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Observation of emergent momentum–time
skyrmions in parity–time-symmetric non-unitary
quench dynamics
Kunkun Wang1,2, Xingze Qiu 3,4, Lei Xiao1,2, Xiang Zhan1,2, Zhihao Bian1,2, Barry C. Sanders 5,6,7, Wei Yi3,4 &

Peng Xue 1,2,8

Topology in quench dynamics gives rise to intriguing dynamic topological phenomena, which

are intimately connected to the topology of static Hamiltonians yet challenging to probe

experimentally. Here we theoretically characterize and experimentally detect momentum-

time skyrmions in parity-time ðPT Þ-symmetric non-unitary quench dynamics in single-

photon discrete-time quantum walks. The emergent skyrmion structures are protected by

dynamic Chern numbers defined for the emergent two-dimensional momentum-time sub-

manifolds, and are revealed through our experimental scheme enabling the construction of

time-dependent non-Hermitian density matrices via direct measurements in position space.

Our work experimentally reveals the interplay of PT symmetry and quench dynamics in

inducing emergent topological structures, and highlights the application of discrete-time

quantum walks for the study of dynamic topological phenomena.
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Topological phases feature a wealth of fascinating properties
governed by the geometry of their ground-state wave
functions at equilibrium1,2, but topological phenomena

also manifest as non-equilibrium quantum dynamics in driven-
dissipative3 and Floquet systems4–7, as well as in quench pro-
cesses8–15. The experimental detection of these dynamic topolo-
gical phenomena is challenging, since it requires full control and
access of the time-evolved state. In recent experiments with
ultracold atoms and superconducting qubits, topological objects
such as vortices, links, rings, and skyrmions have been identified
in the unitary quench dynamics of topological systems via time-
resolved and momentum-resolved tomography16–19. Here we
experimentally establish discrete-time photonic quantum walks
(QWs) as another promising arena for engineering and detecting
dynamic topological phenomena. Compared to other synthetic
systems, the relative ease of introducing loss in photonic systems
further enables us to experimentally investigate novel dynamic
topological phenomena in the non-unitary regime, where
parity–time ðPT Þ symmetry plays an important role.

In discrete-time photonic QWs20–25, single photons, starting
from their initial states, are subject to repeated unitary opera-
tions26. While QW dynamics support Floquet topological phases
(FTPs)22–25,27,28, discrete-time QWs can also be viewed as a
stroboscopic simulation of quench dynamics between FTPs,
during which dynamic topological phenomena should occur. As a
first endeavor in this direction, two recent experiments report
simulation of dynamic quantum phase transitions using
QWs29,30, where non-analyticities in the time evolution of phy-
sical observables are associated with changes in dynamic topo-
logical order parameters31. However, compared to other synthetic
systems exhibiting rich dynamic topological structures in higher
dimensions16–19, dynamic topological structures reported in QWs
have been limited to one dimension and characterized by topo-
logical invariants defined on one-dimensional manifolds.

Here we theoretically characterize and experimentally detect
dynamic skyrmion structures, a two-dimensional topological
object, in PT -symmetric one-dimensional QWs of single pho-
tons. Originally proposed in high-energy physics32 and later
experimentally observed in magnetic and optical configura-
tions33–35, skyrmions are a type of topologically stable defects
featuring a three-component vector field in two dimensions. In
QW dynamics, dynamic skyrmions manifest themselves in the
momentum–time spin texture of the time-evolved density matrix,
and are protected by quantized dynamic Chern numbers in
emergent momentum–time submanifolds12–14. To detect

dynamic skyrmions, we devise an experimental scheme where
time-dependent momentum–space density matrices of spatially
non-localized states are constructed based on a combination of
interference-based measurements and projective measurements
in position space. Such a practice allows for direct measurements
of the density matrix at each time step, which significantly
reduces the systematic error introduced by the least-square
algorithm in tomographic measurements. We confirm the
emergence of dynamic skyrmion structures when QW dynamics
correspond to quenches between distinct FTPs in the PT -sym-
metry-unbroken regime, where the dynamics is coherent despite
being non-unitary. Effective coherent dynamics is manifested as
temporal oscillatory behavior inherent in off-diagonal density-
matrix elements. Such oscillatory phenomena reflect the system’s
ability to fully retrieve information temporarily lost to the
environment by PT dynamics in the unbroken-symmetry
regime36. By contrast, when the system is quenched into the
PT -symmetry-broken regime, skyrmions are absent in the
momentum–time space, as the dynamics become incoherent. Our
work unveils the fascinating relation between emergent topology
and PT -symmetric non-unitary dynamics, and opens up
exploration of higher-dimensional dynamic topological structures
using QWs.

Results
Quench dynamics in PT -symmetric QWs. We experimentally
implement PT -symmetric non-unitary QWs on a one-
dimensional lattice L L 2 Zð Þ with single photons in the cas-
caded interferometric network illustrated in Fig. 1. The corre-
sponding Floquet operator is

U ¼ R
θ1
2

� �
SR

θ2
2

� �
MR

θ2
2

� �
SR

θ1
2

� �
; ð1Þ

where R(θ) rotates coin states (encoded in the horizontal and
vertical polarizations of single photons |H〉 and |V〉) by θ about
the y-axis, and S moves the photon to neighboring spatial modes
depending on its polarization (see “Methods”). The loss operator
M ¼ 1w � jþihþj þ ffiffiffiffiffiffiffiffiffiffiffi

1� p
p j�ih�jð Þ enforces a partial mea-

surement in the basis j± i ¼ jHij±Við Þ=
ffiffiffi
2

p
at each time step

with a success probability p∈ [0, 1]. Here 1w ¼
P

x jxihxj with
|x〉 (x∈ L) denoting the spatial mode. Note that the non-unitary
QW driven by U reduces to a unitary one when p= 0.

QWs governed by U stroboscopically simulate non-unitary
time evolutions driven by the effective Hamiltonian Heff, with
U ¼ e�iHeff . We define the quasienergy ε and eigenstate |ψ〉 as
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Fig. 1 Experimental setup for detecting momentum–time skyrmions in non-unitary QWs. Photons are generated via spontaneous parametric down
conversion through a Type-I non-linear β-barium-borate (BBO) crystal. The single signal photon is heralded by the corresponding trigger photon and can be
prepared in an arbitrary linear polarization state via a polarizing beam splitter (PBS) and wave plates. Conditional shift operation S and coin rotation R are
realized by a beam displacer (BD) and two half-wave plates (HWPs), respectively. For non-unitary QWs, a sandwich-type HWP–PPBS–HWP setup is
inserted to introduce non-unitarity, where PPBS is an abbreviation for partially polarizing beam splitters. Two kinds of measurements, including projective
measurements and interference-based measurements, are applied before the signal and heralding photons are detected by avalanche photodiodes (APDs)
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U|ψ〉= γ−1 e−iε|ψ〉, where γ ¼ ð1� pÞ�
1
4. U possesses passive

PT symmetry with PT γU PTð Þ�1¼ γ�1U�1, where
PT ¼

P
x j � xihxj � σ3K, σ3= |H〉〈H|− |V〉〈V|, and K is

the complex conjugation. It follows that ε is entirely real in the
PT -symmetry-unbroken regime, and can take imaginary values
in regimes when PT symmetry is spontaneously broken29,37–39.
U also features topological properties, characterized by winding
numbers defined through the global Berry phase40–42. We
show the topological phase diagram of the system in Fig. 2a,
where distinct FTPs are marked by their corresponding winding
numbers. The boundaries between PT -symmetry-unbroken and
PT -symmetry-broken regimes are also shown in red-dashed
lines, with PT -symmetry-broken regimes surrounding topologi-
cal phase boundaries.

To simulate quench dynamics, we initialize the walker photon in
the eigenstate |ψi〉 of a Floquet operator U i ¼ e�iH i

eff , characterized
by coin parameters ðθi1; θ

i
2Þ. The walker at the tth time step is given

by jψðtÞi ¼ e�iHeff t jψii, such that the resulting QW can be
identified as a sudden quench between Hi

eff and Heff. Adopting
notations in typical quench dynamics, we denote U and Heff as Uf

and Hf
eff in the following, characterized by coin parameters ðθf1; θf2Þ.

Fixed points and emergent skyrmions. Due to the lattice
translational symmetry of Ui,f, dynamics in different quasi-
momentum k-sectors are decoupled. We denote pre-quench and
post-quench Floquet operators in each k-sector as U i

k and U f
k ,

respectively, whose eigenstates are jψi;f
k;± i. Quasienergies of U i;f

k

are denoted as εi;fk;± , with εi;fk;± ¼ ± Ei;f
k . Focusing on the case

where Ui is in the PT -symmetry-unbroken regime, we write the
initial state as jψi

k;�i in each k-sector.
By invoking the biorthogonal basis43, the non-unitary time

evolution of the system is captured by a non-Hermitian density
matrix, which can be written as14

ρðk; tÞ ¼ 1
2
τ0 þ nðk; tÞ � τ½ �; ð2Þ

where n(k, t)= (n1, n2, n3), τ= (τ1, τ2, τ3), τi ¼P
μ;ν¼± jψf

k;μiσ
μν
i hχfk;ν j (i= 0, 1, 2, 3), and hχfk;μj jψf

k;μi
� �

is the

left (right) eigenvector of U f
k . Here σ0 is a 2 × 2 identity matrix, and

σi (i= 1, 2, 3) is the corresponding standard Pauli matrix.

A key advantage of adopting Eq. (2) is that n(k, t) becomes a
real unit vector, which enables us to visualize the non-unitary
dynamics on a Bloch sphere. As illustrated in Fig. 2b, when Ef

k is
real, n(k, t) rotates around poles of the Bloch sphere with a period
t0 ¼ π=Ef

k. Thus, momenta corresponding to poles of the Bloch
sphere are identified as two different kinds of fixed points, where
the density matrices do not evolve in time. In contrast, when Ef

k is
imaginary, there are no fixed points in the dynamics, as n(k, t)
asymptotically approaches the north pole in the long-time limit
(see Fig. 2b).

When Ui and Uf belong with distinct FTPs in the
PT -symmetry-unbroken regime, fixed points of different kinds
necessarily emerge in pairs14,29. Each momentum submanifold
between a pair of distinct fixed points can be combined with the S1

topology of the periodic time evolution to form an emergent S2

momentum–time manifold, which can be mapped to the S2 Bloch
sphere of n(k, t). The Chern number characterizing such an S2→
S2 mapping is finite and gives rise to intriguing skyrmion
structures in the emergent momentum–time manifolds.

To probe fixed points and momentum–time skyrmions,
we perform projective measurements and interference-based
measurements to construct the Hermitian density matrix
ρ′(k, t)= |ψk(t)〉〈ψk(t)|. This is achieved by writing ρ′ðk; tÞ ¼
1
2

P3
j¼0

P
x1;x2

e�ikðx1�x2Þhψx2
ðtÞjσ jjψx1

ðtÞiσ j, where |ψx(t)〉 is the coin

state on site x at the tth time step. We experimentally
measure hψx2

ðtÞjσ jjψx1
ðtÞi (j= 0, 1, 2, 3) for each pair of

positions x1 and x2 directly. We then calculate the non-Hermitian
density matrix ρ(k, t) from ρ′(k, t) and determine n(k, t) through
n(k, t)= Tr[ρ(k, t)τ].

Whereas the Hermitian density matrix ρ′(k, t) is experimen-
tally accessible, visualization of non-unitary dynamics on the
Bloch sphere starting from ρ′(k, t) requires normalization. It is
also difficult to characterize the connection between fixed points
and dynamic skyrmions using ρ′(k, t). By contrast, such a
connection is revealed elegantly with the biorthogonal construc-
tion of ρ(k, t), as we detail in “Methods” and Supplementary
Note 4. This is why we characterize skyrmions using the spin
texture n(k, t) associated with ρ(k, t).

Dynamics in the PT -symmetry-unbroken regime. We first
study fixed points and momentum–time skyrmions in the
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Fig. 2 Phase diagram and schematic illustrations of non-unitary QW dynamics. a Phase diagram for QWs governed by the Floquet operator U in Eq. (1),
with the corresponding topological numbers ν as a function of coin parameters (θ1, θ2). Solid black lines are the topological phase boundary, dashed red
lines represent boundaries between PT -symmetry-unbroken and PT -symmetary-broken regimes. Black star represents coin parameters of Ui, of which
the initial state |ψi〉 is an eigenstate. Red diamond and blue triangle correspond to coin parameters of two different final Floquet operators Uf in Fig. 3a, b
[Fig. 4a, b], respectively. The cyan filled star and pentagon correspond to coin parameters of Ui and Uf in Fig. 5. The green circle, green triangle correspond
to coin parameters of Uf in Fig. 6a, c. b Schematic illustrations of the time evolution of n(k, t) on a Bloch sphere when Efk is real (left) and imaginary (right),
respectively. Blue and red arrows point to fixed points. The green arrow indicates steady state in the long-time limit. Black arrows indicate the direction of n
(k, t) at different times
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PT -symmetry-unbroken regime. For comparison, we also
experimentally characterize these quantities in unitary dynamics.
We initialize the walker on a localized lattice site |x= 0〉 and in
the coin state ψi

�
�� �

c
. Here, |x〉 denotes the spatial mode. Impor-

tantly, ψi
k;�

��� E
¼ ψi

�
�� �

c
is an eigenstate of U i

k for all k, with the

corresponding ðθi1; θ
i
2Þ on black dashed lines in Fig. 2a. Without

loss of generality, we choose ðθi1 ¼ π=4; θi2 ¼ �π=2Þ for both the
unitary and non-unitary cases.

For the first case of study, we implement unitary QWs with
ψi
�

�� �
c
¼ ð Hj i þ i Vj iÞ=

ffiffiffi
2

p
and ðθf1 ¼ �π=2; θf2 ¼ π=3Þ, which

simulate quench processes between FTPs with νi= 0 and νf=
−2. We have chosen ðθf1; θ

f
2Þ on purple dashed lines, where

qusienergy bands are flat. Oscillatory dynamics of n(k, t) in
different k-sectors thus feature the same period, as illustrated in
Fig. 3a. We identify fixed points of unitary dynamics at high-
symmetry points of the Brillioun zone {−π, −π/2, 0, π/2}, where
n(k, t) become independent of time.

For the second case of study, we implement non-unitary
QWs with p= 0.36, ψi

�
�� �

c¼ 0:7606 Hj i þ 0:6492i Vj i, and

θf1 ¼ �π=2; θf2 ¼ arcsin 1
α cos

π
6

	 
� �
(here α ¼ γ

2 ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� p

p Þ).
The post-quench FTP is in the PT -symmetry unbroken regime
with νf=−2. As shown in Fig. 3b, dynamics of n(k, t) is still
oscillatory, but fixed points are shifted away from the high-
symmetry points, consistent with theoretical predictions.

In Fig. 4, we plot n(k, t) in the momentum–time space.
The oscillatory behavior in n(k, t) is then manifested as
momentum–time skyrmions, which are protected by
dynamic Chern numbers defined on the corresponding
momentum–time submanifold. By contrast, when the system

is quenched between FTPs with the same winding number,
skyrmion-lattice structures are no longer present, as shown
in the Supplementary Fig. 4. Comparing Fig. 4a, b, we
see that dynamic skyrmion structures in the unitary
and the PT -symmetric non-unitary quench processes are
qualitatively similar; albeit, in the non-unitary case, skyrmion
structures are slightly deformed due to the shift of fixed points.
However, as we show later, skyrmion structures are generically
absent when the system is quenched into the PT -symmetry-
broken regime.

Our configuration is also capable of simulating quench
dynamics between topologically non-trivial FTPs. To demon-
strate this, we implement non-unitary QWs with ψi

�
�� �

¼
ð�0:1111� 0:6983iÞ 0j i � þj i � 1ffiffi

2
p �2j i � �j i and θf1 ¼

	
π=2; θf2 ¼ �arcsin 1

α cos
π
6

	 

Þ. The initial state is the eigenstate of

Ui with ðθi1 ¼ �π=2; θi2 ¼ �π=4Þ, which is prepared by perform-
ing gate operations prior to QW dynamics (see “Methods”). The
pre-quench and post-quench FTPs are in the PT -symmetry
unbroken regime with νi=−2 and νf= 2, respectively. In Fig. 5,
we show the corresponding oscillations of n(k, t), as well as the
momentum–time skyrmions. Consistent with theoretical predic-
tions (see “Methods”), a total of eight fixed points exist in the
dynamics, which divide the first Brillioun zone into eight
submanifolds with skyrmions emerging in momentum–time
space in between each adjacent pair of fixed points.

Dynamics in the PT -symmetry-broken regime. We now turn to
the case where Uf belong with the PT -symmetry-broken regime.
We first initialize the walker on a localized lattice site in the coin

1
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Fig. 3 Experimental results of n(k, t). Time-evolution of n(k, t) up to t= 6 for quench processes between (a) an initial unitary Floquet operator
characterized by ðθi1 ¼ π=4; θi2 ¼ �π=2Þ and a final unitary Floquet operator characterized by ðθf1 ¼ �π=2; θf2 ¼ π=3Þ and (b) an initial non-unitary Floquet
operator characterized by ðθi1 ¼ π=4; θi2 ¼ �π=2Þ and a final non-unitary Floquet operator characterized by θf1 ¼ �π=2; θf2 ¼ arcsin 1

α cos
π
6

	 
	 

. The period

of oscillations is t0= 6 for all k. Fixed points (vertical dashed lines) are located at {−π, −π/2, 0, π/2} for unitary dynamics (a) and at {−0.4399π,
−0.0099π, 0.5601π, 0.9901π} for non-unitary dynamics (b). Shading indicates experimental error bars that are due to photon-counting statistics
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state Hj i þ Vj ið Þ=
ffiffiffi
2

p
and evolve it under Uf characterized by

θf1 ¼ �π=2; θf2 ¼ 1
2 π � arccos 1α
	 
	 


, which is in the PT -sym-
metry-broken regime with a completely imaginary quasienergy
spectrum. As shown in Fig. 6a, there is no periodical evolution
in n(k, t) anymore. Instead, different components of n(k, t)
slowly approach a steady state with n= (0, 0, 1) in the long-time
limit. This is more clearly seen in momentum–time space
shown in Fig. 6b, where skyrmion structures are absent and
vectors in all k-sectors tend to point out of the plane in the long-
time limit. We note that dynamics of n(k, t) here is insensitive
to the choice of initial state, as the system always relaxes to the
steady state at long times.

We then start from the same initial state as in Fig. 3b
and evolve it under a different Uf characterized by
ðθf1 ¼ �0:39π; θf2 ¼ 0:3864πÞ, which is in the PT -symmetry-
broken regime with a partially real (and partially imaginary)
quasienergy spectrum. As shown in Fig. 6c, d, whereas the
evolution of n(k, t) is still periodic for k-sectors with real
quasienergies, the existence of steady-state approaching k-sectors

with imaginary quasienergies deform spin textures in those
sectors and destroy the overall dynamic skyrmion structures in
the momentum–time space.

Discussion
By simulating quench dynamics of topological systems using
photonic QWs, we have revealed emergent momentum–time
skyrmions, protected by dynamic Chern numbers defined on the
momentum–time submanifolds. These emergent topological
phenomena are underpinned by fixed points of dynamics, which
can exist for both unitary and non-unitary quench processes if
the system is quenched across a topological phase boundary. We
have further confirmed the decisive role of PT -symmetry on the
existence of fixed points and skyrmions in non-unitary dynamics.

Emergent momentum–time skyrmions and dynamic Chern
numbers reported here are intimately connected with topological
entanglement-spectrum crossing13, as well as the recently
observed dynamic quantum phase transitions and dynamic
topological order parameters19,29,30. In particular, whereas
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with νf= 2. The eight fixed points (dashed lines) are located at {−0.5300π, −0.0300π,

0.4699π, 0.9699π} for c−= 0; and {−0.7450π, −0.2450π, 0.2550π, 0.7550π} for c+= 0. The color code represents the value of n3(k, t)
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dynamic topological order parameters and dynamic Chern
numbers originate from completely different topological con-
structions, both are hinged upon the presence of fixed points
in quench dynamics14,19. With the highly flexible control of
photonic QW protocols, it would be interesting to investigate
dynamic topological phenomena in higher dimensions or asso-
ciated with other topological classifications in the future44. Our
work thus paves the way for a systematic experimental study of
dynamic topological phenomena in both unitary and non-unitary
dynamics.

Methods
Experimental implementation of U. We implement the coin operator
RðθÞ ¼ 1w � e�iθσ2 , the shift operator S ¼

P
x x � 1j i xh j � Hj i Hh j þ x þ 1j ið

xh j � Vj i Vh jÞ, and the loss operator M ¼ 1w � þj i þh j þ ffiffiffiffiffiffiffiffiffiffiffi
1� p

p �j i �h jð Þ, fol-
lowing the approach outlined in ref. 29. Here, ±j i ¼ ðjHi± jViÞ=

ffiffiffi
2

p
, σ2= i(−|H〉

〈V|+|V〉〈H|) is the standard Pauli operator under the polarization basis, x (x∈ L)

denotes the spatial mode, 1w ¼
P

x jxihxj, and the loss parameter p= 0.36 for non-
unitary QWs in our experiment.

Preparation of quasi-local initial state. To simulate quench dynamics between
topologically non-trivial FTPs in Fig. 5, the QW dynamics starts from a quasi-local
initial state ψi

�
�� �

¼ ð�0:1111� 0:6983iÞ 0j i � þj i � 1ffiffi
2

p �2j i � �j i, which is a Ui

eigenstate with νi=−2. As illustrated in Fig. 1, the state is experimentally
prepared in the following way. First, starting from |x= 0〉, the polarization of single

photons is prepared in 1ffiffi
2

p ;�0:1111 � 0:6983i
� �T

by tuning the setting angles

of the wave plates right after the first PBS. Then we use a BD to split the photons
into the spatial modes |x= 0〉 and |x=−2〉 depending on their polarizations.
Finally, a HWP at a fixed angle rotates polarizations of single photons in both
spatial modes.

PT -symmetric non-unitary QW. The non-unitary Floquet operator U in Eq. (1)

has passive PT symmetry, from which we can define ~U ¼ γU with γ ¼ ð1� pÞ�
1
4.

~U has active PT symmetry, with the symmetry operator PT ¼
P

x j � xi
hxj � σ3K, where K is the complex conjugation. As homogeneous QWs have lattice
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Fig. 6 Experimental results for the PT -symmetric broken QW dynamics. a Time-evolution and (b) spin textures of n(k, t) in momentum–time space for a
quench process between the initial non-unitary Floquet operator given by ðθi1 ¼ π=4; θi2 ¼ �π=2Þ and the final PT -symmetry-broken Floquet operator
given by θf1 ¼ �π=2; θf2 ¼ 1

2 π � arccos 1
α

	 
� �
. The quasi-energy spectrum associated with Uf is completely imaginary in this case. (c) Time-evolution and (d)

spin textures of n(k, t) in the momentum–time space when the system is quenched from the same initial state as in Fig. 3b into a final PT -symmetry-
broken Floquet operator given by ðθf1 ¼ �0:39π; θf2 ¼ 0:3864πÞ with νf=−2. The quasi-energy spectrum associated with Uf features purely imaginary
[red shaded areas in (d)] and purely real regions in momentum space. Only two fixed points of the same kind exist at {−0.4000π, 0.6000π} (dashed
lines), whereas no skyrmion structures exist in any momentum–time submanifold. The spin vectors in (c) and (d) are colored according to n3(k, t)
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translational symmetry, we write ~U in momentum space

~Uk ¼ d0σ0 � id1σ1 � id2σ2 � id3σ3;

d0 ¼ α cosð2kÞcosθ1cosθ2 � sinθ1sinθ2½ �;
d1 ¼ iβ;

d2 ¼ α cosð2kÞcosθ2sinθ1 þ cosθ1sinθ2½ �;
d3 ¼ � αsinð2kÞcosθ2;

ð3Þ

where α ¼ γ
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p Þ; β ¼ γ
2 ð1�

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p Þ.
Eigenvalues of ~Uk are λk;± ¼ d0 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d20

p
, and the corresponding

quasienergy εk,±= i ln(λk,±). When d20<1 for all k, the quasienergy is real, and
the system is in the PT -symmetry-unbroken regime. Whereas if d20 � 1 for some
k, the PT symmetry is spontaneously broken and the quasienergy is imaginary
in the corresponding momentum range.

Winding numbers of non-unitary QWs. Non-unitary QWs governed by U pos-
sess topological properties, which are characterized by winding numbers defined
through the global Berry phase ν= φB/2π. Here φB= φZ++ φZ−, with generalized
Zak phases

φZ ± ¼ �i
I

dk
χk;±

d
dk

�� ��ψk;±

D E

χk; ± jψk; ±

D E : ð4Þ

The integral above is over the first Brillioun zone and 〈χk,μ| and |ψk,μ〉 (μ= ±)
are, respectively, the left and right eigenstates of Uk, defined through Uy

k jχk;μi ¼
λ�μjχk;μi and Uk|ψk,μ〉= λμ|ψk,μ〉, respectively.

Besides PT symmetry, the system also possesses particle–hole symmetry
KUK�1 ¼ U . According to refs. 27,45, the complete topological characterization
of the system should be Z ⊕ Z, where two topological invariants exist.
Following ref. 46, we define another winding number ν′ by choosing a different

time frame with Floquet operator U ′ ¼ M
1
2R θ2

2

� �
SR θ1ð ÞSR θ2

2

� �
M

1
2 , where

M
1
2 ¼ 1w � þj i þh j þ ð1� pÞ

1
4 �j i �h j

� �
. Note that ν′ can be calculated from the

global Berry phase associated with U′. Combinations of ν and ν′ then give the bulk
topological invariants (ν0, νπ)= [(ν+ ν′)/2, (ν−ν′)/2]46, which dictate the correct
number of edge states with quasienergies Reε= 0 and Reε= π, respectively,
through the bulk-boundary correspondence. However, for the quench dynamics of
homogeneous QWs with no boundaries, we find that it is sufficient to discuss the
interplay between existence of momentum–time skyrmions, the pre-quench and
post-quench winding numbers, and PT symmetry in a single time frame. Indeed,
as we demonstrate experimentally in Supplementary Note 2, whereas spin textures
and locations of fixed points are quantitatively different under different time
frames, going to a different time frame does not qualitatively change the
conclusions in the main text, as long as the appropriate winding number is used.

Fixed points and dynamical Chern numbers in QW dynamics. Non-unitary time
evolution of the system is captured by the non-Hermitian density matrix

ρðk; tÞ :¼ jψkðtÞihχkðtÞj
hχkðtÞjψkðtÞi

¼ 1
2
τ0 þ nðk; tÞ � τ½ �; ð5Þ

where the time-evolved state jψkðtÞi ¼
P

μ¼± cμe
�iεfk;μ t jψf

k;μi, the associated state

hχkðtÞj :¼
P

μ c
�
μe

iεf�k; uthχfk;μj, cμ ¼ hχfk;μjψi
k;�i, and hχfk;μj jψf

k;μi
� �

is the left (right)

eigenvector of U f
k , with the biorthonormal conditions hχfk;μjψf

k;νi ¼ δμν andP
μ jψf

k;μihχfk;μj ¼ 1. It follows that n(k, t)= Tr[ρ(k, t) τ], with {τi} satisfying the
standard suð2Þ commutation relations.

Following the convention of the main text, we denote the final Flouqet operator
in each quasimomentum k-sector as U f

k and the corresponding quasienergy as
±Ef

k . When Ef
k is real, we have

n0 ¼ c�þcþ þ c��c�;

n1 ¼ 1
n0
ðc��cþe�i2Ef

k t þ c:c:Þ;

n2 ¼ i
n0
ðc��cþe�i2Ef

k t � c:c:Þ;
n3 ¼ 1

n0
ðc�þcþ � c��c�Þ:

ð6Þ

By contrast, when Ef
k is imaginary, and assuming ImðEf

kÞ>0, we have

n0 ¼ c�þcþe
�i2Ef

kt þ c��c�e
i2Ef

k t ;

n1 ¼ 1
n0
ðc��cþ þ c:c:Þ;

n2 ¼ i
n0
ðc��cþ � c:c:Þ;

n3 ¼ 1
n0
ðc�þcþe�i2Ef

k t � c��c�e
i2EfktÞ:

ð7Þ

From these expressions, it is straightforward to visualize dynamics of n(k, t) on
a Bloch sphere as illustrated in Fig. 2b and discussed in the main text. In particular,
when Uf is in the PT -symmetry-unbroken regime, fixed points occur at momenta

with c−= 0 or c+= 0, which we identify as two different types of fixed points. The
total number of these fixed points with c+= 0 or c−= 0 which are topologically
protected is |νf−νi| each14,29. As a concrete example, for the quench illustrated
in Fig. 5 with νi=−2 and νf= 2, we observe eight topologically protected fixed
points, with half of them c−= 0 and the other half c+= 0. It follows that dynamic
skyrmions exist in momentum–time space in between each adjacent pair of fixed
points of different kinds.

Dynamic Chern number. When Uf is in the PT -symmetry-unbroken regime,
periodic evolution of the density matrix in each k-sector gives rise to a temporal S1

topology. In the presence of fixed points, each momentum submanifold between
two adjacent fixed points can be combined with the S1 topology in time to form
a momentum–time submanifold S2, which can be mapped to the Bloch sphere
associated with the vector n(k, t). These S2→ S2 mappings define a series of
dynamic Chern numbers

Cmn ¼ 1
4π

Z kn

km

dk
Z t0

0
dt nðk; tÞ ´ ∂tnðk; tÞ½ � � ∂knðk; tÞ; ð8Þ

where km and kn denote two neighboring fixed points, and t0 ¼ π=Ef
k . For quenches

between Hamiltonians with different winding numbers, dynamic Chern
numbers are quantized, with values dependent on the nature of fixed points at
km and kn: Cmn= 1 when c+(km)= 0 and c−(kn)= 0; Cmn=−1 when c−(km)= 0
and c+(kn)= 0. When the two fixed points are of the same kind, Cmn= 0.

According to its definition in Eq. (8), a finite Chern number in a
momentum–time submanifold corresponds to the existence of momentum–time
skyrmions in the same submanifold.

Constructing density matrix from direct measurements. The non-Hermitian
density matrix ρ(k, t) is related to the Hermitian one ρ′(k, t):= |ψk(t)〉〈ψk(t)|
through

ρðk; tÞ ¼
ρ′ðk; tÞ

P
μ¼ ±

χfk;μ

��� E
χfk;μ

D ���
Tr½ρ′ðk; tÞ

P
μ¼±

χfk;μ

��� E
χfk;μ

D ���� ; ð9Þ

where we have used the biorthonormal conditions hχfk;μjψf
k;νi ¼ δμν andP

μ¼±
jψf

k;μihχfk;μj ¼ 1.

As we have discussed in the main text, we first determine ρ′(k, t) by measuring

ψx2
ðtÞ

D ���σ j ψx1
ðtÞ

��� E
(j= 0, 1, 2, 3) for each pair of positions x1 and x2. In the case

of x1= x2, we perform projective measurements on the polarizations of photons
at each position. In the case of x1 ≠ x2, we employ interference-based
measurements to construct the matrix element hψx2

ðtÞjσ jjψx1
ðtÞi from

experimental data. We then construct ρ(k, t) and n(k, t) from ρ′(k, t) using Eq. (9).
We note that dynamic skyrmions are also visible in spin textures defined

through n′(k, t)= Tr[ρ′(k, t)] after enforcing normalization on n′(k, t). Here the
Pauli vector σ = (σ1, σ2, σ3). As we demonstrate explicitly in Supplementary Fig. 5,
whereas n(k, t) and n′(k, t) are distinct from each other, dynamic topological
structures inherent in these two spin textures are equivalent and emerge under
the same conditions.

Data availability
Experimental data, any related experimental background infor-
mation not mentioned in the text and other findings of this study
are available from the corresponding author upon reasonable
request.
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