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Non-alcoholic fatty liver disease (NAFLD), which ranges from the relatively benign and

reversible fatty liver (NAFL) to the more advanced and deadly steatohepatitis (NASH),

affects a remarkably high percentage of adults in the population. Depending upon

severity, NAFLD can increase one’s risk for diabetes, cardiovascular disease, and

hepatocellular carcinoma. Though the dominant histological feature of all forms of

the disease is the accumulation of liver triglycerides, these molecules are likely not

pathogenic, but rather serve to protect the liver from the damaging consequences

of overnutrition. We propose herein that the less abundant ceramides, through

evolutionarily-conserved actions intended to help organisms adapt to nutrient excess,

drive the cellular events that define NAFL/NASH. In early stages of the disease process,

they promote lipid uptake and storage, whilst inhibiting utilization of glucose. In later

stages, they stimulate hepatocyte apoptosis and fibrosis. In rodents, blocking ceramide

synthesis ameliorates all stages of NAFLD. In humans, serum and liver ceramides

correlate with the severity of NAFLD and its comorbidities diabetes and heart disease.

These studies identify key roles for ceramides in these hepatic manifestations of the

metabolic syndrome.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, affecting 25% of
the adult population worldwide (1, 2). It consists of two disease states of varying severity:
the relatively benign simple fatty liver termed non-alcoholic fatty liver (NAFL) and the more
severe non-alcoholic steatohepatitis (NASH). NASH can lead to hepatic scarring (cirrhosis) and
fibrosis, which contribute to hepatocellular carcinoma (HCC), the most common liver cancer and
the third leading cause of cancer-related death in the USA. Moreover, NAFLD increases one’s
risk for cardiometabolic disorders including type-2 diabetes and coronary artery disease. These
interrelated cardiometabolic disorders account for a sizable proportion of global deaths and overall
health expenditures.

The defining feature of NAFL is the accumulation of large lipid droplets in hepatocytes.
NASH is a worsened condition characterized by additional hepatocellular ballooning, lobular
inflammation, and fibrosis. These histological characteristics of NASH reveal serious tissue
damage that can result in organ failure. Though the most striking histological feature of NAFLD
across all stages is the accumulation of triglycerides, these lipids are likely inert markers of the
condition, rather than being bioactive drivers of the pathology. Instead, studies have identified
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roles for sphingolipids such as ceramides in each stage of
NAFLD and in many features of NASH: fat accumulation, insulin
resistance, mitochondrial dysfunction, apoptosis, and fibrosis.
The purpose of this review is to discuss the relevant evidence
in both human and animal studies for the role of ceramides in
each element of these liver pathologies. Moreover, we propose a
unifying, evolutionary theory to explain why ceramides initiate
these deleterious actions.

SPHINGOLIPID BIOSYNTHESIS AND
DEGRADATION

Sphingolipids are a richly diverse lipid class, comprising over
4,000 distinct species that serve a wide variety of biological roles.
Their de novo synthesis starts in the endoplasmic reticulum
with the condensation of fatty and amino acids to produce the
basic sphingoid scaffold. A series of enzymatic reactions follow
that produce ceramides, which are the precursors for the more
abundant sphingolipids (e.g., sphingomyelins, gangliosides).
Sphingolipids play integral roles in membrane structure and
fluidity as well as cellular growth and function, including
initiation of a coordinated stress response and ultimately
apoptosis (3). Circulating factors associated with metabolic
disorders including saturated fats, inflammatory cytokines, and
glucocorticoids invariably stimulate biosynthesis of ceramides
(4, 5).

The first enzyme in the biosynthetic pathway is serine
palmitoyl transferase (SPT), which condenses amino (e.g., serine)
and fatty acids (e.g., palmitoyl-CoA) to produce the sphingoid
backbone (6). The third step in the pathway, catalyzed by one
of six different (dihydro)ceramide synthases (CERS1-6), accounts
for much of the diversity in sphingolipids by adding acyl chains
to the sphingoid scaffold (7). These enzymes show variable
substrate specificities and tissue distributions. CERS2 is the
primary isoform in the liver, adding the C24 and C24:1 acyl-
chains. These very-long-chain ceramides appear benign. CERS5
and 6 add the C16-acyl chains, producing the ceramides that
are most strongly implicated in cardiometabolic diseases. CERS6
produces C16-ceramides that contribute to NAFLD and adipose
tissue dysfunction (8, 9). CERS5 appears to have a deleterious role
in the heart (10). Other articles in this review series will offer a
more in-depth analysis of the unique roles and distributions of
distinct ceramide species.

The product of the CERS reactions, during de novo
biosynthesis, are the dihydroceramides. Dihydroceramide
desaturases introduce a double bond into the d4 position of the
sphingoid backbone of dihydroceramides to produce the more
abundant ceramides (11). Despite the structural similarities
between ceramides and dihydroceramides, differing by only
a double bond, the two molecules exhibit radically different
functional roles in cellular signaling and metabolism (12, 13).
Mammals contain two desaturases: a ubiquitously expressed
DES1 and a skin- and gut-specific DES2 that inserts an additional
hydroxyl group in the d4 position to generate phytoceramides.

Following their synthesis in the ER, ceramides and
dihydroceramides traffic to the Golgi apparatus where they

are converted into complex sphingolipids through the addition
of various head groups (e.g., phosphocholine to produce
sphingomyelin; sugar moieties to produce the glucosylceramides
and gangliosides; phosphate to produce ceramide-1-phosphate;
or acyl-CoAs to produce the 1-O-acylceramides). Ceramides can
be re-formed by the hydrolysis of the choline head group from
sphingomyelins or through a salvage pathway that involves the
re-acylation of sphingosine (via CERS enzymes) produced by
ceramidase-mediated ceramide degradation (14, 15). Receptors
for adiponectin, an anti-diabetic and cardioprotective adipokine,
are ligand-activated ceramidases (16, 17). Studies in rodents have
demonstrated hepatoprotective effects of adiponectin in multiple
modes of liver injury. Moreover, adiponectin is an independent
risk factor for NAFLD in diverse clinical cohorts (18–22).
The rate of adiponectin-stimulated ceramide degradation thus
appears to influence the progression of NAFLD and other
cardiometabolic diseases.

Experimental manipulations of the enzymes that control
ceramide synthesis or metabolism have produced a wealth of data
about the role of ceramides in in the progressive stages of NAFL
and NASH, as well as associated comorbidities including insulin
resistance and cardiovascular disease. These will be discussed in
depth below.

CERAMIDES IN NAFL

NAFL, or simple fatty liver, is characterized in humans by
≥5% macrovesicular fat accumulation in hepatocytes without
substantial inflammation or hepatocellular damage (1). NAFL
is considered relatively benign and is asymptomatic. Studies
demonstrate no direct relationship between the extent of steatosis
and survival in humans (23). In the current progressive model of
NAFLD development, however, NAFL precedes the more severe
liver disease states such as NASH, cirrhosis and HCC.

Though increased hepatic triglyceride deposition precedes
NASH, triglycerides are likely inert storage molecules that do not
directly elicit the cellular dysfunction that causes NASH (24, 25).
In accordance with this theory, inhibiting triglyceride synthesis
at the level of DGAT2 reduces steatosis, but enhances fibrosis,
oxidative stress, and lipid peroxidation (26, 27). The bioactive
ceramides are more likely to drive the pathology. In accordance
with this theory, a number of studies have identified correlations
between ceramides and different measures of NAFLD/NASH in
humans (28–37).

Interventional studies in rodents invariably demonstrate that
ceramides are necessary for NAFL development. One such study
was performed using mice that allow for conditional depletion of
the Degs1 gene that encodes DES1. Deletion of the gene allows
the investigator to acutely replace the ceramides in tissues with
dihydroceramides lacking the key double bond (13). Deleting
Degs1 from adult mice either prevented or reversed hepatic
steatosis in ob/ob mice by blunting lipid uptake (via the fatty
acid translocase CD36) and decreasing expression of lipogenic
genes (e.g., Srebf1). Similarly, liver-specific ablation of the Degs1
gene encoding DES1 (or liver-targeted knockdown of Degs1
using shRNA) reversed high fat diet-induced hepatic steatosis
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FIGURE 1 | Mechanisms of ceramides contribute to NALF and NASH/fibrosis. (A) In NAFL, ceramides promote lipid accumulation ultimately resulting in

hepatosteatosis. In promoting steatosis, ceramides stimulate the translocation of CD36 to its active site on the plasma membrane via obligate intermediate PKCζ

where it facilitates uptake and esterification of free fatty acids. Ceramide action on PKCζ also upregulates transcription of Srebpc1 and inhibits Akt. Ceramides also

reduce mitochondrial efficiency, promoting fat as a preferred substrate. (B) Ceramides promote fibrosis through TGF-β signaling, CREB3L1 proteolysis, stellate cell

activation, and hepatocellular apoptosis. Srebpc1, sterol regulatory element binding protein 1; S1P/S2P, site 1 protease, site 2 protease; TM4SF20, transmembrane 4

super family 20; CREB3L1, CAMP responsive element binding protein 3. Figure was created with BioRender.com.

(13). Similar findings were reported using mice that allow for
inducible, liver-specific overexpression of acid ceramidase (38)
or liver-specific deletion of CERS6 (9), which lower ceramides,
normalize lipid uptake andmetabolism, and resolve diet-induced
hepatic steatosis. Thus, depleting ceramides from the liver, by
either blocking their synthesis or stimulating their degradation,
resolves NAFL. In each of these studies, the interventions also
resolved other features of the metabolic syndrome including
insulin resistance and serum hypertriglyceridemia.

Though the studies in the preceding paragraph have
demonstrated that ceramides are necessary for NAFL, relatively
few have evaluated whether they are sufficient to drive the
pathology using gain-of-function approaches. In vivo, the closest
has been studies by the Gonzalez laboratory, which found
that intestinal Farnesoid X receptors induced ceramides which
traveled to the liver to stimulate steatosis. In these studies, they
administered C16-ceramides to antibiotic-treated mice, finding
that they induced steatosis and increased expression of the
lipogenic gene Srebp1c and other transcriptional markers of
steatosis (e.g., Cidea, Fasn, etc.) (39). In vitro, overexpression of
CERS6 overexpression in primary hepatocytes was shown to be

sufficient to increase levels of C16-ceramides, induce triglyceride
accumulation, impair mitochondrial respiration, and antagonize
insulin signaling (40).

CERAMIDES, LIPID UPTAKE, AND
TRIGLYCERIDE SYNTHESIS

Several mechanisms explain the ceramide-induction of hepatic
steatosis (Figure 1A).

First, ceramides increase lipid uptake into the liver, at least
in part by stimulating the translocation of the CD36 fatty acid
translocase to the plasma membrane (13, 38). This event involves
the atypical protein kinase C zeta (PKCζ) (38), a ceramide
effector that has several roles in lipid and glucose metabolism.
Addition of exogenous short-chain ceramide analogs activates
PKCζ in H4IIe hepatocytes and overexpression of dominant
negative PKCζ negates ceramide-induced CD36 translocation.
In some tissues, this ceramide-PKCζ axis also impairs glucose
utilization through diminished activation of Akt (protein
kinase B) (41).
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FIGURE 2 | Pharmacological inhibition of de novo ceramide synthesis prevents high fat diet (HFD) induced NASH. (A) Simplified schematic of ceramide de novo
synthesis pathway, demonstrating the target of Myriocin (in red). (B) Graphical summary of the beneficial effects of Myriocin treatment in HFD-fed Sprague-Dawley

rats. HFD-induced NAFLD related effects are shown in black with the beneficial effects of Myriocin treatments shown with red lines. Figure was created with

BioRender.com.

Second, ceramides activate signaling pathways that induce
triglyceride synthesis, in part by inducing the master
transcriptional regulator sterol response element binding
protein (SREBP). These are potently induced by ceramides and
during NAFLD pathogenesis (39). In fact, gene variants and
polymorphisms of Srebpf1 are associated with increased risk of
NAFLD development (42). In vitro, ceramides are sufficient to
stimulate hepatic Srebpf1 gene expression, activating a number
of downstream targets that facilitate triglyceride production and
fatty acid elongation (43). This phenomenon is independent
of intracellular cholesterol levels, mediated by ceramides
regulating posttranscriptional physiological processing of
Srebpf1. Similarly, liver specific DES1 depletion in mice displays
a striking downregulation of SREBPs (13). This mechanism is
likely driven through the aforementioned ceramide-PKCζ axis,
which is established as a contributor to hypertriglyceridemia and
hepatic steatosis in mice (44). Indeed, several studies have shown
that PKCζ regulates SREBP-mediated triglyceride synthesis.

NAFL TO NASH TRANSITION/NASH

The transition from NAFL to NASH worsens an individual’s
prognosis, as NASH is considerably more likely to progress to
HCC and cirrhosis, and ultimately mortality, than the relatively
benign NAFL (1, 45). Meta-analyses have also identified fibrosis
grade as an independent risk factor for liver and cardiovascular-
related mortality (46). Understanding this transition is essential
for developing clinical interventions to prevent end stage liver

disease and improve patient outcomes. NASH differs from
NAFL in that steatosis is accompanied by lobular inflammation,
hepatocellular ballooning degeneration, and fibrosis. NAFLD has
a complicated bidirectional relationship with insulin resistance,
which is considered a driving factor for progression to more
severe liver disease states (47).

NASH patients have elevated liver ceramides and increased
hepatic expression of ceramide synthesizing genes (29, 30, 32,
48, 49). Ceramides have also been observed as a signature of the
NASH disease state in disparate mouse models of the condition,
including those that are not obese. For example, an unbiased
comparison of two diet-mediated mouse NASH models, the
methionine choline deficient and the atherogenic diets, identified
alterations in sphingolipid metabolism as a common feature
in both (34). This study included a thorough exploration of
histological, transcriptional, and lipidomic changes in both
models. Despite considerable differences in the mechanisms
of these two NASH models, both exhibited decreases in
cholesterogenesis, transcriptional upregulation of ceramide
synthases, and increased de novo sphingolipid synthesis resulting
in elevated ceramides, dihydroceramides, and glucosylceramides.
In accordance, NASH patients that undergo a weight loss-based
lifestyle intervention that reverses the condition show a reduction
in circulating ceramides and hepatic expression of pro-ceramide
synthesizing genes (32).

In rodents, several studies have shown that pharmacological
reduction of ceramides prevents NASH onset (Figure 2).
The majority have utilized myriocin, which is a potent and
irreversible inhibitor of serine palmitoyltransferase. One such

Frontiers in Endocrinology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 505

BioRender.com
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Poss and Summers Ceramides and NASH

study used high fat diet feeding in adult Sprague-Dawley rats
and demonstrated that myriocin prevented steatosis and fibrosis
(50). In this experiment, ceramide depletion led to inactivation of
signaling by c-Jun N-terminal kinase (JNK), a kinase implicated
in inflammatory responses and the regulation of apoptosis.
Moreover, myriocin normalized levels of inflammatory cytokines
such as TNF-α, IL-1β, and IL-6. A similar study, also conducted
in Sprague-Dawley rats fed a high fat diet, demonstrated that
myriocin normalized body weight, serum transaminase, and
serum triglycerides (28). Studies in cultured hepatocytes showed
that myriocin normalized expression profiles of genes involved
in fatty acid metabolism and restored autophagy. A final study
performed in Wistar rats demonstrated that myriocin treatment
for 7 days following establishment of high fat diet induce NAFLD
was sufficient to lower ceramides, improve whole body insulin
tolerance, and reduce hepatic steatosis (51). Ceramides are also
elevated in livers of mice exposed to carbon tetrachloride, a
toxin that is commonly used to mimic NASH, fibrosis, and
cirrhosis (52).

Unfortunately, no studies involving direct manipulation of
ceramide synthesizing genes to increase or decrease ceramides in
the context of NASH have been published to date.

CERAMIDES, CELL DEATH, AND FIBROSIS

Apoptosis is an essential element in the cascade of events that
cause NASH. In both in vitro and in vivomodels, administration
of pan-caspase inhibitors or targeted genetic ablation of specific
caspases suppresses apoptosis, and fibrosis (53). Ceramides
have long-been known to induce apoptosis, as they increase
mitochondrial outer membrane permeability to cytochrome C,
leading to caspase activation (54). Blocking ceramide production
negates the pro-apoptotic effects of many different cellular insults
(55), including the saturated fatty acids and cytokines implicated
in NASH. Ceramides have also been demonstrated to induce
hepatocellular necrosis through induction of mitochondrial
failure (56).

Ceramides alter mitochondrial membrane permeability by
several different mechanisms. They recruit the pro-apoptotic
protein BAX to mitochondria, where it oligomerizes and
increases membrane permeability (57). Ceramides bind
voltage-dependent anion channel 2, which further increases
mitochondrial outer membrane permeability (58). Ceramides,
through extensive hydrogen bonding with themselves, are
capable of forming channels in membranes that allow passage
of small proteins (59–62). And, ceramides inhibit pro-survival
signaling by the protein kinase Akt/PKB (63). This latter effect
on Akt/PKB accounts for the ability of ceramides to induce
insulin resistance (63, 64).

Ceramides may also directly participate in the fibrosis
signaling pathways that control collagen deposition (Figure 1B).
In fact, hepatic stellate cells, the major extracellular matrix
producing cells of the liver, exhibit increased ceramide
concentrations and ceramide synthesizing gene transcripts
upon activation in culture (65). This suggests that bioactive lipids
such as ceramides may affect hepatic stellate cell activation and

hepatic collagen deposition during NASH. Though the precise
mechanisms remain elusive, ceramides are positive regulators
of signaling by TGFβ, a major pro-fibrogenic cytokine (66–68).
In addition, ceramides enhance cleavage of plasma membrane
resident CREB3L1 by site-1 or site-2 proteases, a process that
liberates a protein fragment that enters the nucleus to bind
Smad4 and activate transcription of genes required for assembly
of collagen-containing extracellular matrix (69, 70). This process,
termed regulated intramembrane proteolysis, results from
ceramides altering the orientation of TM4SF20, a protein that,
in the absence of ceramides, blocks access of the proteases to
CREB3L1 (70, 71).

CERAMIDES IN NAFLD ASSOCIATED
COMORBIDITIES

NALFD is the hepatic manifestation of the metabolic syndrome.
Ranging from a simple fatty liver to the far more severe NASH,
the conditions increase risk for diabetes, cardiovascular disease,
hepatocellular carcinoma and liver failure. In fact, cardiovascular
disease is the most common cause of death in NAFLD patients,
accounting for more than twice the number of deaths than
progressive liver related complications (1, 72). Even in the
absence of metabolic syndrome, NAFLD patients experience
increased risk of cardiovascular disease (73).

Studies with knockout mice reveal that the liver provides
>50% of serum ceramides (13). Interestingly, measurement of
ceramides and related sphingolipids in serum has proven to
have clinical utility, serving as potent, cholesterol-independent
prognostic biomarkers of cardiovascular disease incidence
and mortality (74–79). Circulating ceramides have also been
associated with insulin resistance and type 2 diabetes in large
clinical cohorts (80–82). Though the literature is largely devoid
of large studies relating circulating ceramides to NAFLD, the
noted relationships between serum and hepatic ceramides as
with established NAFLD and as a distinction between NAFL
and NASH strongly suggests that their measurement could have
utility for diagnosing the condition (30, 32, 33).

A large proportion of patients with NAFL express a common
gene variant (i.e., rs738409) in Patatin-like phospholipase
domain-containing protein 3 (PNPLA3). The mutation in this
triglyceride lipase gene leads to marked changes in liver fat.
Unlike individuals with the “metabolic NAFLD” described in
this review, those with PNPLA3-induced NAFLD often remain
metabolically healthy, with less insulin resistance, diabetes,
and cardiovascular disease (83, 84). Interestingly, ceramide
concentrations are not elevated in individuals with “PNPLA3
NAFLD.” The authors attributed the lack of hepatic ceramide in
subjects with the PNPLA3 variant to their ability to effectively
store fat as triglycerides, rather than letting it be diverted into
the sphingolipid pathway. Notably, PNPLA3 mutant patients
can still develop severe fibrosis (85), suggesting ceramide-
independent modes of fibrogenesis exist, in addition to ceramide-
dependent ones.

Collectively, these studies indicate that ceramides are markers
of NAFLD that play causative roles in several disease features.
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While more work is needed to determine the precise role of
ceramides in NASH pathogenesis, the data thus far strongly
support development of ceramide-lowering strategies to combat
these liver pathologies.

AN EVOLUTIONARY BASIS FOR THE ROLE
OF CERAMIDES IN NAFLD

We’ve discussed a number of ceramide-driven mechanisms
that influence the health of the hepatocyte under conditions
of nutrient overload. We speculate that ceramides serve as
nutritional signals, accumulating when the triglyceride stores are
saturated and the cellular energy needs are met. The cells respond
to the increasing ceramides by initiating actions which protect
them from detergent-like FFAs (86). Indeed, each of the ceramide
mechanisms we have identified protect cellular membranes from
the destabilizing actions of these lytic fatty acids.

In the early stages of disease progressions (e.g., NAFL),
ceramides initiate actions that promote the safe uptake of fatty
acids through the cellular membrane and facilitate their storage
as triglycerides. For example, they increase the allotment of fatty
acid translocases (e.g., CD36 or fatty acid binding proteins) on
the cellular membrane, which facilitates safe passage of FFAs
through the bilayer and speeds their esterification. In parallel,
ceramides induce SREBP and its target genes (e.g., DGATs)
to enable the incorporation of fatty acids into triglycerides.
Ceramides also reduce glucose utilization by inhibiting Akt/PKB,
thus allowing cells to switch to fatty acids as a preferred energy
source. Lastly, they decrease mitochondrial efficiency, thus
maximizing the number of fatty acids that can be oxidized while
minimizing the effect on mitochondrial membrane potential. All
of these actions, which were at one time likely intended to protect
the cell from fatty acid toxicity, underlie NAFL.

As ceramide levels continue to rise, they initiate actions
to protect the organism from the compromised, lipid-laden
cells. For example, we hypothesize that ceramide-mediated
apoptosis and fibrosis are extensions of the aforementioned
signaling mechanisms that protect the organism when cells are
compromised. For example, ceramide induction of apoptosis
allows for a controlled cell death, preventing the release of
cytosolic content into the extracellular space. Similarly, the

induction of fibrosis allows the organism to protect itself from a
damaged region of tissue. Thus, ceramides protect the organism
from damage resulting from uncontrolled membrane lysis.

This theory—that ceramides signal cellular events to combat
the burden of toxic levels of free fatty acids—provides a unifying
framework and testable hypotheses about their role in disease.

CONCLUSIONS

The published data thus far clearly establish roles for ceramides
as drivers of different features NAFLD. Nonetheless, additional
work is needed. First, more comprehensive assessments of
the roles of ceramides in the terminal steps of NASH (e.g.,
apoptosis and fibrosis) in rodent models are warranted. These
should include investigations of whether ceramide-lowering is

sufficient to reverse the pathology at the later stages of disease
progression. Moreover, it should include genetic manipulations
to discern which effects are due to autonomous actions within the
hepatocyte. Second, additional clinical verifications, including
lipidomics of large liver biobanks and genomic determinations
of genes that influence ceramides, would support efforts to
develop this therapeutic approach. Despite these areas of need,
the evidence is strong that ceramides contribute to NAFLD.
Therapeutic approaches that selectively lower ceramides could
show enormous progress as a means of combating NAFLD.
Ceramides merit a sustained and rigorous evaluation from the
scientific community.
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