject, and his/her par-

ent or guardian provided written informed consent. Exclusion criteria were known diagnosed

developmental and learning disorders, history of neurosurgery or head trauma, or any contra-

indications to MRI. This research was approved by the University of Calgary Conjoint Health

Research Ethics Board.

MRI acquisition

MRI data was collected on a 3T MR system (Discovery 750w; General Electric; Waukesha, WI)

using a 32-channel head coil at the Alberta Children’s Hospital. T1-weighted anatomical

images were acquired with the following parameters: TI = 600 ms, TR/TE = 8.208/3.156 ms,

0.8 mm3 isotropic resolution, scan time = 5:38 min:sec. Diffusion weighted images were

acquired using single spin echo EPI with 10 non-diffusion weighted (b = 0 s/mm2) images,

and two non-zero b-values (900, 2000 s/mm2) each with 30 directions; TR/TE = 12 s/88 ms,

2.2 mm3 isotropic resolution, total scan time = 14:24 min:sec. All raw and processed data was

visually inspected and determined to be of good-to-excellent quality. Fig 1 shows example

images from two participants.

Image analysis

Diffusion-weighted images were eddy current corrected in FSL [21]. Data with b = 0, 900 s/

mm2 were processed through dtifit to compute the diffusion tensor to obtain FA, MD, RD,

and AD maps, and then through bedpostx to fit the probabilistic diffusion model. Diffusion-

weighted images from b = 0, 900, and 2000 s/mm2 were used to fit to the NODDI model, using

the NODDI Matlab Toolbox (http://www.nitrc.org/projects/noddi_toolbox) [10] to provide

NDI (fibre volume fraction) and ODI (orientation density index) parameters. Data is available

through Figshare: https://figshare.com/s/2f5fe31c7eee30d4da7c.

Advanced Normalization Tools (ANTs) [22] was used to linearly register each subject’s b0

diffusion images to their T1-weighted image, using the default parameters from antsRegistra-

tionSyN.sh. The calculated normalization parameters were then applied to all diffusion param-

eter maps (FA, NDI, etc.).

T1 data were processed using recon—all in FreeSurfer, and then input to TRACULA [23]

along with bedpostx data to automatically segment the following white matter tracts: anterior

thalamic radiation (ATR), cingulum, cortical spinal tract (CST), forceps major & minor, infe-

rior longitudinal (ILF), superior longitudinal (SLF), and uncinate fasciculi. These regions were

segmented in diffusion space and then transformed to T1-weighted space according to the pre-

viously calculated normalization parameters. Subcortical gray matter segmentations of the

thalamus, caudate, putamen, pallidum, hippocampus, and amygdala were obtained from Free-

Surfer in T1 space. Average values of NDI, ODI, FA, MD, RD, and AD were calculated for

each white and gray matter region for each subject. Maps of NDI, ODI, FA, and MD are

shown in Fig 1 from two representative participants. Bilateral regions were averaged to provide

one measure for each structure.

Calculation of age-related trajectories

Linear models were used to fit each output parameter with respect to age, controlling for sex,

using lm from the R statistical software package. Although brain development is nonlinear
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over larger age ranges [3, 4], a linear approximation is appropriate for this narrow window

from 8 to 13 years. Significance was set at p<0.05, with false discovery rate correction for 14

multiple comparisons corresponding to the 14 brain regions. Slope of the best fit line was

calculated. Percent change for each area was calculated as the total change from 8–13 years

divided by the mean value.

Relationships among parameters

To understand relationships between NODDI and DTI parameters, Pearson correlations were

performed between each pair of NDI, ODI, FA, MD, and RD across subjects within each white

matter tract or subcortical gray matter region of interest, while controlling for sex and age.

Clustering

Each subject’s NDI and ODI maps were registered to their T1 scan using ANTs (as above),

then registered to custom template in MNI space created from 30 healthy children [24]. The

rate of change of NDI with age (slope) and the mean NDI and ODI across subjects were calcu-

lated for each voxel in MNI space. The first cluster analysis used NDI slope/NDI mean and the

second cluster analysis used mean NDI and mean ODI together. A white matter mask from

the MNI template, and subcortical regions from the MNI structural atlas were used to limit

analysis to white and subcortical gray matter. The Hartigan and Wong algorithm in R [25] was

Fig 1. DTI and NODDI measure maps in two healthy participants. Fractional anisotropy (FA), mean diffusivity (MD), neurite

density index (NDI), and orientation dispersion index (ODI) are shown in two representative participants. The top row is an 8-year-old

male, and the bottom row is a 13-year-old female.

https://doi.org/10.1371/journal.pone.0182340.g001
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used to group voxels with similar development profiles. The optimal cluster number was deter-

mined using the “elbow” of the curve, where increasing the number of clusters provides dimin-

ishing reductions to the sum squared error (SSE). Because this determination is subjective, a

range of cluster numbers were explored to confirm results.

Results

Sex differences

No region showed significant differences between males and females (p<0.05, FDR corrected)

on any diffusion metric (NDI, ODI, FA, MD).

Correlations with age

All white and grey matter regions except the caudate showed positive correlations between

NDI and age (Table 1, Fig 2). The largest percent changes were observed in the pallidum, for-

ceps major, and the SLF (10–13% change, all p<0.001). The smallest percent changes were

observed in the forceps minor (5%, p = 0.031), uncinate fasciculus (6%, p = 0.021), and the

remaining gray matter regions (putamen, hippocampus, amygdala, thalamus; 3–7% changes,

p<0.05). The caudate was the only region with where NDI was not significantly correlated

with age.

No regions had significant correlations between ODI and age (Fig 3). The cingulum, SLF,

and uncinate had the highest values of ODI, while the CST, forceps major, forceps minor, and

Table 1. Linear fitting results of NDI (neurite density) and ODI (orientation density) vs. age.

NDI ODI

Region % change Slope (10−3/y) 95% CI Intercept Sex R Slope (10−3/y) 95% CI Intercept Sex R

Caudate 3.1 2.07 [-2.7, 6.8] 0.38 -0.012 0.34 -2.91 [-7.2, 1.4] 0.50 -0.017 0.46

Putamen 4.3 3.67** [1.6, 5.8] 0.46 -0.003 0.61 0.254 [-2.3, 2.8] 0.47 -0.005 0.22

Thalamus 4.7 3.85* [0.4, 7.3] 0.44 -0.001 0.43 -1.74 [-4.3, 0.9] 0.37 -0.002 0.28

Forceps minor 5.7 4.79* [0.7, 8.9] 0.44 0.007 0.46 2.94 [-2.4, 8.3] 0.22 0.005 0.24

Uncinate 6.3 5.02* [1.1, 9.0] 0.42 0.005 0.48 -0.452 [-4.3, 3.4] 0.33 -0.015 0.4

Amygdala 6.7 4.68*** [2.1, 7.3] 0.36 -0.004 0.62 3.59 [-2.1, 9.3] 0.41 -0.010 0.32

ATR 6.8 6.11** [2.4, 9.8] 0.46 0.005 0.58 -2.73 [-6.8, 1.4] 0.33 -0.004 0.28

Hippocampus 7.2 4.48** [1.8, 7.1] 0.32 -0.006 0.61 -2.57 [-6.9, 1.8] 0.45 -0.007 0.29

CST 7.5 7.86*** [4.4, 11.3] 0.53 0.005 0.7 -0.334 [-2.2, 1.6] 0.30 -0.010 0.5

ILF 8.2 7.07** [2.4, 11.7] 0.43 -0.006 0.55 -3.10 [-6.6, 0.4] 0.32 -0.010 0.42

Cingulum 8.9 7.40*** [4.2, 10.6] 0.40 0.008 0.71 -2.80 [-6.8, 1.2] 0.35 -0.014 0.44

SLF 10.3 10.2*** [5.3, 15.1] 0.47 -0.001 0.66 0.138 [-2.4, 2.7] 0.33 -0.011 0.44

Forceps major 11.6 10.7*** [5.4, 16] 0.42 0.004 0.65 1.26 [-3.0, 5.5] 0.25 -0.008 0.25

Pallidum 12.7 12.4*** [6.2, 18.6] 0.44 0.003 0.64 2.13 [-4.7, 8.9] 0.39 -0.021 0.35

Fitting parameters and percent changes for NDI and ODI vs age for each region are shown. Regions are listed in order of increasing percent changes for

NDI. All regions except the caudate showed significant age-related changes in NDI; no regions had significant age-related changes in ODI. NDI: neurite

density index; ODI: orientation dispersion index; CI: confidence interval; ATR: anterior thalamic radiation; ILF/SLF: inferior/superior longitudinal fasciculus;

CST: corticospinal tracts

*: p<0.05,

**: p<0.01,

***: p<0.001.

p-values are corrected for multiple comparisons using false discovery rate.

https://doi.org/10.1371/journal.pone.0182340.t001
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ILF had the lowest values of ODI. The thalamus showed the lowest values of ODI among grey

matter regions.

Most white matter and grey matter regions showed positive correlations between FA and

age (Fig 4, Table 2), and negative correlations between MD and RD and age (Table 2). Similar

timing profiles were observed with FA and NDI in that most gray matter regions had shallow

slopes, while the cingulum and pallidum has the fastest development and the steepest slopes.

Notable exceptions are the forceps major and minor, which had high and medium rates of

NDI changes, respectively, but no significant correlations between FA and age. All regions

except the caudate and thalamus had significant negative correlations between MD and age,

Fig 2. Neurite density index trajectories in white (A, B) and grey (C) matter volumes-of-interest. All regions except

the caudate had significant positive correlations with age; significant lines of fit (p<0.05, FDR-corrected) are plotted on the

graphs; the best fit line (non-significant) for the caudate is shown as a dotted line. Panel D shows the locations of each

region- or tract-of-interest. CST: corticospinal tract; ILF/SLF: inferior/superior longitudinal fasciculus; UNC: uncinate

fasciculus; ATR: anterior thalamic radiation; CNG: cingulum; FMAJ: forceps major; FMIN: forceps minor; AMYG:

amygdala; CAUD: caudate; HIPP: hippocampus; PALL: pallidum; PUTA: putamen; THAL: thalamus.

https://doi.org/10.1371/journal.pone.0182340.g002
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with similar timing profiles to the FA changes. Most regions with significant positive FA-age

correlations also had significant negative RD-age correlations; there were no regions with sig-

nificant correlations between AD and age.

Correlations among parameters

Partial correlations between FA, MD, RD, NDI, and ODI, controlling for age and sex are

reported in Table 3. FA and ODI were significantly negatively correlated in all regions (mean

R = -0.74). FA was significantly correlated with NDI in half the regions (mean R = 0.47). In

white matter, FA and NDI were positively correlated in the forceps major, inferior and

Fig 3. Orientation density index (ODI) trajectories in white (A, B) and grey (C) matter volumes-of-interest. No

correlations between ODI and age were significant; non-significant best-fits are shown as dotted lines. CST: corticospinal

tract; ILF/SLF: inferior/superior longitudinal fasciculus; UNC: uncinate fasciculus; ATR: anterior thalamic radiation; CNG:

cingulum; FMAJ: forceps major; FMIN: forceps minor; AMYG: amygdala; CAUD: caudate; HIPP: hippocampus; PALL:

pallidum; PUTA: putamen; THAL: thalamus.

https://doi.org/10.1371/journal.pone.0182340.g003
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superior longitudinal fasciculus, and the uncinate fasciculus. In gray matter, FA correlated

with NDI in the hippocampus, pallidum, and thalamus. MD and NDI were significantly neg-

atively correlated in all regions (mean R = -0.83), while MD correlated significantly with

ODI only in the forceps major. RD, a measure typically more closely associated with myelin

than FA, was negatively correlated with NDI in all regions (mean R = -0.80), and positively

correlated with ODI in half of the regions (mean R = 0.35): the anterior thalamic radiation,

forceps major and minor, superior longitudinal and uncinate fasciculi, pallidum, and the

thalamus.

Fig 4. Fractional anisotropy trajectories in white (A, B) and grey (C) matter volumes-of-interest. Most regions had

significant positive correlations between age and FA; significant lines of fit (p<0.05, FDR-corrected) are plotted as solid

lines. Non-significant best fits are shown as dotted lines. CST: corticospinal tract; ILF/SLF: inferior/superior longitudinal

fasciculus; UNC: uncinate fasciculus; ATR: anterior thalamic radiation; CNG: cingulum; FMAJ: forceps major; FMIN:

forceps minor; AMYG: amygdala; CAUD: caudate; HIPP: hippocampus; PALL: pallidum; PUTA: putamen; THAL:

thalamus.

https://doi.org/10.1371/journal.pone.0182340.g004

Neurodevelopment in late childhood using NODDI

PLOS ONE | https://doi.org/10.1371/journal.pone.0182340 August 17, 2017 8 / 16

https://doi.org/10.1371/journal.pone.0182340.g004
https://doi.org/10.1371/journal.pone.0182340


Table 2. Linear fitting results of FA (fractional anisotropy), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) vs. age. Pearson

correlation (R) is shown.

FA MD RD AD

Region R R R R

Forceps minor 0.08 0.50* 0.26 0.41

Amygdala 0.13 0.60** 0.60** 0.53

Uncinate 0.15 0.48** 0.40 0.34

Forceps major 0.16 0.55** 0.31 0.45

Pallidum 0.37 0.61** 0.54** <0.01

Caudate 0.46* 0.082 0.13 0.01

Thalamus 0.46* 0.17 0.28 0.11

Hippocampus 0.46* 0.45* 0.51* 0.32

ATR 0.47* 0.50* 0.58** 0.07

Putamen 0.47* 0.50* 0.58** 0.16

SLF 0.49* 0.57** 0.56** 0.48

ILF 0.51* 0.50* 0.56** 0.15

Cingulum 0.63** 0.54** 0.66** 0.01

CST 0.63** 0.56** 0.66** 0.18

The p-values were corrected for multiple comparisons using the false discovery rate method. Regions are listed in order of increasing slope for FA. FA:

fractional anisotropy; MD/RD/AD: mean/radial/axial diffusivity; ATR: anterior thalamic radiation; ILF/SLF: inferior/superior longitudinal fasciculus; CST:

corticospinal tracts

*: p<0.05,

**: p<0.01,

***: p<0.001

https://doi.org/10.1371/journal.pone.0182340.t002

Table 3. Correlations between NODDI and DTI parameters, controlling for age and sex.

FA-NDI FA-ODI MD-NDI MD-ODI RD-NDI RD-ODI

Region R R R R R R

ATR 0.33 -0.88** -0.93** -0.08 -0.80** 0.49*

Cingulum 0.33 -0.78** -0.74** -0.22 -0.71** 0.22

CST 0.42 -0.54* -0.84** -0.14 -0.80** 0.17

Forceps major 0.78** -0.90** -0.91** 0.62* -0.87** 0.82**

Forceps minor 0.20 -0.92** -0.77** -0.15 -0.58* 0.63*

ILF 0.61* -0.55* -0.93** -0.15 -0.85** 0.17

SLF 0.74** -0.77** -0.93** 0.31 -0.92** 0.51*

Uncinate 0.51* -0.87** -0.90** 0.1 -0.84** 0.55*

Amygdala 0.04 -0.78** -0.75** -0.28 -0.76** -0.07

Caudate 0.31 -0.70** -0.88** 0.05 -0.89** 0.14

Hippocampus 0.62* -0.53* -0.80** 0.08 -0.88** 0.04

Pallidum 0.78** -0.81** -0.85** 0.36 -0.87** 0.71**

Putamen 0.23 -0.59* -0.66** -0.42 -0.64* -0.06

Thalamus 0.71** -0.80** -0.69** 0.34 -0.89** 0.53*

The p-values were corrected for multiple comparisons using the false discovery rate method. FA: fractional anisotropy; NDI: neurite density index; MD:

mean diffusivity; RD: radial diffusivity; ODI: orientation dispersion index; ATR: anterior thalamic radiation; ILF/SLF: inferior/superior longitudinal fasciculus;

CST: corticospinal tracts

*: p<0.05,

**: p<0.001

https://doi.org/10.1371/journal.pone.0182340.t003
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K-means clustering

The sum of squared error (SSE) vs. the number of clusters was used to determine the optimal

number of clusters in the k-means clustering analysis. The “elbow” of the curve, where increas-

ing the number of clusters did not result in a substantial change of SSE, occurred at k = 3.

Because choosing the number of clusters is subjective, we also explored the solutions for

smaller (k = 2) and larger (k = 4) numbers of clusters.

Clusters generated using k = 3 are shown in Fig 5 for NDI slope/NDI mean, with the aver-

age values for each cluster. Cluster 1 (red in Fig 5) was a large cluster containing most of the

white and subcortical gray matter. Cluster 2 (green) contained the posterior part of the genu of

the corpus callosum, and sections of the thalamus, caudate, and brainstem. This cluster had a

negative NDI slope/NDI mean, indicating decreases with age. Cluster 3 contained only a few

voxels in the lower brainstem with a very large value of NDI slope/NDI mean. Results using

alternate numbers of clusters were similar (S1 Fig). The 2-cluster solution combined clusters 1

and 2, forming one large cluster containing almost all white and subcortical gray matter, and

Fig 5. Clusters defined by k-means clustering of NDI slope/NDI mean. Clusters produced with k = 3 are

shown on an average brain template. Three clusters were produced, showing positive changes of NDI across

most of the brain (red cluster), with small sections of the corpus callosum, corticospinal tract, thalamus, caudate

and brainstem havng decreasing NDI with age (green cluster). A third small cluster contained only part of the

brainstem and showed large increases of NDI.

https://doi.org/10.1371/journal.pone.0182340.g005
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another cluster containing a small section of the lower brainstem. The 4-cluster solution pro-

vided similar groups to the 3-cluster solution, but further separated much of the subcortical

gray matter and some subcortical white matter from other brain areas.

Fig 6 shows clusters generated using k = 3 for the NDI and ODI means together. The first

cluster (red in Fig 6) contained the central white matter and part of the thalamus and brain

stem, and showed high values of NDI with medium values of ODI. A second cluster (green)

contained the subcortical white matter, some subcortical gray matter, and the cerebellum;

this cluster had high values of both NDI (though not as high as cluster 1) and ODI. The final

cluster (blue) contained a large part of the thalamus, part of the corpus callosum, and much

of the brainstem, and had the lowest values of both NDI and ODI. The solution using 2 clus-

ters (S2 Fig) separated only subcortical and central white matter, with both clusters contain-

ing subcortical gray matter structures. The 4-cluster solution separated an additional layer

of white matter, parsing white matter tracts into subcortical, intermediate, and central

regions.

Fig 6. Clusters defined by k-means clustering of NDI and ODI means. Clusters produced with k = 3 are shown

on an average brain template. Clusters separated the subcortical (green) from central white matter (red), with a

third cluster with low NDI and low ODI values containing parts of the corpus callosum, thalamus, caudate, and

brainstem.

https://doi.org/10.1371/journal.pone.0182340.g006
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Discussion

Using DTI and NODDI, we demonstrate age-related changes across the brain. The age-related

increases of FA and decreases of MD observed agree well with the growing literature on diffu-

sion changes during childhood and adolescence, and our NODDI results suggest that these are

primarily driven by increasing myelination and/or axonal packing, rather than changes in axon

coherence and geometry. FA and NDI are sensitive to similar underlying physiological changes,

such as myelination and axonal packing, and similar trends were found in both parameters ver-

sus age. However, stronger correlations (larger R2 values) with age were found for NDI than for

any of the DTI parameters (FA, MD, RD, AD), suggesting that NDI is more sensitive to age-

related changes during late childhood and early adolescence. This confirms findings of a recent

study showing that NDI is a better marker of maturation in childhood and adolescence than FA

[12]. The multi-component model used to estimate NODDI parameters makes it unsurprising

that NDI is more closely associated with microstructural changes than DTI parameters, as the

contributions of other factors (e.g., axon coherence) that do not change with age are eliminated

from NDI but represented in DTI parameters. Interestingly, however, when correlations

between metrics were examined, ODI was more closely correlated with FA across participants,

suggesting a strong link between the two parameters in terms of variation across individuals,

even if ODI does not change with age. Previous studies in infants describe similar findings of

positive correlations between NDI and FA, and negative correlations between ODI and FA

[15], with stronger correlations between FA and ODI than FA and NDI [26]. In our study, MD

was closely linked with NDI but not significantly correlated with ODI for most regions. Because

MD is a measure of total water movement, it makes sense that it is related to neurite density,

with higher density restricting diffusion more, rather than related to the orientation and geome-

try of tracts. RD, generally thought to be more closely associated with myelin than FA [9, 27],

was strongly correlated with NDI in all regions, and correlated with ODI in half of the regions

examined. This suggests that RD is strongly related to neurite density across participants

(including the level of myelination), but that axon coherence also plays a role, particularly in

the white matter and more ordered subcortical gray matter structures (pallidum and thalamus).

Our NODDI results show significant regional variation in development trends. The steepest

slopes and largest percent changes, representing the fastest development across this age range,

were observed in the SLF, forceps major, and pallidum. Other subcortical gray matter struc-

tures and the uncinate fasciculus had the shallowest slopes. These white matter findings are

consistent with previous DTI studies showing slower but more prolonged development in the

uncinate fasciculus, but faster development in callosal areas, and intermediate rates in the CST

and SLF [1, 3, 4, 28]. The two previous NODDI studies do not report slopes for all regions, but

appear to observe the same general pattern, with steeper slopes in the SLF than the uncinate

[12], or in callosal areas than association tracts [11]. In our study, no areas had significant cor-

relations between ODI and age, suggesting that axon coherence in all regions remains stable

across this age range.

Most studies only examine white matter, though one NODDI study demonstrated increas-

ing NDI in the thalamus in infants [15]. We observed relatively slower development of most

subcortical gray matter areas compared to white matter, though the pallidum had a large

change of NDI across the age range. A previous DTI study showed significant increases of FA

and/or decreases of MD in the caudate, putamen, and globus pallidus in late childhood; the

thalamus did not show significant diffusion changes in childhood, but children had higher

MD than adults, suggesting continued development [14]. Our NODDI results suggest that

changes within subcortical gray matter, as in white matter, are due to increasing neurite den-

sity rather than changes in geometry.
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The clustering results provide further insight into microstructural patterns across the brain.

The clustering of NDI slope/NDI mean revealed that much of the white matter is developing

similarly, with modestly increasing NDI values across our age range. However, parts of the

posterior genu of the corpus callosum, CST, caudate, thalamus, and brainstem formed a cluster

with a negative NDI slope, suggesting decreases in axonal density. It is important to note that

averaging across each of the CST and thalamus produced positive correlations of NDI with

age, and averaging across the caudate showed no correlations with age, suggesting that devel-

opment varies across these structures. Previous studies overwhelmingly find increasing FA

and decreasing MD with age in children [29], though some studies do show slight decreases of

FA or increases of MD in childhood or adolescence in limited areas [1, 4]. In agreement with

our findings, a previous study showed decreasing magnetization transfer ratios, another mea-

sure sensitive to myelin, in the CST of adolescent males [30]. Negative correlations between

NDI and age may be due to increasing axon size or increasing extra-cellular space, both of

which would cause the neurite density to appear to decrease. Partial volume averaging with

voxels containing high CSF could also drive down NDI values, and development of extra-cellu-

lar space could cause a decline in intra-cellular space. The final cluster contained only a small

section of the lower brainstem, which had very high increases of NDI; however, this area can

be prone to image artifacts and registration errors, so future studies will need to verify this

result. Overall, the clustering results suggest similar patterns of development throughout most

of the brain, with localized areas of NDI decreases. A previous NODDI study reported differ-

ent maturation patterns in core white matter, subcortical, and cortical areas from childhood to

older adulthood [11]. Our results indicate a slightly more homogenous pattern of develop-

ment, but that should be expected over a much narrower age range. In contrast to some previ-

ous DTI studies [31, 32], we did not observe any obvious posterior-to-anterior or inferior-to-

superior pattern of maturation.

Using the mean values of NDI and ODI, a hierarchical pattern was clearly identified, with

core white matter having higher NDI and lower ODI values than subcortical white matter,

reflecting the fact that central white matter tracts are the most myelinated, tightly packed, and

organized sections. Sections of the corpus callosum, thalamus, and caudate formed a third

cluster with very lower NDI and ODI values. Interestingly, this cluster overlapped with the

cluster from Fig 5 that showed a negative NDI slope, suggesting different patterns of both

microstructure and its development over time in these areas.

This study has several limitations. Importantly, white matter development during this time

period is not linear, though the narrow age range in our study allowed a linear approximation

of the development trends. Furthermore, the cross-sectional nature of this study precludes

the measurement of change over time, instead limiting us to inferences based on correlations

between imaging parameters and age. Finally, data-driven clustering is limited by our small

sample size. Future studies with wider age ranges, longitudinal data points, and/or more sub-

jects may be able to better characterize patterns of diffusion parameter maturation across the

brain, identify any subtle changes of ODI, and characterize the contributions of factors includ-

ing sex and cognitive abilities.

In conclusion, this work helps further characterize healthy white and grey matter develop-

ment during late childhood and early adolescence using NODDI, an advanced diffusion imag-

ing and modeling technique. Data-driven clustering revealed increasing NDI values with age

across the brain, with only small parts of structures showing decreasing NDI. Overall, using

NODDI allowed for a more specific characterization of white matter and subcortical gray mat-

ter development than using DTI parameters alone, suggesting that the FA increases observed

in many previous studies are driven by increases of myelination and/or axonal packing, but

not axon coherence.
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Supporting information

S1 Fig. Clusters produced with k = 2 and k = 4 for NDI slope/NDI mean. Clusters produced

with k = 2 (A) and 4 (B) for NDI slope/NDI mean are shown on an average brain template.

The 2-cluster solution combined clusters 1 and 2, forming one large cluster containing almost

all white and subcortical gray matter, and another cluster containing a small section of the

lower brainstem. The 4-cluster solution provided similar groups to the 3-cluster solution, but

further separated much of the subcortical gray matter and some subcortical white matter from

other brain areas.

(TIF)

S2 Fig. Clusters produced with k = 2 and k = 4 for NDI and ODI means. Clusters produced

with k = 2 (A) and 4 (B) for NDI and ODI means are shown on an average brain template. The

2-cluster solution separated only subcortical and central white matter, with both clusters con-

taining subcortical gray matter structures. The 4-cluster solution separated an additional layer

of white matter, parsing white matter tracts into subcortical, intermediate, and central regions,

with subcortical gray matter and the brain stem making up most of the other cluster. All solu-

tions suggest an inner-to-outer profile of white matter microstructural properties.

(TIF)
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