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The long-lasting vulnerability to relapse remains the main challenge for the successful

treatment of drug addiction. Neural systems that are involved in processing natural

rewards and drugs of abuse overlap. However, neuroplasticity that is caused by drug

exposure may be responsible for maladaptive, compulsive, and addictive behavior.

The orexin (Orx) system participates in regulating numerous physiological processes,

including energy metabolism, arousal, and feeding, and is recruited by drugs of abuse.

The Orx system is differentially recruited by drugs and natural rewards. Specifically,

we found that the Orx system is more engaged by drugs than by non-drugs, such

as sweetened condensed milk (SCM) or a glucose saccharin solution (GSS), in an

operant model of reward seeking. Although stimuli (S+) that are conditioned to cocaine

(COC), ethanol, and SCM/GSS equally elicited reinstatement, Orx receptor blockade

reversed conditioned reinstatement for drugs vs. non-drugs. Moreover, the hypothalamic

recruitment of Orx cells was greater in rats that were tested with the COCS+ vs. SCMS+,

indicating of a preferential role for the Orx system in perseverative, compulsive-like COC

seeking and not behavior that is motivated by palatable food. Accumulating evidence

indicates that the paraventricular nucleus of the thalamus (PVT), which receivesmajor Orx

projections, mediates drug-seeking behavior. All Orx neurons contain dynorphin (Dyn),

and Orx and Dyn are co-released. In the VTA, they play opposing roles in reward and

motivation. To fully understand the physiological and behavioral roles of Orx transmission

in the PVT, one important consideration is that Orx neurons that project to the PVT may

co-release Orx with another peptide, such as Dyn. The PVT expresses both Orx receptors

and κ opioid receptors, suggesting that Orx and Dyn act in tandem when released in the

PVT, in addition to the VTA. The present review discusses recent findings that suggest

the maladaptive recruitment of Orx/Dyn-PVT neurotransmission by drugs of abuse vs. a

highly palatable food reward.
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INTRODUCTION

Drug addiction is a chronic relapsing disorder that is
characterized by persistent drug seeking and use (1–4).
Relapse vulnerability is a challenge for the successful treatment
of substance use disorder, and relapse prevention has emerged
as a central focus of treatment and medication development
efforts (4, 5). Central issues in addiction research involve
clarification of the neurobiological mechanisms that underlie the
chronic relapsing nature of addiction and the identification of
pharmacotherapies for relapse prevention.

Progress has been made in identifying the neurocircuitry
that mediates craving, drug seeking, and relapse. Human
functional brain imaging studies (6–8) and rodent studies of
Fos expression as a marker of neural activation (9–11) have
identified interconnected cortical and limbic brain regions that
are activated during drug cue-, drug priming-, and stress-induced
reinstatement. This circuitry includes the medial prefrontal
cortex (mPFC), basolateral amygdala (BLA), central nucleus
of the amygdala (CeA), bed nucleus of the stria terminalis
(BNST), ventral tegmental area (VTA), nucleus accumbens
(NAC), hippocampus (HIP), dorsal striatum (DS), hypothalamus
(HYP), and thalamus [THAL; (12–25)].

The paraventricular nucleus of the thalamus (PVT) is
a strategic interconnected neuroanatomical region among
thalamic nuclei (Figure 1) that influences other structures that
have been implicated in drug-seeking behavior (26–28). Of
particular interest, the PVT receives abundant innervation by
hypothalamic orexin (Orx) neurons (29). Orexin system function
has been positively related to states of arousal and maintaining
the waking phase (30). Orexin has also been reported tomodulate
reward function, particularly drug-seeking behavior [for review,
see (31)]. Orexin neurons express dynorphin [Dyn; (32)]. In
contrast to Orx, Dyn promotes depressive-like behavior and is
involved in mediating the aversive effects of stress (33). The PVT
expresses Orx receptors (OrxRs) and κ opioid receptors (KORs),
suggesting that Orx and Dyn have a functional interaction in the
PVT.

Neural systems that are involved in processing natural
rewards and drugs of abuse overlap. Neuroplasticity that is
caused by drug exposure may be responsible for maladaptive,
compulsive, and addictive behavior (34–37). One important
consideration when studying the brain mechanisms that control
dug-seeking behavior is to differentiate the mediation of
drug-directed behavior from “normal” appetitive behavior.
Drugs neuroadaptively influence neural systems that regulate
motivation that is normally directed toward natural rewards.
Neuroplasticity of this circuitry may be responsible for the
maladaptive compulsive behavior that characterizes addiction.
This review summarizes recent findings that suggest maladaptive
recruitment of the PVT by drugs of abuse. More specifically,
this review focuses on Orx transmission in the PVT. There
is a functional interaction between Orx and Dyn that impacts
drug-seeking behavior. The present review also discusses recent
data that demonstrate a differential role for Orx and Dyn in
behavior that is directed toward conventional reinforcers. The
terms “conventional reinforcer” and “natural reward” are loosely

defined in the present review as a non-drug condition (e.g., a
sweet, highly palatable solution) that serves as a comparison
control for the drug.

MOTIVATIONAL EFFECTS OF DRUGS OF
ABUSE IMPLICATE THE OREXIN SYSTEM

Orexin A (OrxA or hypocretin-1 [Hcrt1]) and orexin B (OrxB
or hypocretin-2 [Hcrt2]) are obtained through the proteolytic
cleavage of the common precursor prepro-Orx (38–40) and
post-translational products of the orexin (Orx) neuropeptide
precursor gene. The hypothalamic neuropeptides OrxA and
OrxB regulate energy metabolism, arousal, and feeding (41–
48). To date, orexin receptor 1 (OrxR1) and OrxR2 have
been identified (44, 49, 50). OrxR1 has higher affinity for
OrxA (20–30 nM) than OrxB (10- to 1,000-fold lower). OrxR2
has similar affinity for OrxA and OrxB [40 nM range; (44,
49, 50)]. Orexin cell bodies have been identified in the
lateral hypothalamus (LH), perifornical hypothalamus (PFA),
and dorsomedial hypothalamus (DMH). The LH is associated
with reward and motivation (51), and the PFA and DMH
are involved in arousal regulation and stress responses (52,
53). Orexin neurons project to the PVT, NAC shell (NACsh),
ventral pallidum (VP), VTA, CeA, BNST, and mPFC (52,
54). Over a decade ago, Orx neurons were shown to play
a role in modulating reward function and particularly drug-
directed behavior (55). Orexin neurons in the LH are activated
by stimuli that are predictive of food, morphine, cocaine
(COC), and ethanol [EtOH; (19, 55–58)]. Consistent with these
observations, intra-VTA microinjections of OrxA produced
the renewal of morphine-induced conditioned place preference
[CPP; (59, 60)]. Intra-LH administration of the OrxR1 antagonist
SB334867 decreased morphine-induced CPP (55). SB334867 also
blocked the acquisition of COC-induced behavioral sensitization
and the COC-induced potentiation of excitatory currents in
dopamine (DA) neurons in the VTA (61). Furthermore, intra-
VTA SB334867 administration reduced the motivation to self-
administer COC and decreased the COC-induced enhancement
of DA signaling in the NAC (62). OrxR1 blockade decreased both
EtOH (63) and nicotine (64) self-administration and prevented
the reinstatement of COC and EtOH seeking that was induced
by cues and stress (57, 63, 65–69). Overall, the Orx system has
been implicated in the neurobehavioral and motivational effects
of drugs of abuse (61, 70, 71). Orexin projection sites overlap with
neural systems that mediate drug craving and seeking (12, 14, 17,
18, 21, 24).

NEURONAL CIRCUITRY THAT ENCODES
NATURAL REWARDS MAY BE USURPED
BY DRUGS OF ABUSE

Neural systems that are involved in processing natural rewards
and drugs of abuse overlap. Exposure to drugs of abuse induces
neuroadaptations that can cause compulsive-like behavior (34–
37). Evidence has shown that the Orx system is recruited by
drugs of abuse. A recent study from our laboratory demonstrated
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FIGURE 1 | Schematic representation of major PVT efferents (red arrows) and afferents (blue arrows). HYP, hypothalamus; PVT, paraventricular nucleus of the

thalamus; ARC, arcuate nucleus of the hypothalamus; LC, locus coeruleus; RN, raphe nucleus; PN, parabrachial nucleus; CTX, cortex; PFC, prefrontal cortex; AIC,

agranular insular cortex; OC, orbital cortex; CP, caudate-putamen; SPT, septum; AMY, amygdala; PAG, periaqueductal gray; BNST, bed nucleus of the stria terminalis;

NAc, nucleus accumbens; IPAC, interstitial nucleus of the posterior limb of the anterior commissure; PO, preoptic area; HIPP, hippocampus; SUB, subiculum; SN,

substantia nigra; VTA, ventral tegmental area, SCN, suprachiasmatic nucleus.

differential recruitment of the Orx system by motivational states
that were induced by discriminative stimuli that were paired
with COC vs. a highly palatable food reward (19). Although
weak behavioral effects of OrxR blockade were described for
COC (62, 72–74) and EtOH (75, 76) intake, pharmacological
manipulation of the Orx system significantly affected the
motivational effects of drug-predictive stimuli in CPP and
reinstatement studies (55, 57, 63, 66–69). Our laboratory utilized
an operant model of reward seeking and found that drugs

of abuse engage the Orx system more than non-drugs [e.g.,
sweetened condensed milk (SCM) and a glucose saccharin
solution (GSS); (77)]. For example, although stimuli (S+)
that were conditioned to COC, EtOH, and SCM/GSS were
equally effective in eliciting reinstatement, systemic SB334867

administration selectively reversed conditioned reinstatement
for drugs vs. non-drugs (66, 67). SB334867’s preferential
effect suggests that drugs neuroadaptively alter neurocircuitry
that regulates motivation that is normally directed toward
natural rewards, and such alterations can only be revealed
by pharmacological manipulations. Notably, baseline levels of

responding during self-administration in these studies were
considerably higher with SCM than with COC, which could
be interpreted as the sweet solution’s not really being a “non-
drug condition” but rather much more reinforcing than the
drug of abuse. However, reinforcer efficacy and the rate of

responding on fixed-ratio schedules are not necessarily correlated
(78, 79). In ad libitum-fed animals, SCM at the concentration
that was used herein produced breakpoints on a progressive-ratio
schedule that were similar to breakpoints that were produced
by COC (80–82); thus, the acute reinforcing effects of SCM
and COC were comparable. Additionally, stimuli that were
conditioned to this COC dose and SCM concentration produced
identical conditioned reinstatement, suggesting that reliable and
comparable conditioning effects under these conditions occurred

for COC and SCM despite the difference in baseline levels of
responding that were maintained by these reinforcers (66, 83,
84). However, when presented repeatedly, environmental stimuli
that were conditioned to drugs of abuse produced perseverative,
highly extinction-resistant reward seeking, whereas behavior
that was controlled by stimuli that were associated with
conventional reward extinguished rapidly in the absence of
primary reinforcement (19, 77). This supports the conclusion
that the perseveration of reinstatement or reward craving that
results from reward-environment associations is a phenomenon
that is preferentially linked to drugs of abuse and occurs
independently from the initial primary reinforcing strength of the
substance that maintains behavior during self-administration.
Moreover, for COC, the percentage of Fos+/Orx+ cells was
significantly elevated in the LH, DMH, and PFA, and this effect
was not observed in SCM rats (19). These findings suggest a role
for the Orx system in perseverative, compulsive-like drug seeking
but not behavior that is motivated by non-drug palatable food.

THE PARAVENTRICULAR NUCLEUS OF
THE THALAMUS CONTROLS
DRUG-SEEKING BEHAVIOR

The PVT is part of dorsal midline thalamic nuclei and adjacent
to the dorsal aspect of the third ventricle. The PVT plays a
major role in regulating arousal, attention, states of awareness,
food consumption, and energy balance (28, 85–88). Midline and
intralaminar thalamic nuclei were previously hypothesized to
participate in processing non-discriminative nociceptive inputs
(89), and each nucleus has subsequently been shown to innervate
functionally distinct areas of the cortex and striatum (28, 87, 90).

As shown in Figure 1, the PVT receives projections from
brainstem regions that are involved in arousal and autonomic
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nervous system function (91–96). Through its projections to the
NAC and PFC (26, 27, 93, 97–104), the PVT affects cortico-
striatal mechanisms that are related to reward and motivation
(13, 105, 106).

The PVT receives large and distinct inputs from several
areas of the HYP, including the suprachiasmatic, arcuate,
dorsomedial, and ventromedial nuclei, as well as preoptic and
lateral hypothalamic areas (29, 91, 93, 107–111). These structures
control the expression of motivated behavior (112). The PVT
is the target of hypothalamic Orx neurons, especially from the
LH (29). Additionally, the PVT interfaces HYP and cortical-
striatal projections that integrate energy balance, arousal, and
food reward [e.g., (113)].

The PVT has been consistently shown to be activated during
periods of arousal and stressful conditions (114–119). The PVT
was also shown tomediate activity of the hypothalamic-pituitary-
adrenal axis in response to chronic stress (114, 120, 121). The
PVT was not initially thought to be part of the “neurocircuitry
of addiction,” but it has been subsequently shown to play a
key role in modulating drug-directed behavior. The PVT sends
projections to the NAC, CeA, BNST, and PFC, brain regions
that are involved in controlling drug-seeking behavior [Figure 1;
(26–28)]. Previous studies reported that the PVT is selectively
activated during EtOH-seeking behavior (56, 122). Our recent
studies found potent and selective PVT activation during COC-
seeking behavior but not SCM-seeking behavior (20). The PVT
was recruited during the conditioned reinstatement of COC and
SCM seeking, but its activation was correlated with COC- but
not SCM-seeking behavior (20). These findings were extended
by showing that transient inactivation of the PVT selectively
prevented the conditioned reinstatement of COC- vs. SCM-
seeking behavior (123), further demonstrating an important role
for the PVT in drug-seeking behavior.

The PVT as a whole plays a role in the mediation of
drug-seeking behavior. Accumulating evidence shows that Orx
transmission in the PVT is specifically implicated in the control
of drug-seeking behavior. There is a major Orx projection from
the LH to the PVT (29, 124) and from the PFC to the PVT
(Figure 1). These connections are hypothesized to modulate the
expression of emotional andmotivated behaviors (125). The PVT
has been proposed to be a key relay that gates Orx-coded reward-
related communication between the LH and both the NAC and
DS (113).

Recruitment of the Orx system by drugs of abuse may
induce neuroadaptations that slant its function toward drug-
directed behavior. This may explain the greater sensitivity of
the Orx system to OrxR antagonism for drug-seeking behavior
vs. natural reward-seeking behavior (66) and could explain why
transient inactivation of the PVT prevented COC conditioned
reinstatement and not behavior that was motivated by stimuli
that were paired with a highly palatable food (123, 126). Orexin
transmission in the PVT is directly implicated in COC-seeking
behavior. A recent study from our laboratory showed that Orx
administration in the PVT reinstated (primed) COC-seeking
behavior in animals that had a history of COC dependence (127).
Surprisingly, however, Orx’s priming effect was prevented by co-
administration of the OrxR2 antagonist TCSOX229 and not by

SB334867. Intra-PVT administration of SB334867 did not exert
such effects, thus confirming the results of a previous study
(128) that found that intra-PVT SB334867 administration did not
impact cue-induced COC-seeking behavior, thus suggesting a key
role for OrxR2 signaling in the PVT in COC-seeking behavior.

The PVT receives innervation from the suprachiasmatic
nucleus [SCN; the circadian pacemaker in the mammalian brain;
(129, 130)]. The studies that are cited above were performed
during the rats’ active (dark) phase to avoid behavioral confounds
that could be caused by circadian oscillations of neuronal activity
in the PVT. Importantly when designing such experiments,
differences in intrinsic electrical properties of PVT neurons were
described in slices that were collected at different time points.
For example, when rats are active during their dark phase,
neurons have a more depolarized resting membrane potential
and lower resting membrane conductance [for details, see (131)].
The consequences of diurnal changes in PVT neurons and the
ways in which the role of the PVT in the circadian cycle affects
drug-seeking behavior should be investigated in future studies.

COCAINE-SEEKING BEHAVIOR IN THE
PARAVENTRICULAR NUCLEUS OF THE
THALAMUS IS MEDIATED BY OREXIN
RECEPTOR 2

Our laboratory has found that intra-PVT OrxA administration
primed COC-seeking behavior in rats with a history of
COC dependence. Co-administration of the OrxR1 antagonist
SB334867 and OrxA did not affect COC seeking, whereas
the OrxR2 antagonist TCSOX229 blocked OrxA-induced COC
seeking (127). The data indicate that the priming effect of OrxA
administration in the PVT is mediated by OrxR2.

Intra-PVT OrxA administration primed COC-seeking
behavior, implicating the Orx projection to the PVT in the
control of both drug craving and relapse. Orexin neurons in the
LH have been suggested to modulate ventral striatum activation
via a relay through the PVT (113, 124, 132). In fact, earlier studies
showed that the PVT is substantially innervated by Orx fibers
that originate in the LH and PFA, and the densest innervation
is found in the posterior PVT (29). Orexin neurons in both
the LH and PVT were shown to be activated by EtOH-related
stimuli (56). These findings suggest that Orx projections from
the LH to the PVT are associated with drug-seeking behavior.
Furthermore, anatomical studies showed that Orx fibers were
juxtaposed with PVT-activated neurons (56). OrxA may induce
its priming effects by intensifying states of arousal in rats. Orexin
controls general arousal (133), and the anticipation of food
reward activates OrxR-expressing neurons in the PVT in rats
(134). Most neurons in the PVT are sensitive to OrxA and OrxB.
One important target of Orx-activated PVT neurons is the PFC
(135, 136). Cortical activation that is linked to general arousal
may be facilitated by Orx inputs to the PVT (137). This may
explain the reinstatement of COC-seeking behavior. Intra-PVT
OrxA administration was shown to increase DA levels in the
NAC (138), suggesting that the PVT may be a key relay for the
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effects of Orx on the mesolimbic DA system and reward-seeking
behavior.

Another possibility could be that OrxA administration in
the PVT induces COC-seeking behavior by increasing anxiety-
and stress-like behavior. In humans, anxiety, and stress are
known to induce intense craving and trigger relapse during
abstinence. The PVT sends projections to the BNST and
CeA that contain neurons that densely express Dyn and
corticotropin-releasing factor [CRF; (100)]. Dynorphin and
CRF are implicated in manifestation of the stress response
and negative affective states (139–142). Orexin neurons are
activated by stress exposure that is reflected by an increase
in Fos expression (143, 144), suggesting that Orx transmission
in the PVT is required in both behavioral and physiological
responses to stressful situations. Supporting this hypothesis,
OrxA and OrxB administration in the PVT produces anxiety-
like behavior in rats in the open field (145) and elevated plus
maze (146). These findings suggest that Orx transmission in
the PVT can act as a stressor under certain conditions and
thus induce COC-seeking behavior. The fact that OxR1 blockade
did not prevent OrxA prime-induced reinstatement is difficult
to reconcile when considering numerous studies that found
that peripheral SB334867 administration blocked drug-seeking
behavior (66, 68, 147, 148) and the significant expression of
OrxR1 in the PVT (149, 150). Importantly, however, the lack
of an effect of intra-PVT SB334867 administration confirmed
earlier studies that reported similar outcomes with regard to
the conditioned reinstatement of COC-seeking behavior (128),
suggesting a prominent role for PVT OrxR2 signaling and not
OrxR1 signaling during COC-seeking behavior.

Notably, studies of drug addiction have primarily focused on
the role of OrxR1; fewer studies have examined OrxR2. OrxR2
expression, similar to OrxR1 expression, is high in the PVT

(149, 150). OrxR2 antagonism decreases drug intake and drug
seeking when OrxR2 antagonists are administered peripherally.
Peripheral OrxR2 antagonist administration decreased EtOH
self-administration, decreased the acquisition of EtOH-induced
CPP, decreased the expression and reinstatement of EtOH-
induced CPP (75), decreased the cue-induced reinstatement of
nicotine seeking (151), and decreased heroin self-administration
in rats that had 12-h access to heroin per day (152). Furthermore,
intra-PVT TCSOX229 administration prevented anxiety-like
behavior that was induced by footshock (146). Overall, these
findings suggest that PVT OrxR2 signaling is involved in
mediating both stress- and anxiety-related behavior.

DYNORPHIN AND OREXIN ARE
CO-LOCALIZED AND CO-RELEASED AND
HAVE OPPOSITE EFFECTS

The Dyn/KOR system is widely distributed in the central nervous
system (153, 154). Dynorphin has received increasingly more
consideration regarding its regulatory action in many functional
pathways of the brain. Consistent with its localization in the
hippocampus, hypothalamus, amygdala, striatum, and cortex
[Figure 2; (153)], these functions are associated with learning and
memory, emotional states, reward mechanisms, stress responses,
and pain [for review, see (155)]. Indeed, Dyn is involved
in several mood- and motivation-related pathophysiological
and physiological processes (155–158). The Dyn/KOR system
has been hypothesized to be a possible therapeutic target for
treating neuropsychiatric disorders, including drug addiction
(157–161). Dynorphins are the major post-translational products
of the prodynorphin (Pdyn) gene. They are opioid peptides
that are derived from the prepro-Dyn precursor, along with

FIGURE 2 | Schematic representation of Dyn distribution (red dots) along the rostro-caudal axis in brain regions that are involved in drug addiction. The orange circle

represents the Orx and Dyn overlapping region in the HYP. HYP, hypothalamus; PVT, paraventricular nucleus of the thalamus; ARC, arcuate nucleus of the

hypothalamus; LC, locus coeruleus; RN, raphe nucleus; PN, parabrachial nucleus; CTX, cortex; PFC, prefrontal cortex; AIC, agranular insular cortex; OC, orbital

cortex; CP, caudate-putamen; SPT, septum; AMY, amygdala; PAG, periaqueductal gray; BNST, bed nucleus of the stria terminalis; NAc, nucleus accumbens; IPAC,

interstitial nucleus of the posterior limb of the anterior commissure; PO, preoptic area; HIPP, hippocampus; SUB, subiculum; SN, substantia nigra; VTA, ventral

tegmental area; SCN, suprachiasmatic nucleus.
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enkephalins and endorphins, and contain the leucine (leu)-
enkephalin sequence at the N-terminal portion of the molecule
(155, 162, 163). There are two forms of Dyn (DynA and DynB).
With the exception of DynA(2-13) (an inactive metabolite
of DynA (1–17)), Dyns bind to all three opioid receptors
(155). Dynorphins, especially DynA, have greater preference for
KORs (164). Orexin promotes arousal (165) and is involved
in modulating the rewarding effects of food (166, 167), sexual
behavior (168), and drugs of abuse (55, 61). In contrast, Dyn
facilitates depressive-like behavior and mediates the aversive
effects of stress (33, 169). κ Opioid receptor activation has been
shown to reduce the rewarding effects of drugs of abuse (156, 158)
through actions that are at least partially mediated by midbrain
DA systems (170, 171). Cocaine was shown to enhance the Dyn
expression, KOR signaling, and KOR levels in both the VTA
and striatum (172–176). Cocaine was also shown to upregulate
Pdyn gene expression in the NAC (177). A decrease in KOR
expressionwas found in the septum and BLA in animals that were
withdrawn from binge COC self-administration (178). Despite
the divergent influences onmotivation, these two peptides closely
interact. Orexin neurons in the LH express Dyn (32), and
Orx and Dyn have been shown to act synergistically. Electrical
stimulation of the HYP releases both Orx and Dyn (179). Orexin
and Dyn are also co-released and play opposing roles in COC
self-administration, brain stimulation reward, and impulsivity
(180, 181). They also exert opposing effects in the VTA (181,
182), such as opposing actions on VTA neuronal firing rate,
in which they counteract each other’s effects upon co-release
(181). OrxR1 antagonism in the VTA markedly reduced COC
intake under a fixed-ratio 5 schedule, and this effect was blocked
by KOR antagonism, suggesting that unopposed actions of
Dyn within this brain region control COC intake (Figure 3;

(181)). The co-application of both Dyn and Orx caused no net
changes in VTA DA neuron firing, suggesting that they exert
balanced and opposing actions on DA neurons in the VTA (181).
Dynorphin has also been shown to attenuate the greater firing
rate that is elicited by Orx in hypothalamic neurons (179) and
counterbalance the response of basal forebrain neurons to Orx,
preventing overexcitation (184).

CELLULAR AND BEHAVIORAL EVIDENCE
OF OPPOSING ROLES FOR DYNORPHIN
AND OREXIN IN THE PARAVENTRICULAR
NUCLEUS OF THE THALAMUS

KOR mRNA expression is high in the PVT, where a high degree
of correspondence between KOR mRNA and KOR binding was
observed (185). Data from our laboratory suggest that Orx
and Dyn have opposing effects on excitatory transmission in
PVT neurons and OrxA-induced COC-seeking behavior. DynA
decreased and OrxA increased PVT glutamatergic (GLUergic)
transmission (183). The co-application of DynA and OrxA
also counteracted each other’s actions on synaptic activity.
Behavioral data showed that the priming effect of OrxA was
prevented by DynA only in animals that had a history of
COC dependence (Figure 3). The effect of DynA was prevented
by the KOR antagonist nor-binaltorphimine dihydrochloride,
confirming that KORs mediated the DynA-induced blockade of
OrxA’s priming effect and supporting the hypothesis that KORs
may be a target for treating disorders that are associated with
greater Orx activity.

Orexin neurons have dense projections to the PVT, and
the PVT network is mostly GLUergic. We found an increase

FIGURE 3 | Schematic summary of Orx and Dyn interaction in COC-directed behaviors in the PVT and VTA. (PVT) In rats, OrxA injection in the PVT reinstated COC-

and SCM-seeking behavior, with a greater effect in COC animals. DynA blocked OrxA-induced COC seeking but not SCM seeking. nor-Binaltorphimine (nor-BNI) did

not induce or potentiate COC-seeking behavior that was induced by OrxA but reversed the effect of DynA (183). (VTA) Intra-VTA administration of SB334867 reduced

COC self-administration in rats. nor-BNI administration alone had no effect but reversed the effect of SB334867 (181). PVT, paraventricular nucleus of the thalamus;

VTA, ventral tegmental area; NE, no effect; NT, not tested.
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in Orx-induced GLU release in PVT neurons, and this effect
was comparable to previous findings in the HYP (186, 187),
laterodorsal tegmental area (188), nucleus tractus solitarius
(189), and neocortex (190). We observed a decrease in GLU
transmission that was induced by DynA application, which was
similar to effects that were reported in other brain regions
(191, 192). Glutamate signaling is modulated by OrxA and DynA
in opposite directions. The effects of OrxA were completely
reversed by DynA. These two systems are suggested to balance
each other in the regulation of PVT neuronal activity (183).
Glutamate release in the PVT appears to be regulated by the
Orx system, whereas DynA acts locally on presynaptic terminals.
DynA and OrxA appear to exert their actions at different loci
in the PVT through different neural circuits. Such differential
neurocircuitry in the VTA was recently proposed, in which the
sensitivity to OrxA was circuit-specific (182). The effects of PVT
manipulations with regard to cellular actions were consistent
with behavioral data, suggesting that there is a functional
interaction between the Orx and Dyn systems.

Our recent study (183) found that intra-PVT injections of
OrxA induced COC- and SCM-seeking behavior, and a greater
effect was seen in COC animals (Figure 3). The observation
that local injections of OrxA in the PVT induced COC- and
SCM-seeking behavior strongly supports the hypothesis that
Orx projections to the PVT are important in the modulation
of reward-seeking behavior in general. An explanation for the
general reinstating effects of OrxA for both COC and SCM
could involve the known involvement of the Orx system in
arousal. Orexin is well known to regulate general arousal (133),
and the anticipation of food reward activates Orx-containing
neurons in the PVT (134). The medial prefrontal cortex is
one target of Orx-activated PVT neurons (135, 136), suggesting
that Orx inputs to the PVT facilitate cortical activation that
is linked to general arousal (137), which could explain the
non-specific effect of intra-PVT OrxA injections on both COC
and SCM reinstatement. Furthermore, we found that Dyn did
not block SCM seeking that was induced by Orx [Figure 3;
(183)], suggesting that although Orx and Dyn might work
in tandem, their functional (behavioral) interaction changes
following COC dependence. After long access to COC, the
Orx and Dyn systems may become “sensitized,” reflected by a
greater inhibitory effect of DynA and a greater priming effect
of OrxA. Orexin and Dyn system dysregulation that is induced
by COC has been previously reported. Using an operant model
of reward seeking (i.e., conditioned reinstatement), we showed
that the Orx system was engaged to a greater extent by drugs of
abuse than by SCM (19, 66, 127). Cocaine appears to produce
neuroadaptations in circuits that control the motivation for
natural rewards.

Although hypothalamic Orx neurons represent an exclusive
source of OrxA to the PVT (54, 125), DynA is expressed in the
PFC and CeA [i.e., other brain regions that are connected to the
PVT; (125, 154, 193–195)], which may also modulate PVT OrxA
transmission. The PFC is implicated in the executive control of

drug seeking (18, 196) and has projections to the PVT (125). The
PFC is also suggested to supply a considerable Dyn input to the
PVT, thereby modulating the effects of Orx. To our knowledge,
however, the modulation of COC-seeking behavior by Dyn that
is derived from sources other than hypothalamic Orx neurons to
the PVT requires further investigation.

The mechanism by which Orx and Dyn in the PVT
influence COC seeking is not fully understood. One
tentative explanation is that COC induces neuroadaptive
changes in HYP Orx/Dyn and consequently alter the PVT
OrxR/KOR balance. This could explain the preferential
role of Orx and Dyn in COC-seeking behavior vs. SCM-
seeking behavior. Hypothetically, synaptic changes at the
level of the PVT itself (i.e., modifications of synaptic
strength, alterations of peptidergic signaling) or genomic
and post-translational modifications may occur, thus
affecting Orx and Dyn signaling. This will require further
investigation.

CONCLUSION

Themesocorticolimbic system, especially the VTA, is the focus of
most research that implicates Orx in addiction, thus neglecting
other systems (34, 55, 61, 62, 181, 197). The PVT receives
Orx projections. The PVT is a key component of COC-
seeking circuitry, and Orx transmission in the PVT mediates
COC-seeking behavior via OrxR2 (127). Dynorphin is co-
released with Orx. Our data show that such an interaction is
not anatomically specific (i.e., not only in the VTA)—it also
occurs in the PVT. Orexin and Dyn have opposing effects
both on excitatory transmission in the PVT and behaviorally
(183). Further characterization of the involvement of PVT
Orx/Dyn transmission in compulsive drug seeking and the way
in which the equilibrium between these co-released peptides
is affected by drug experience is critically important for
medication development for psychiatric disorders, such as drug
addiction.
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