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Abstract

In this paper, a new modification of the Lomax distribution is considered named as Lomax

exponential distribution (LE). The proposed distribution is quite flexible in modeling the life-

time data with both decreasing and increasing shapes (non-monotonic). We derive the

explicit expressions for the incomplete moments, quantile function, the density function for

the order statistics etc. The Renyi entropy for the proposed distribution is also obtained.

Moreover, the paper discusses the estimates of the parameters by the usual maximum likeli-

hood estimation method along with determining the information matrix. In addition, the

potentiality of the proposed distribution is illustrated using two real data sets. To judge the

performance of the model, the goodness of fit measures, AIC, CAIC, BIC, and HQIC are

used. Form the results it is concluded that the proposed model performs better than the

Lomax distribution, Weibull Lomax distribution, and exponential Lomax distribution.

Introduction

In probability theory, it has been a usual practice for the last few years to modify the existing

probability distributions so as to improve the flexibility of the existing models. These modifica-

tions are based on different methods such as increasing the number of parameters, making

some transformation in the original distribution, proper mixing of two distributions etc. The

main goal of such modifications is to improve the flexibility of the classical models. Motivating

from the above methods, Ghitany and Al-Awadhi [1] proposed a compound form of the

Lomax distribution with exponential distribution. Cordeiro et al. [2] modified the gamma-G

family of distributions. Zografos et al. [3] employed the cumulative distribution function (Cdf)

of the Lomax distribution as a baseline distribution. Lemonte et al. [4] and Lai et al. [5] used

the idea of combining two distributions. Lemonte et.al [6] demonstrated the idea of Mcdon-

ald-G family of distribution with a Lomax baseline function. Ibrahim et al. [7] modified the

Lomax distribution by producing the real number to the power of the cumulative distribution

function (Cdf) of Lomax distribution. Ashour and Eltehiwy [8], Merovci and Puka [9] and

Khan et al. [10] utilized the well-known method that is the transmutation technique to gener-

ate new probability distributions.

In this paper, we propose a modification to the Lomax distribution. The Lomax distribution

is defined as:

PLOS ONE | https://doi.org/10.1371/journal.pone.0225827 December 11, 2019 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ijaz M, Asim SM, Alamgir (2019) Lomax

exponential distribution with an application to real-

life data. PLoS ONE 14(12): e0225827. https://doi.

org/10.1371/journal.pone.0225827

Editor: Feng Chen, Tongii University, CHINA

Received: September 19, 2019

Accepted: November 13, 2019

Published: December 11, 2019

Copyright: © 2019 Ijaz et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files. Data set 2: Breaking stress of carbon fibers.

3.70,2.74,2.73,2.50,3.60,3.11,3.27,2.87,1.47,3.11,

4.42,2.41,3.19,3.22,1.69,3.28,3.09,1.87,3.15,4.90,

3.75,2.43,2.95,2.97,3.39,2.96,2.53,2.67,2.93,3.22,

3.39,2.81,4.20,3.33,2.55,3.31,3.31,2.85,2.56,3.56,

3.15,2.35,2.55,2.59,2.38,2.81,2.77,2.17,2.83,1.92,

1.41,3.68,2.97,1.36,0.98,2.76,4.91,3.68,1.84,1.59,

3.19,1.57,0.81,5.56,1.73,1.59,2.00,1.22,1.12,1.71,

2.17,1.17,5.08,2.48,1.18,3.51,2.17,1.69,1.25,4.38,

1.84,0.39,3.68,2.48,0.85,1.61,2.79,4.70,2.03,1.80,

1.57,1.08,2.03,1.61,2.12,1.89,2.88,2.82,2.05,3.65.

Source: El-Bassiouny, A. H., Abdo, N. F., Shahen H.

http://orcid.org/0000-0003-1403-7093
https://doi.org/10.1371/journal.pone.0225827
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225827&domain=pdf&date_stamp=2019-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225827&domain=pdf&date_stamp=2019-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225827&domain=pdf&date_stamp=2019-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225827&domain=pdf&date_stamp=2019-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225827&domain=pdf&date_stamp=2019-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225827&domain=pdf&date_stamp=2019-12-11
https://doi.org/10.1371/journal.pone.0225827
https://doi.org/10.1371/journal.pone.0225827
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


let a positive random variable Y has the Lomax distribution with parameters a and b, then

the cumulative distribution function (Cdf) takes the form

FðyÞ ¼ 1 � 1þ
y
b

� �h i� a
; y > 0 and a; b > 0 ð1Þ

where a and b are the shape and scale parameters respectively. The probability density function

related to (1) is given by

f ðyÞ ¼
a
b

1þ
y
b

� �h i� ðaþ1Þ

; y > 0; a; b > 0 ð2Þ

The above probability distribution has been modified by many researchers. For example,

Cordeiro et al. [2] explored the gamma-Lomax distribution and discussed its applications to

real data sets. Lemonte et al. [6] presented an extended Lomax distribution. Ibrahim et al. [7]

produced a new three parameters probability distribution and referred to it as exponentiated

Lomax distribution. Ashour and Eltehiwy [8] discussed the new modification to the Lomax

distribution and termed it as a transmuted exponentiated Lomax distribution. Tahir et al. [11]

discussed the Weibull Lomax distribution with applications to applied data.

The Lomax distribution is a heavily skewed probability distribution that plays a vital role in

modeling the lifetime data sets produced in business, computer science, medical and biological

sciences, engineering, economics, income and wealth inequality, Internet traffic and reliability

modeling. The Lomax or Pareto II distribution have been applied to model the data related to

income and wealth [12, 13], the distribution of computer files on server [14], reliability and life

testing [15] etc. The Lomax distribution is an alternative to the exponential distribution when

the data are heavily tailed [16]. The Lomax distribution has also been applied to record values

by Ahsanullah [17]. El-Bassiouny et al. [18] investigated the exponential Lomax distribution.

Afify et al. [19] defined the transmuted Weibull-Lomax distribution with real-world applica-

tions. For other probability distributions and their applications to different fields, we refer to

see [20–31], and [32–36] respectively.

In reliability theory where one deals with life testing experiments, most of the data sets

result in non-monotonic hazard rate shapes. In such situations, the existing distributions fail

to provide an adequate fit to the data. The main goal of this paper is to provide a new probabil-

ity model that would be more flexible which adequately represents the data sets and have trac-

table statistical properties. The proposed model shall refer to as Lomax exponential

distribution. The proposed model is produced using the transformation

X ¼ YeY

in the Lomax distribution. In the following section we have derived different statistical proper-

ties including hazard rate function, survival function, quantile function, moments, order statis-

tics, parameter estimation, Renyi entropy, and asymptotic confidence bounds of the proposed

model. We have further explored applications of the proposed model with two real data sets in

addition to a simulation study.

Lomax exponential (LE) distribution

Let a random variable Y has the Lomax exponential distribution with parameters a and b. The

parameters a and b are the shape and scale parameters respectively. The cumulative

LE(a,b)
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distribution function of the Lomax exponential distribution is given by

FðyÞ ¼ 1 � 1þ
yexpðyÞ
b

� �� �� a

; y > 0 ð3Þ

The corresponding probability function to (3) is given as

f ðyÞ ¼
a
b
ðyþ 1ÞexpðyÞ 1þ

yexpðyÞ
b

� �� �� ðaþ1Þ

; y > 0 ð4Þ

The hazard rate function and survival functions respectively are defined as

hðyÞ ¼
aexpðyÞ

b 1þ
yexpðyÞ
b

� �� � ð5Þ

SðyÞ ¼ 1þ
yexpðyÞ
b

� �� �� a

ð6Þ

Fig 1 shows the graphical representation of the probability density function and cumulative

distribution function, with different parameter values.

The behavior of the hazard rate function

Theorem 1. The behavior of the hazard rate function of Lomax exponential (a,b) distribution

h(y) is studied by taking the derivative of the hazard rate function in Eq (5) and is given by

h0ðyÞ ¼
d
dy
ðyþ 1ÞaexpðyÞ
b 1þ

yexpðyÞ
b

� �� �

" #

Simplifying we get

h0ðyÞ ¼ �
aeyðey � by � 2bÞ
ðyey þ bÞ2

¼
aeyðbðyþ 2Þ � eyÞ
ðyey þ bÞ2

ð7Þ

The mode of the above expression is the roots of h0(x) = 0. If b>1, then h0(x) = 0 implies

that the h(x) has a maximum at

ym ¼ � W �
1

bexpðyÞ2

 !

� 2; b 6¼ 0 ð8Þ

whereW(z) is the Lambert w function. The function h(x) is increasing if h0(y)>0 for y<ym and

h0(y)<0 for all values of y>ym. h(x) is decreasing if h0(y)<0 for y<ym and h0(y)>0 for all values

of y>ym.

Fig 2 illustrates that the Lomax exponential distribution can model both monotonically and

non-monotonically hazard rate shapes with different values of the parameter.

Quantile function and median

The quantile function Q(FL)(y) of the LE(a,b) is the real solution of the following equation

1 � 1þ
yexpðyÞ
b

� �� �� a

¼ u ð9Þ

LE(a,b)
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where u~Uniform (0,1). Solving (9) for y, we have

y ¼W
b

ð1 � uÞ1=a
� b

 !

; ð10Þ

where W (.) is the product log function.

For calculating the median we have to put u = 0.5 in Eq (10) to have

y ¼W
b

ð1 � 0:5Þ
1=a � b

 !

ð11Þ

Rth moment

Theorem 2. If Y has a Lomax exponential distribution with parameters a and b then the rth

moments (about the origin) of X, say u0r, does not exist.

ur ¼ EðyrÞ ¼
Z1

0

yrf ðyÞdx; r ¼ 1; 2; 3 . . .

¼

Z1

0

yr
a
b
ðyþ 1ÞexpðyÞ 1þ

yexpðyÞ
b

� �� �� ðaþ1Þ

dy:

Fig 1. Shapes of the Pdf and Cdf of Lomax exponential distribution.

https://doi.org/10.1371/journal.pone.0225827.g001

LE(a,b)
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Using 1þ
yexpðyÞ
b

� �� �� ðaþ1Þ

¼
X1

n¼k¼0

nk

bn
� a � 1

n

 !

ynþk in the above expression to have

u0r ¼
X1

n¼k¼0

� a � 1

n

 !
nk

bn

Z1

0

yrþnþkðyþ 1ÞexpðyÞdy ð12Þ

By solving (12) the integral in (12), we get expression for u0r as follows

ur ¼
X1

n¼k¼0

� a � 1

n

 !
nk

ð� 1Þ
rþkþnbn

ðGðr þ kþ nþ 2Þ þ Gðr þ nþ kÞÞ ð13Þ

Hence the skewness and kurtosis can be defined by using the relation,

Skewness ¼
Eðy3Þ � 3EðyÞEðy2Þ þ 2Eðy2Þ

var3=2ðyÞ
ð14Þ

kurtosis ¼
Eðy4Þ � 4EðyÞEðy3Þ þ 6Eðy2ÞE2ðyÞ þ 3E4ðyÞ

var2ðyÞ
ð15Þ

where, var(y) = E(y2)−E2(y).

Fig 2. Shapes of the hazard rate function with different values of b when a = 1.

https://doi.org/10.1371/journal.pone.0225827.g002

LE(a,b)
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Order statistics

Let Y1,Y2,. . .,Yn be ordered random variables, then the probability density function (Pdf) of

the ith order statistics is given by,

fði;nÞðyÞ ¼
n!

ði � 1Þ!ðn � iÞ!
f ðyÞFðyÞði� 1Þ

½1 � FðyÞ�ðn� iÞ; ð16Þ

The 1st and nth order probability density function (pdf) of the LE can be obtained using (3)

and (4) in (16) to have

fð1:nÞðxÞ ¼ n
a
b
ðyþ 1ÞexpðyÞ 1þ

yexpðyÞ
b

� �� �� ðaþ1Þ
 !ðn� 1Þ

1þ
yexpðyÞ
b

� �� �� a

ð17Þ

fðn:nÞðxÞ ¼ n
a
b
ðyþ 1ÞexpðyÞ 1þ

yexpðyÞ
b

� �� �� ðaþ1Þ
 !

1 � 1þ
yexpðyÞ
b

� �� �� aðn� 1Þ

ð18Þ

Parameter estimation

In this section, the usual method, that, the maximum likelihood estimation is used to find out

the estimates of the unknown parameters of LE(a,b) based on complete information. Let us

assume that we have a sample Y1,Y2,. . .,Yn from LE(a,b). The Likelihood function is given by

L ¼
Yn

i¼1

f ðyi; a; bÞ ð19Þ

Substituting (4) in (19), we get

L ¼
Yn

i¼1

a
b
ðyþ 1ÞexpðyÞ 1þ

yexpðyÞ
b

� �� �� ðaþ1Þ
 !

ð20Þ

By applying the natural logarithm to (20), the log-likelihood function is

‘ðy; a; bÞ ¼ nlog
a
b

� �
þ
X

logðyi þ 1Þ þ
X

yi � ðaþ 1Þ
X

log 1þ
yiexpðyiÞ

b

� �

ð21Þ

Now computing the first partial derivatives of (21) and setting the results equal zeros, we

have

d
da
‘ðy; a; bÞ ¼

n
a
�
X

log 1þ
yiexpðyiÞ

b

� �

ð22Þ

d
db
‘ðy; a; bÞ ¼ �

n
ab
þ
ðaþ 1Þ

b

X yiexpðyiÞ
yiexpðyiÞ þ b

ð23Þ

d
db2

‘ðy; a; bÞ ¼
n
ab2
þ
X ðyiexpðyiÞÞ

2

1þ
yiexpðyiÞ

b

� �
b2

ð24Þ

d
dab

‘ðy; a; bÞ ¼ �
1

b

X yiexpðyiÞ
bþ yiexpðyiÞ

� �

ð25Þ

LE(a,b)
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The above Eqs from (22) to (25) are not in closed form. For the solution of these explicit equa-

tions, we refer to using some iterative procedure such as Newton Raphson, Bisection methods, or

some other to get the approximate maximum likelihood estimates (MLE) of these parameters.

Asymptotic confidence bounds

Since the MLE of the unknown parameters a,b are not in closed forms, therefore, it is not pos-

sible to derive the exact distribution of the MLE. We have derived the asymptotic confidence

bounds for the unknown parameters of LE(a,b) based on the asymptotic distribution of the

MLE. For the information matrix, we find the second time partial derivatives of the Eqs from

(22) to (25) and are given as

d
da2

‘ðy; a; bÞ ¼ I11 ¼ �
n
a2

ð26Þ

d
db2

‘ðy; a; bÞ ¼ I22 ¼
n
ab2
þ
X ðyiexpðyiÞÞ

2

1þ
yiexpðyiÞ

b

� �
b2

ð27Þ

d
dab

‘ðy; a; bÞ ¼ I12 ¼ �
1

b

X yiexpðyiÞ
bþ yiexpðyiÞ

� �

ð28Þ

So that the observed information matrix is given by

I ¼ �
I11 I12

I21 I22

 !

Hence the variance-covariance matrix is approximated as

V ¼
v11 v12

v21 v22

 !

¼
I11 I12

I21 I22

 !� 1

To obtain the estimate of V, we replace the parameters by the corresponding MLE’s to get

v^ ¼
I11
^ I12

^

I21
^ I22

^

 !� 1

ð29Þ

Using the above variance-covariance matrix, one can derive the (1 - β) 100% confidence

intervals for the parameters a and b as following

â � Zb
2

ffiffiffiffiffiffiffiffiffiffiffi
varðâ

p
Þ; b̂ � Zb

2

ffiffiffiffiffiffiffiffiffiffiffi

varðb̂
q

Þ:

where Zb
2

is the upper b

2

� �th
percentile of the standard normal distribution.

Renyi entropy

Theorem 3. If a random variable X has a LE(a,b), then the Renyi entropy RH(x) is defined by

RHðyÞ ¼
1

1 � p
log
Z1

0

f ðyÞpdy

¼
1

1 � p
log
Z1

0

a
b
ðyþ 1ÞexpðyÞ 1þ

yexpðyÞ
b

� �� �� ðaþ1Þ
 !p

dy
(30)

LE(a,b)
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where

1þ
yexpðyÞ
b

� �� �� pðaþ1Þ

¼
X1

n¼0

� pðaþ 1Þ

n

0

@

1

A yexpðyÞ
b

� �n

¼
X1

n¼0

nk

bnk!

� pðaþ 1Þ

n

0

@

1

Aynþk

By employing the result of the above expression in (30) we have

¼
X1

n¼l¼0

a
b

� �p nk

bnk!
� pðaþ 1Þ

n

 !
l

y

 !Z1

0

ylþnþkexpðpyÞdy ð31Þ

Table 1. Maximum likelihood estimates for data set 1.

Model Estimates

LE(a,b) 0.1104961 5.6340882 _ _

WL(a,b,c,d) 2.8345778 1.9742578 1.0284592 0.2073842

L(a,b) 2.259102 13.107217 _ _

EL(a,b,c) 0.975232421 0.062429585 0.008794612 _

https://doi.org/10.1371/journal.pone.0225827.t001

Table 2. Goodness of fit Criteria: AIC, CAIC, BIC, HQIC for Data set 1.

Model AIC CAIC BIC HQIC
LE(a,b) 243.7959 244.1293 247.1231 244.9897

WL(a,b,c,d) 249.5339 250.7104 256.1881 251.9214

L(a,b) 252.6833 253.0166 256.0104 253.877

EL(a,b,c) 255.0222 255.7079 260.0129 256.8128

https://doi.org/10.1371/journal.pone.0225827.t002

Table 3. Maximum likelihood estimates for data set 2.

Model Estimates

LE(a,b) 1.125319 34.175778 _ _

WL(a,b,c,d) 0.01968493 1.39764915 1.79715292 2.91573568

L(a,b) 9.44236 23.14359 _ _

EL(a,b,c) 4.1176675 1.5270909 0.0114609 _

https://doi.org/10.1371/journal.pone.0225827.t003

Table 4. Goodness of fit Criteria: AIC, CAIC, BIC, HQIC for data set 2.

Model AIC CAIC BIC HQIC
LE(a,b) 263.2525 263.3988 268.1378 265.2175

WL(a,b,c,d) 265.3037 265.8037 275.0743 269.2338

L(a,b) 341.1852 341.3315 346.0705 343.1502

EL(a,b,c) 264.2428 264.5391 271.5708 267.1903

https://doi.org/10.1371/journal.pone.0225827.t004

LE(a,b)
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Solving the function under the integral sign, finally we get

RHðyÞ ¼
X1

n¼0

X1

l¼0

p

l

 !
a
b

� �p nk

bnk!
� pðaþ 1Þ

n

 !
1

1 � p
log

Gðl þ nþ kþ 1Þ

ð� pÞkþnþk

" #

ð32Þ

Applications

In this section, we provide an application of the LE distribution to two real data sets to illustrate

its usefulness and compare its goodness-of-fit with other invariant forms of the Lomax distribu-

tion including the Weibull Lomax (WL) [11], Exponential Lomax (EL) [18], and the Lomax (L)

[37], by using Kolmogorov–Smirnov (K–S) statistic, Akaike Information Criterion (AIC), Consis-

tent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), and Hannan

Quinn information Criterion (HQIC). Formulae of these criteria are given by

AIC ¼ � 2Lðĉ; yiÞ þ 2p; AICc ¼ AIC þ
2pðpþ 1Þ

n � p � 1
; CAIC ¼ � 2Lþ PflogðnÞ þ 1g;

BIC ¼ PlogðnÞ � 2Lðĉ; yiÞ; HQIC ¼ � 2Lmax þ 2PlogflogðnÞg:

where L is the maximized likelihood function and yi is the given random sample, ĉ is the maxi-

mum likelihood estimator and p is the number of parameters in the model.

Data set 1: Losses due to wind catastrophes

The first data set represents the losses due to wind catastrophes recorded in 1977 used by

Hogg and Klugman [38]. The data set consists of 40 observations that were recorded to the

nearest $1,000,000 and include only losses of $2,000,000 or more. The data set values are as fol-

lows (in millions of dollars):

2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,8,8,9,15,17,22,23,24,25,27,32,43.

Fig 3. Theoretical and empirical Pdf and Cdf of LE for data set 1.

https://doi.org/10.1371/journal.pone.0225827.g003

LE(a,b)
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Data set 2: Breaking stress of carbon fibers

The second real data set represent the failure times of 84 aircraft windshield. This data is taken

from an article published by [18]. The data points are as follows: 3.70,2.74,2.73,2.50,3.60,3.11,

3.27,2.87,1.47,3.11,4.42,2.41,3.19,3.22,1.69,3.28,3.09,1.87,3.15,4.90,3.75,2.43,2.95,2.97,3.39,

2.96,2.53,2.67,2.93,3.22,3.39,2.81,4.20,3.33,2.55,3.31,3.31,2.85,2.56,3.56,3.15,2.35,2.55,2.59,

Fig 4. Theoretical and empirical Pdf and Cdf with Q-Q plot and P-P plot for LE for data set 1.

https://doi.org/10.1371/journal.pone.0225827.g004
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2.38,2.81,2.77,2.17,2.83,1.92,1.41,3.68,2.97,1.36,0.98,2.76,4.91,3.68,1.84,1.59,3.19,1.57,0.81,

5.56,1.73,1.59,2.00,1.22,1.12,1.71,2.17,1.17,5.08,2.48,1.18,3.51,2.17,1.69,1.25,4.38,1.84,0.39,

3.68,2.48,0.85,1.61,2.79,4.70,2.03,1.80,1.57,1.08,2.03,1.61,2.12,1.89,2.88,2.82,2.05,3.65.

Table 1 represent the maximum likelihood estimates and Table 2 represent the goodness of

fit measures AIC, CAIC, BIC, and HQIC of the Lomax exponential distribution for the wind

catastrophes data. Table 3 represent the maximum likelihood estimates and Table 4 represent

the goodness of fit measures AIC, CAIC, BIC, and HQIC using breaking stress of carbon fibers

data. In general, the model is to be considered the best one among others for which these

(AIC, CAIC, BIC, and HQIC) statistics values are small. From Table 2 and Table 4, it is evident

that the LE model leads to the preferable fit over the Lomax, Weibull Lomax, and Exponential

Lomax distribution.

Fig 3 show the theoretical and empirical probability density function (Pdf) and cumulative

distribution function (Cdf) and Fig 4 provides the Q-Q plot and P-P plot of the Lomax expo-

nential for data set 1. Fig 5 shows the theoretical and empirical probability density function

(Pdf) and cumulative distribution function (Cdf) and Fig 6 provides the Q-Q plot and P-P plot

of the Lomax exponential for data set 2. It is evident that the LE distribution fitted the line very

well as compared to others

Simulations

Expression (11) can be easily used to draw random data from LE(a,b) distribution. The experi-

ment is repeated for 100 times with a sample of size n = 30, 60, and 90 for different values of

the parameter. The average bias and Mean square error (MSE) are given in Table 5. The results

reveal that increase in the sample size results in a decrease in both the bias and MSE. The

mathematical form of the mean square error and bias are as follows:

MSE ¼
1

W

XW

i¼1

ðâi � aÞ
2

Fig 5. Theoretical and empirical Pdf and Cdf of LE for data set 2.

https://doi.org/10.1371/journal.pone.0225827.g005
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Bias ¼
1

W

XW

i¼1

ðâi � aÞ

Total time on the test (TTT)

The TTT plot plays an important role in identifying the appropriate model to fit the given data

in respect of the failure rates. This plot tells us the different forms of the failure rate. If the TTT

Fig 6. Theoretical and empirical Pdf and Cdf with Q-Q plot and P-P plot for LE for data set 2.

https://doi.org/10.1371/journal.pone.0225827.g006
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plot has a straight line (diagonal), this indicates that the given data has a constant failure rate.

The failure rates will be increase if this plot is concave and decreases if it is convex. For the

bath-tub shape, this plot first decreases and then increases. Similarly, if the failure rates follow

some inverted bath-tub shape, then it will be first concave and then convex. The TTT plot is

Table 5. Mean bias and MSE of LE(a,b) distribution.

a b n Mse(a) Mse(b) bias(a) bias(b)

2 0.1

30 43.37569 0.2849909 3.519714 0.2674605

60 2.797546 0.01698649 0.8652669 0.0698271

90 2.547909 0.0147992 0.7191287 0.05946671

2 1.5

30 7.948621 7.12233 0.8635859 0.8316998

60 1.906238 1.895496 0.2121933 0.328816

90 0.06762601 0.1207555 0.02700033 0.2979983

2 2

30 16.30946 31.8214 1.998589 2.647095

60 6.757092 10.25353 1.384559 1.652988

90 0.8164857 1.4583 0.1488166 0.332031

0.01 0.21

30 1.136051e-05 3.127487 0.002299238 1.507933

60 8.759477e-07 0.5738629 0.0009260684 0.7550524

90 2.464595e-07 0.01949125 0.0004921424 0.1385804

0.01 0.30

30 1.223512e-05 4.177988 0.003459386 2.036716

60 4.526665e-07 0.2298188 0.0006659029 0.4761458

90 2.010531e-07 0.03170673 0.0004390346 0.1755684

0.01 0.29

30 1.285701e-06 3.607665 0.0007714635 1.78106

60 3.925089e-07 0.08345893 0.0004569719 0.2779985

90 2.014616e-07 0.02836001 0.0004394908 0.1657713

https://doi.org/10.1371/journal.pone.0225827.t005

Fig 7. TTT plot for wind catastrophes and carbon fibers.

https://doi.org/10.1371/journal.pone.0225827.g007
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determined by using the following formula

G
r
n

� �
¼

Xr

i¼1

xi:n þ ðn � rÞxi:n

Xn

i¼1

xi:n

; r ¼ xi:n ¼ 1; 2; 3; . . . n

where xi:n are the order statistics.

The TTT plots for the data (losses due to wind catastrophes and breaking stress of carbon

fibers) are given in Fig 7. The graph clearly shows that the proposed distribution plays an

important role both in monotonic and non-monotonic hazard rate shapes.

Conclusion

In this paper, we presented a new modification of the Lomax distribution consisting of two

parameters called Lomax exponential Distribution (LE). The statistical properties of the LE

distribution are obtained including moments, entropy measures, hazard function, Survival

function, median, mode, order statistics, etc. Furthermore, the parameters of the model are

estimated using the maximum likelihood estimation method. Asymptotic confidence intervals

of the parameters, based on MLE, have been constructed. In future, a study may be conducted

to estimate the parameter of the proposed model using Bayesian approach. The behavior of the

hazard rate function has been investigated. It is concluded that the Lomax exponential distri-

bution can model data sets having both monotonically and non-monotonically hazard rate

shapes. The paper also presents an application of the LE distribution by using two real data

sets. The results based on the real-life data sets reveal that the proposed distribution is more

flexible for the lifetime data sets and provide a better fit to the data sets as compared to other

competing probability models including the Lomax distribution, Weibull Lomax distribution,

and exponential Lomax distribution.
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26. Korkmaz M. c., and Genç A. I. A new generalized two-sided class of distributions with an emphasis on

two-sided generalized normal distribution, Communications in Statistics-Simulation and Computation,

2017; 46: 1441–1460.

LE(a,b)

PLOS ONE | https://doi.org/10.1371/journal.pone.0225827 December 11, 2019 15 / 16

https://doi.org/10.1371/journal.pone.0225827


27. Nasir M. A., Aljarrah M., Jamal F., and Tahir M. H. A new generalized Burr family of distributions based

on quantile function. Journal of Statistics Applications and Probability, 2017; 6:1–14.

28. Otunuga O. E. The Pareto-g Extended Weibull Distribution, 2017.

29. Dias C. R., Alizadeh M., and Cordeiro G. M. The beta Nadarajah-Haghighi distribution. Hacettepe Uni-

versity Bulletin of Natural Sciences and Engineering Series B: Mathematics and Statistics, 2016.

30. El-Bassiouny A. H., Abdo N. F., and Shahen H. S. Exponential lomax distribution, International Journal

of Computer Applications, 2015; 121:(13).

31. Ashour S. K., Eltehiwy M. A. Transmuted exponentiated Lomax distribution, Australian Journal of Basic

and Applied Sciences, 2013; 7: 658–667.

32. Chen Feng, Chen Suren, and Ma Xiaoxiang. Analysis of hourly crash likelihood using unbalanced panel

data mixed logit model and real-time driving environmental big data. Journal of safety research, 2018;

65: 153–159. https://doi.org/10.1016/j.jsr.2018.02.010 PMID: 29776524

33. Chen Feng, and Chen Suren. Injury severities of truck drivers in single-and multi-vehicle accidents on

rural highways. Accident Analysis & Prevention,2011; 43(5)): 1677–1688.

34. Chen Feng, Song Mingtao, and Ma Xiaoxiang. Investigation on the injury severity of drivers in rear-end

collisions between cars using a random parameters bivariate ordered probit model. International journal

of environmental research and public health; 2019; 16(14): 2632.

35. Dong Bowen, et al. "Investigating the Differences of Single-Vehicle and Multivehicle Accident Probabil-

ity Using Mixed Logit Model. Journal of Advanced Transportation, 2018. https://doi.org/10.1007/

s11116-016-9747-x

36. Chen Feng, Chen Suren, and Ma Xiaoxiang. Crash frequency modeling using real-time environmental

and traffic data and unbalanced panel data models. International journal of environmental research and

public health, 2016; 13(6): 609.

37. Lomax K. Business failures: another example of the analysis of failure data. J Am Stat Assoc. 1987; 49:

847–852.

38. Hogg R. and Klugman S.A. Loss Distributions. New York: Wiley; 1984.

LE(a,b)

PLOS ONE | https://doi.org/10.1371/journal.pone.0225827 December 11, 2019 16 / 16

https://doi.org/10.1016/j.jsr.2018.02.010
http://www.ncbi.nlm.nih.gov/pubmed/29776524
https://doi.org/10.1007/s11116-016-9747-x
https://doi.org/10.1007/s11116-016-9747-x
https://doi.org/10.1371/journal.pone.0225827

