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Abstract

The lack of a reliable and easy-to-operate screening pipeline for disease-related noncoding RNA regulatory axis is a problem that needs
to be solved urgently. To address this, we designed a hybrid pipeline, disease-related lncRNA–miRNA–mRNA regulatory axis prediction
from multiomics (DLRAPom), to identify risk biomarkers and disease-related lncRNA–miRNA–mRNA regulatory axes by adding a novel
machine learning model on the basis of conventional analysis and combining experimental validation. The pipeline consists of four
parts, including selecting hub biomarkers by conventional bioinformatics analysis, discovering the most essential protein-coding
biomarkers by a novel machine learning model, extracting the key lncRNA–miRNA–mRNA axis and validating experimentally. Our
study is the first one to propose a new pipeline predicting the interactions between lncRNA and miRNA and mRNA by combining
WGCNA and XGBoost. Compared with the methods reported previously, we developed an Optimized XGBoost model to reduce the
degree of overfitting in multiomics data, thereby improving the generalization ability of the overall model for the integrated analysis
of multiomics data. With applications to gestational diabetes mellitus (GDM), we predicted nine risk protein-coding biomarkers
and some potential lncRNA–miRNA–mRNA regulatory axes, which all correlated with GDM. In those regulatory axes, the MALAT1/
hsa-miR-144-3p/IRS1 axis was predicted to be the key axis and was identified as being associated with GDM for the first time. In short,
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as a flexible pipeline, DLRAPom can contribute to molecular pathogenesis research of diseases, effectively predicting potential disease-
related noncoding RNA regulatory networks and providing promising candidates for functional research on disease pathogenesis.

Keywords: analysis framework, data integration, multiomics analysis, noncoding RNA regulatory

Introduction
Gene expression processes are influenced by the pre-
cise regulation and complex interactions of multi-
ple dimensions, including methylation [1], genetic
mutations [2], transcription factors [3] and noncoding
RNAs [4]. These multiple levels of regulatory net-
works highlight multiomics integration as an impor-
tant method for characterizing complex biological
mechanisms underlying phenotypes. Currently, the
rapid development of high-throughput sequencing
technologies [5] and the emergence of new tech-
nologies in multiomics [6, 7] have boosted the gen-
eration of large amounts of multiomics data. Com-
pared to the limitations of individual omics data in
elucidating the biological mechanisms of diseases,
multiomics data have more powerful complementary
effects and are challenging because they not only include
multiomics datasets with diverse data types of different
unique characteristics and distributions [8] but also
involve proficiency in applying the most advanced and
appropriate machine learning methods to uncover the
complex relationships between different dimensions of
molecules [9]. Despite numerous attempts by researchers
to address these issues [10–12], the lack of effective inte-
grated analysis methods remains a fatal bottleneck to
the interpretation of biological data and the translation
of basic research. Therefore, constructing an effective
integrated analysis method for the interpretation of
multiomics data and its transformation is an urgent
matter.

Previous studies have indicated that RNA–protein
interactions regulate gene expression through the
control of various posttranscriptional processes, which
in turn influence disease development directly or
indirectly [13]. The dysregulation of noncoding RNAs,
in particular microRNAs (miRNAs) and long noncoding
RNAs (lncRNAs), is closely associated with various
diseases [14]. miRNAs are found to directly or indirectly
affect the development of diseases [15], and functional
genomics studies have shown that lncRNAs are an
important regulator in a variety of biological processes
and disease development, partly through interaction
with miRNAs or mRNAs. [16, 17]. Given the mechanisms
by which lncRNAs regulate genes and the relationships
between miRNA-targeted genes and diseases, it would
be desirable to obtain more information on the lncRNA–
miRNA–mRNA regulatory axes associated with diseases
for more references and evidence for the elucidation
of the disease molecular mechanisms [18]. Although
a number of approaches have been developed for the
prediction of disease-related ncRNAs, such as RWR [19],
RWRHLD [20], LncRDNetFlow [21] and LncPriCNet [22],

there have been no reports about the methods or tools
combined with experimental validation to identify the
lncRNA–miRNA–mRNA network as a whole functional
module. The lack of a reliable and easy-to-operate
screening pipeline for disease-related noncoding RNA
regulatory axis is a problem that needs to be solved
urgently.

In this study, inspired by the currently well-performing
extreme gradient boosting (XGBoost) model, we devel-
oped a first hybrid pipeline of integrative multiomics
analysis for identifying targetable disease-related lncRNA–
miRNA–mRNA regulatory axes based on a novel Opti-
mized XGBoost model. The new pipeline of disease-
related lncRNA–miRNA–mRNA regulatory axis pre-
diction from multiomics (DLRAPom) added a novel
Optimized XGBoost model on the basis of conventional
weighted gene coexpression network analysis (WGCNA)
analysis and combined with experimental verification to
ensure the accuracy of extracting regulatory features
from the ncRNA gene–disease association network.
Compared with the methods that have been reported
previously, we developed an Optimized XGBoost model
to reduce the degree of overfitting in multiomics data,
thereby improving the generalization ability of the
overall model for the integrated analysis of multiomics
data. Taking gestational diabetes mellitus (GDM) as an
example, we utilized DLRAPom to evaluate the lncRNA–
miRNA–mRNA regulatory network of GDM to reveal the
value and reliability of the hybrid pipeline.

Materials and methods
Overall pipeline design
There are four steps in the DLRAPom pipeline: selecting
hub biomarkers by conventional bioinformatics analysis,
discovering the most essential protein-coding biomark-
ers by a novel machine learning model, extracting the
key lncRNA–miRNA–mRNA axes and validating experi-
mentally (Figure 1). To ensure the accuracy of the results,
we first experimentally verified the results of key nodes
(lncRNAs, miRNAs and mRNAs) by quantitative reverse
transcription PCR (RT–qPCR), and then obtained support-
ive evidence for the pairwise target relationships within
the predicted regulatory axes through literature search
or dual-luciferase reporter assay. Through a reasonable
combination of multiple platforms and methods to ana-
lyze disease-related multiomics data, we obtained reli-
able disease-related lncRNA–miRNA–mRNA regulatory
axes for the further investigation of disease mechanisms.
Next, we introduced in detail the specific methods of
each part of the process, taking GDM as an example. All
related analysis scripts were uploaded to GitHub (https://
github.com/shenxiaochenn/DLRAPom).

https://github.com/shenxiaochenn/DLRAPom
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Figure 1. The DLRAPom pipeline for identifying targetable disease-related lncRNA–miRNA–mRNA regulatory axes by machine learning guided
integrative multiomics analysis. The pipeline consists of four steps, namely selecting hub biomarkers by conventional bioinformatics analysis,
discovering the most essential protein-coding biomarkers by a novel machine learning model, extracting the key lncRNA–miRNA–mRNA axis, and
validating experimentally. In Step1, hub biomarkers are selected by conventional bioinformatics analyses. These results are used as the inputs of Step2 to
discover essential protein-coding biomarkers and obtain the importance of each protein-coding biomarker. In Step3, the competing endogenous network
is constructed based on the obtained information of lncRNA–miRNA and miRNA–target gene by databases. Among all the constructed regulatory axes,
the regulatory axes containing the predicted risk protein-coding biomarkers in the novel Optimized XGBoost model are selected as the main outcomes
of our pipeline and would be used for subsequent experimental verification. If there are multiple regulatory axes, the criticality of the regulatory axes is
ranked in descending order according to the importance of the predicted protein-coding biomarker included in each axis. After the significant expression
change of each RNA molecule in the predicted regulatory axes is confirmed, further supportive evidence for the pairwise targeting relationships within
the predicted regulatory axes was required. If these targeting relationships have not been reported before, we need to determine whether these targeting
relationships exist through the dual-luciferase reporter assay. For a predicted regulatory axis, only when the biological targeting relationships of lncRNA–
miRNA and miRNA–mRNA have been both experimentally verified, can the predicted regulatory axis be considered to be targetable and reliable.

Selection of hub biomarkers by bioinformatics
analysis
Discovery of differentially expressed biomarkers in
multiomics datasets

Taking GDM as an example, we downloaded RNA-
sequencing data (GSE154377 [23], GSE150621 [24]),
mRNA expression profiling microarray data (GSE87295),
DNA methylation microarray data (GSE88929 [25]) and
noncoding RNA profiling sequencing data (GSE112168
[26]) from the Gene Expression Omnibus database,
which were preprocessed to retain suitable data for
differentially expressed genes (DEGs), methylated genes
and miRNAs. According to the results of the t-SNE
algorithm and correlation matrix analysis, samples with
significant differences between the GDM group and the
control group were retained. Thus, from the 134 samples
in GSE154377, 49 disease-related samples were selected,
including 32 GDM samples and 17 control samples.

GSE112168 included six GDM samples and six control
samples. A total of eight samples from GSE150621 were
screened, consisting of five GDM samples and three
control samples. Differentially expressed miRNAs and
DEGs were screened using the DESeq2 package in R
statistical software. The R-script for DESeq2 analysis
has been uploaded to the GitHub (https://github.com/
shenxiaochenn/DLRAPom). Using the limma package
[27] in R statistical software, seven samples in GSE87295
were retained, including five GDM samples and two
control samples. Among the two datasets (A and B) of
GSE88929, we selected dataset B with more samples,
including 23 GDM samples and 45 control samples. The
ChAMP package [28] in R statistical software was used to
screen differentially methylated positions. WGCNA is a
method to find coexpressed gene modules by exploring
the association of gene networks with phenotypes and
the core genes in the network [29]. The WGCNA package

https://github.com/shenxiaochenn/DLRAPom
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in R statistical software was used to perform gene
expression matrix and coexpression analyses based on
GSE154377 data (meeting the minimum sample size
requirements of WGCNA) to extract coexpressed genes
in disease-related modules. The differentially expressed
biomarkers and the coexpressed genes in WGCNA were
divided into two groups, an upregulated group and a
downregulated group, via the ggVennDiagram package
in R statistical software.

Enrichment analysis

Gene ontology (GO) enrichment analysis explores and
characterizes the functions of genes from three aspects:
cellular component, biological process and molecular
function. Kyoto Encyclopedia of Genes and Genomes
(KEGG) is a database resource for large-scale molecular
databases to better understand the high-level functions
and utilities of biological systems [30]. The clusterProfiler
package in R statistical software was used to perform
and determine the enrichment pathways in biological
process, and P < 0.05 was considered to be statistically
significant. Based on the results of GO enrichment
analysis, disease-related metabolic pathways were
selected and plotted using the ClueGO plugin (http://
apps.cytoscape.org/apps/cluego) in Cytoscape software.

Construction of the protein–protein interaction network

Based on the disease-related metabolic pathways, the
protein–protein (PPI) network was constructed using
the STRING database (https://string-db.org/), and then
the key nodes were screened using the CentiScaPe2.2
plugin (http://apps.cytoscape.org/apps/centiscape) in
Cytoscape software with the default criteria (degree =
5.555, centrality = 57.999).

Discovering the most essential protein-coding
biomarker by a novel Optimized XGBoost
algorithm
After screening out the hub genes, three datasets includ-
ing expression data (GSE87295, GSE154377, GSE150621)
were combined and then divided into 80% train set and
20% validation set by the random split algorithm. Fur-
thermore, a novel machine learning integration clas-
sification algorithm Optimized XGBoost was designed
by us, and the importance of each gene in the Opti-
mized XGBoost model was evaluated by a comprehen-
sive approach of the weight (the number of times one
biomarker was used to split the data across all trees), gain
(the average gain of the biomarker when it was used in
trees) and cover (the average coverage of the biomarker
when it was used in trees). In the model, the objective
function was identified as Equation (1). In this objective
function, gi and hiwere the first and second derivatives,
respectively.
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The complexity of the model was estimated by the
�(ft) (Equation (2)). T was identified as the amount of leaf
nodes. Meanwhile, L1 regularization and L2 regulariza-
tion were utilized to control the complexity of the model.
The detailed explanations for both formulae could be
found in the Supplementary Document.

Another three machine learning models were also
used to validate the novel Optimized XGBoost model,
including support vector machine (SVM) [31], random
forest (RF) [32] and decision tree from scikit-learn
(github.com/scikit-learn/scikit-learn). The area under
the computing receiver-operating characteristic (ROC)
curve (AUC) and accuracy were calculated to estimate
the different machine learning models. The most vital
biomarker in the novel Optimized XGBoost model was
determined by the importance of each protein-coding
biomarker. All source codes used in this step were
uploaded to GitHub (https://github.com/shenxiaochenn/
DLRAPom).

Extracting the key lncRNA–miRNA–mRNA axes
Differentially expressed miRNAs/lncRNAs were screened
using the DESeq2 package in R statistical software. If
there were no differentially expressed lncRNA data, the
StarBase database version 2.0 (https://starbase.sysu.edu.
cn/starbase2/index.php) was used to search for lncRNAs
that may regulate differentially expressed miRNAs. Then,
the differentially expressed miRNAs/lncRNAs were uti-
lized to construct the competing endogenous network
based on the predicted interacting relationships by Star-
Base database Version 2.0 (the standard: clipExpNum
>10).

Using the miRWalk database (http://mirwalk.uni-hd.
de/), target genes of differentially expressed miRNAs
were predicted with the following criteria: P value = 0.01,
‘positions’ = 3UTR and TargetScan database or miRDB
database = 1. The hub genes in the PPI network inter-
sected with target genes to obtain disease-related genes.
Finally, the lncRNA-miRNA and miRNA-target gene
networks were combined to construct a competing
endogenous network in Cytoscape. Among all the con-
structed regulatory axes, the regulatory axes containing
the predicted risk protein-coding biomarkers in the
novel Optimized XGBoost model are selected as the
main outcomes of our pipeline and can be forwarded
for subsequent experimental verification. If there are
multiple regulatory axes, the criticality of the regulatory
axes is ranked in descending order according to the
importance of the predicted gene included in each axis.

Experimental validation
In population samples or animal models, blood or
disease-related tissue samples are collected, and the
three RNA molecules of the predicted key regulatory axes

http://apps.cytoscape.org/apps/cluego
http://apps.cytoscape.org/apps/cluego
https://string-db.org/
http://apps.cytoscape.org/apps/centiscape
github.com/scikit-learn/scikit-learn
https://github.com/shenxiaochenn/DLRAPom
https://github.com/shenxiaochenn/DLRAPom
https://starbase.sysu.edu.cn/starbase2/index.php
https://starbase.sysu.edu.cn/starbase2/index.php
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are experimentally verified. Only when the expression
change of each RNA molecule in the predicted regulatory
axes has a statistically significant difference, are the
predicted regulatory axes considered to have been
initially verified. Considering that the placenta, as a
vital link between pregnancy and offspring, plays an
important role in the pathogenesis of GDM, placental
tissues from five GDM patients and five normal glucose
tolerance controls were recruited to perform RT–qPCR
verification of the predicted key regulatory axes. All
participants underwent an oral glucose tolerance test at
24–28 weeks of gestation. GDM was diagnosed according
to American Diabetes Association 2011 guidelines [33].
Five pregnant women with normal glucose tolerance
were recruited as a normal control group. Individuals
with the following conditions were excluded from the
study: multiple pregnancy, maternal–fetal blood type
incompatibility, abnormal placenta or umbilical cord,
inflammation, severe diabetes, hypertension, other
pregnancy diseases, malignant tumors or other serious
organic diseases.

Placentas of all participants were collected after
delivery and frozen in liquid nitrogen immediately for
RNA extraction. Subjects’ characteristics are shown
in Supplementary Table S1 available online at http://
bib.oxfordjournals.org/. Data are presented as mean ±
SD. Differences were tested by Student’s t-tests. The
significance threshold was set at P < 0.05. Total RNA
from placental tissue was isolated using TRIzol reagent
(Invitrogen, San Diego, CA, USA), and 1 μg of total RNA
from each sample was reverse-transcribed to cDNA using
a commercial RT–PCR kit (Thermo Scientific, Waltham,
MA, USA) according to the manufacturer’s instructions.
RT–qPCR was performed as previously described [34].
Gene expression changes were calculated with the 2−��Ct

method relative to the YWHAZ housekeeping gene and
standardized to the control group. All primers were
synthesized by AUGCT (Beijing, China). Sequences are
shown in Supplementary Table S2 available online at
http://bib.oxfordjournals.org/. This study was conducted
in accordance with the ethical guidelines of the Decla-
ration of Helsinki (version 2002) and was approved by
the Ethics Committee of the First Affiliated Hospital
of Xi’an Jiaotong University (XJTU1AF2020LSK-275). All
participants provided written informed consent forms.

After the significant expression change of each RNA
molecule in the predicted regulatory axes was confirmed,
further supportive evidence for the pairwise targeting
relationships within the predicted regulatory axes were
required. If these targeting relationships have not been
reported before, we need to determine whether these
targeting relationships exist through the dual-luciferase
reporter assay. For a predicted regulatory axis, only when
the biological targeting relationships of lncRNA-miRNA
and miRNA-mRNA have been both experimentally veri-
fied, can the predicted regulatory axis be considered to
be targetable and reliable.

Results
Significant differences in miRNA and mRNA
expression and gene coexpression modules
GDM-related multiomics datasets (GSE154377, GSE150621,
GSE87295, GSE88929 and GSE112168) were used to
analyze the core gene sets and pathways. Given that the
GSE154377 dataset was an expression profile obtained
by high-throughput sequencing, dimension reduction
and cluster analyses of the GSE154377 dataset were
performed by the t-SNE algorithm (Supplementary
Figure S1A available online at http://bib.oxfordjournals.
org/). The heatmap and volcano plots of DEGs are
shown in Supplementary Figure S1B and C available
online at http://bib.oxfordjournals.org/. The GSE150621
dataset was also used for expression profiling by
high-throughput sequencing. Thus, cluster analysis of
the GSE150621 dataset was conducted with a cluster
heatmap plot (Supplementary Figure S1D available
online at http://bib.oxfordjournals.org/), and its heatmap
and volcano plots of DEGs are shown in Supplemen-
tary Figure S1E and F available online at http://bib.
oxfordjournals.org/. The cluster analysis of the GSE87295
dataset, an expression profiling by array, was carried out
with a cluster heatmap plot (Supplementary Figure S1G
available online at http://bib.oxfordjournals.org/), and
the corresponding heatmap and volcano plots of DEGs
are shown in Supplementary Figure S1H and I available
online at http://bib.oxfordjournals.org/. The GSE88929
dataset was subjected to methylation profiling by a
genome tiling array, and the volcano plot of differentially
methylated genes is shown in Supplementary Figure S1J
available online at http://bib.oxfordjournals.org/. The
top eight differentially methylated genes are labeled
in Supplementary Figure S1J available online at http://
bib.oxfordjournals.org/. The GSE112168 dataset, which
contains noncoding miRNA profiling by high-throughput
sequencing, had 25 differentially expressed miRNAs,
which are listed in Supplementary Table S3 available
online at http://bib.oxfordjournals.org/. There were 856
DEGs in the GSE154377 dataset, 1174 DEGs in the
GSE150621 dataset, 726 DEGs in the GSE87295 dataset
and 1869 differentially methylated genes in the GSE88929
dataset. Considering that the minimum sample size in
stable WGCNA must be greater than 15 in a single group,
the GSE154377 dataset that contained 49 samples (32
GDM patients and 17 controls) was utilized to establish
the WGCNA network. Through the analysis of the rela-
tionships between pairwise gene coexpression modules
and eigengenes, the gene expression was comparatively
independent between modules (Supplementary Figure
S2 available online at http://bib.oxfordjournals.org/).
The formation communication of eigengenes was
estimated, and the most significant associations of key
modules were identified between the GDM group and
the control group. The green–yellow module (Supple-
mentary Figure S2D and F available online at http://
bib.oxfordjournals.org/) was mostly positively correlated
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Figure 2. The Venn-diagram of upregulated and downregulated genes in different datasets. (A) The intersection of upregulated genes in the five data
sets (GSE154377, GSE150621, GSE87295, GSE88292 and WGCNA). (B) The intersection of downregulated genes in the five data sets. Redder colors indicate
more genes while bluer colors indicate fewer genes. WGCNA: weighted gene coexpression network analysis.

with GDM. Furthermore, the topological overlap matrix
plot is shown in Supplementary Figure S2G available
online at http://bib.oxfordjournals.org/. There were 173
genes screened from the upregulated group (Figure 2A),
and 100 genes were screened from the downregulated
group (Figure 2B). A total of 273 key genes were utilized
in the subsequent enrichment analysis.

Analyses of GO and KEGG enrichment and
construction of the PPI network
The hub pathways in each group are colored in the
center of the circle, and other metabolic disease-
related pathways are sorted around the hub pathways
(Supplementary Figure S3 available online at http://bib.
oxfordjournals.org/). The genes selected from the hub
pathways were utilized to construct the PPI network.
The key points in the PPI network were screened by the
degree centrality and betweenness centrality algorithm
and are labeled in green in Figure 3. The nine key genes
were selected in the PPI network (Figure 3) constructed
in Cytoscape software based on the default criteria
(degree = 5.555, centrality = 57.999).

Establishment of an Optimized XGBoost model
and discovery of the most essential
protein-coding biomarker
The nine selected key genes in the PPI network were uti-
lized to construct the multiple machine learning models.
The three models of SVM, RF and decision tree were used
for horizontal comparison with the Optimized XGBoost
model, of which the aim was to demonstrate that the
Optimized XGBoost model had the best performance. The
original boosting model showed slight overfitting, which
is shown by the red and yellow lines (Figure 4A). The
Optimized XGBoost machine learning model is shown
by the green and blue lines (Figure 4A) through applying
3-fold cross-validation by the function of xgboost.cv to

discover the best parameters and hyperparameters, the
details of which could be found in our codes in the GitHub
(https://github.com/shenxiaochenn/DLRAPom). We pre-
formed 3-fold, 5-fold and 10-fold cross-validation, and
the results were presented in Supplementary Figure S4
available online at http://bib.oxfordjournals.org/. As indi-
cated in Supplementary Figure S4, available online at
http://bib.oxfordjournals.org/, these results were not sig-
nificantly different in our datasets. However, in a small
sample size data set, these results will show obvious
differences, which will have potential impacts on the
prediction results generated by the model. Thus, given
the sample size of data sets used by users and the
universality of our pipeline, in order to reduce the error of
high-fold cross-validation in small sample data sets, we
applied 3-fold cross-validation in the pipeline, which is
also the default parameter of the function of xgboost.cv.

The degree of overfitting was released by sacrificing
the accuracy in the train data. As shown in Figure 4B,
the importance of each key gene in the Optimized
XGBoost model is presented. The IRS1 gene was more
essential than other genes. The AUCs of the ROC
curve were 0.940 in the train data and 0.898 in the
validation data (Figure 4C and D). For the SVM, RF and
decision tree models (their specific parameters presented
in Supplementary) in the validation data, the AUCs
were 0.778, 0.894 and 0.852, respectively (Figure 4D).
Compared with the Optimized XGBoost model with
an accuracy of 80.95%, the accuracies of the SVM, RF
and decision tree models in the validation data were
71.43%, 71.43% and 76.19%, respectively (presented
in the source_code.ipynb script). All related source
codes were uploaded to GitHub (https://github.com/
shenxiaochenn/DLRAPom). Combined with the accuracy
and AUC of the four models, the Optimized XGBoost
model developed by us performed the best in related
analyses.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac046#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac046#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://github.com/shenxiaochenn/DLRAPom
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac046#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac046#supplementary-data
http://bib.oxfordjournals.org/
https://github.com/shenxiaochenn/DLRAPom
https://github.com/shenxiaochenn/DLRAPom
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Figure 3. Construction of protein–protein interaction network. Circles represent genes and lines represent interactions. Green points represent predicted
key genes in the whole network.

Prediction of the key lncRNA–miRNA–mRNA axes
The key genes in the PPI network, the differentially
expressed miRNAs and lncRNAs (the predicted lncRNAs
using starBase database Version 2.0) were utilized to
establish the competing endogenous network (Figure 5).
As shown in Figure 5, only one predicted protein-coding
biomarker (IRS1) was included in the potential lncRNA–
miRNA–mRNA axes. In the analyses based on multiple
machine learning algorithms, the IRS1 gene was the
most vital gene according to its importance in the
optimal model of Optimized XGBoost. Additionally, the
enrichment analysis also regulated some GDM-related
pathways. By analyzing the competing endogenous net-
work (Figure 5), the IRS1 gene was only linked with hsa-
miR-144-3p, and hsa-miR-144-3p was shown to interact
with the most active lncRNA, MALAT1. Therefore, the
MALAT1/hsa-miR-144-3p/IRS1 regulatory axis could be
considered to be a key axis in GDM.

Validation of the key
MALAT1/hsa-miR-144-3p/IRS1 axis
To investigate the reliability of the predicted key
MALAT1/hsa-miR-144-3p/IRS1 regulatory axis and the
Optimized XGBoost model developed by us, we examined
the expression pattern of the key regulatory axis in
the placenta by RT–qPCR. As shown in Figure 6, the

expression levels of the IRS1 gene and hsa-miR-144-3p
were both lower in placenta from GDM patients than
in placenta from controls, while MALAT1 was highly
expressed in GDM patients. All the P values (t-tests) were
less than 0.05 (Figure 6). Furthermore, when searching
the literature to obtain supportive evidence for the target
interactions of MALAT1/hsa-miR-144-3p and hsa-miR-
144-3p/IRS1 in the key regulatory axis, we found in
recently published articles that their biological targeting
relationships were both confirmed by the dual-luciferase
reporter assay [35–38]. However, the relationship of this
key regulatory axis with GDM has not yet been reported.
Therefore, given that biological targeting relationships
of MALAT1/hsa-miR-144-3p and hsa-miR-144-3p/IRS1
have no disease or cell specificity, the predicted key
MALAT1/hsa-miR-144-3p/IRS1 regulatory axis can be
considered to be targetable and reliable, which also
confirmed the reliability of our DLRAPom pipeline and
the accuracy of the Optimized XGBoost machine learning
model developed by us.

Discussion
Most of the previously reported methods focused on one
or two types of noncoding RNA, and there were few
predictions combined with experimental validation to
identify the lncRNA–miRNA–mRNA network as a whole
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Figure 4. Evaluation by multiple machine learning algorithms. (A) The X-axis reflects the times of iteration and Y-axis reflects the error rate. The red
and yellow lines reflect the results of the original model. The green and blue lines reflect the results of optimized model. (B) The importance of genes
in the model. The bigger the area, the more vital the genes. (C) The receiver-operating characteristic (ROC) curve of the train set. (D) ROC curves of the
validation set by different machine learning algorithms.

functional module. The lack of a reliable and easy-to-
operate screening pipeline for disease-related noncoding
RNA regulatory axis is a problem that needs to be solved
urgently. To our knowledge, our study is the first one
to propose a new pipeline predicting the interactions
between lncRNA and miRNA and mRNA by combining
WGCNA and XGBoost with experimental verification to
improve the accuracy of prediction results. Compared
with the methods reported previously, we developed
an Optimized XGBoost model to reduce the degree
of overfitting in multiomics data, thereby improving
the generalization ability of the overall model for the
integrated analysis of multiomics data. We took GDM
as an example to introduce in detail the application of
the DLRAPom pipeline to identify targetable disease-
related lncRNA–miRNA–mRNA regulatory axes. The
characteristics of competing endogenous networks of
GDM were depicted well. Importantly, a potential key
GDM-related MALAT1/hsa-miR-144-3p/IRS1 regulatory
axis was captured, and it was further validated by
relevant experiments. To our knowledge, this key GDM-
related regulatory axis was identified for the first time.
The results of the stability test indicate that our machine
learning-guided multiomics integrative analysis pipeline

is robust and reliable. Additionally, DLRAPom can
effectively predict potential disease-related lncRNA–
miRNA–mRNA regulatory networks and provide more
promising candidates for functional research on disease
pathogenesis.

One of the prominent advantages of the DLRAPom
pipeline is that it fully combines conventional bioin-
formatics analysis methods and machine learning
models, hence providing more biological mechanism-
targeted candidates for downstream experimental
verification. In terms of these methods, models and
experiments alone, they are very popular in various
disease research fields [39]. In fact, in addition to disease-
related lncRNA–miRNA–mRNA regulatory axes, other
essential factors, such as disease-related metabolic
pathways, the machine learning model for accurate
assessment of disease-related risk biomarkers deserves
our attention as well. Flexibility is also a major advantage
of the DLRAPom pipeline. Four machine learning algo-
rithms were applied: three traditional machine learning
algorithms (SVM, RF and decision tree) and one novel
machine learning algorithm (Optimized XGBoost). The
advantage of the model is that it can deal with datasets
that include missing values. If a certain risk biomarker
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Figure 5. Construction of competing endogenous regulatory networks. Green circle nodes: target genes; red diamond: lncRNAs; blue arrow: miRNAs.

Figure 6. Experimental validation of expression change of MALAT1/hsa-
miR-144-3p/IRS1. RT-qPCR analysis of the expression level of
MALAT1/hsa-miR-144-3p/IRS1 in placentas from GDM patients and
controls. The data show the relative expression changes of MALAT1/hsa-
miR-144-3p/IRS1 in placentas from both groups. Values are means ± SD
and the expression is corrected for the housekeeping gene YWHAZ.
Differences were tested by Student’s t-test. Significance was set at
P < 0.05.

was not measured in the datasets, our model could
evaluate it as well. When looking for the best split point
on biomarker α, it would not traverse the biomarkers
with missing values in the datasets but only traverse the

corresponding biomarker values for the samples of the
datasets. This technique reduced the time to find split
points for sparse discrete biomarkers [40]. The original
XGBoost model was usually prone to overfitting, which
was also confirmed when we compared the learning
curves between the original XGBoost and Optimized
XGBoost in the multiomics data (Figure 4A). This is
most likely due to the spatiotemporal specificity of
transcriptome data and genetic heterogeneity among
different biological samples. Therefore, we optimized the
original XGBoost model in this study to reduce the degree
of overfitting in multiomics data, thereby improving
the generalization ability of the overall model to meet
the requirements of DLRAPom. The Optimized XGBoost
model was tested again and again by applying 3-fold
cross-validation. Scalability was the best performing
factor compared to other machine learning models, such
as SVM, multiple logistic regression, LASSO regression
and RF [40]. Meanwhile, the weighted quantum sketch
program could solve instance weights in approximate
tree learning, which was essential to estimate the weight
of each risk biomarker in our model. A comprehensive
approach was used to estimate the importance of each
risk biomarker, including weight (the number of times
one biomarker was used to split the data across all trees),
gain (the average gain of the biomarker when it was used
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in trees) and cover (the average coverage of the biomarker
when it was used in trees). In the future, by obtaining
more multiomics data, the Optimized XGBoost machine
learning model could be better perfected. Additionally,
we encourage other researchers to design more opti-
mized machine learning algorithms based on ours to fit
their own data and make the process more flexible.

In the example of GDM, nine risk protein-coding
biomarkers were identified as the key points. The other
eight genes were computed with less weight than the
IRS1 gene in the best performing Optimized XGBoost
model, but their correlations with the pathogenesis of
GDM could not be dissociated. As the most vital gene
among the nine biomarkers, the IRS1 gene encodes one
of the most important substrates for insulin receptor
and insulin-like growth factor-1 receptor tyrosine kinases
[41] and was downregulated in both the GSE154377 and
GSE87295 datasets. The decreased expression level of
the IRS1 gene was validated by RT–qPCR in the GDM
group, which was in line with previous studies [42, 43].
The impairment of IR and IRS1 signaling was reported to
be closely connected with the mechanisms underlying
chronic insulin resistance [44]. Due to chronic insulin
resistance, GDM may convert to type 2 diabetes. As a
key regulatory factor, the IRS1 gene was reported to be
regulated by lncRNAs and miRNAs in the complicated
endogenous network to affect the development of
insulin resistance. A previous study by Chen et al.
demonstrated that MALAT1 ablation-mediated insulin-
induced activation of IRS-1 to regulate insulin responses,
which indicated that MALAT1 played an important
role in regulating insulin sensitivity [45]. Moreover, a
recent study reported that Dnmt3a-dependent promoter
methylation and MALAT1 cooperatively downregulated
the expression of the IRSI gene by activating oxidative
stress, which could lead to hindered insulin signaling and
impaired insulin-dependent glucose uptake in skeletal
muscle and ultimately promote the development of
insulin resistance [46]. This evidence suggested that
MALAT1 may negatively regulate IRS1 to a certain
extent. Furthermore, in the competing endogenous
network constructed by DLRAPom, hsa-miR-144-3p, one
of the differentially expressed miRNAs in the GSE112168
dataset, was indicated to regulate the IRS1 gene and be
regulated by MALAT1. The pairwise biological targeting
relationships between them (MALAT1/hsa-miR-144-
3p and hsa-miR-144-3p/IRS1) have been confirmed by
dual-luciferase reporter assays [35–38]. These results
powerfully illustrated that the IRS1 gene was regulated
in a complicated competing endogenous network as a
key factor, which was well reflected in our Optimized
XGBoost machine learning model.

To date, there have been no additional research data
on the expression of hsa-miR-144-3p in the placenta of
GDM patients except the GSE112168 dataset. Studies of
the relationship between hsa-miR-144-3p expression and
diabetes or GDM are mainly focused on the expression
profile in peripheral blood. Considering that there are

many confounding factors in peripheral blood, these
results may not have a reliable reference and directivity.
Notably, hsa-miR-144-3p was reported to have decreased
expression in the placenta of patients with preeclampsia
[47], belonging to the gestational metabolic disorders
together with GDM. Moreover, the expression level of hsa-
miR-144-3p was found to be lower in epicardial adipose
tissue in response to hyperglycemia [48]. Although
research has suggested that downregulation of hsa-miR-
144-3p in response to hyperglycemia may be the cause
of proliferation promotion [49], the exact mechanism
underlying hyperglycemia-induced downregulation of
hsa-miR-144-3p is unclear. A potentially reasonable
explanation is the endogenous competition mechanism
between lncRNAs and miRNAs. In fact, it was reported
that lncRNA MALAT1 spoused hsa-miR-144-3p and
promoted cell proliferation and migration [35, 36,
38]. As shown in our experimental results, there was
higher expression of MALAT1 and lower expression of
hsa-miR-144-3p in the placenta of GDM patients. In
terms of a single target interaction, as the target gene
of hsa-miR-144-3p, the expression of the IRS1 gene
should show an increasing trend in the GDM group.
Unfortunately, the regulatory network formed by the
endogenous competition mechanism of noncoding RNAs
is very complex, and it is often the result of multiple
targeted regulatory effects. In the results, the possible
explanation for the decreased expression of the IRS1
gene in the GDM group was that the negative regulatory
effect of MALAT1 on IRS1 may be stronger than the
regulatory effect of hsa-miR-144-3p on the IRS1 gene.
Considering the complexity of the regulatory network
constituted by the endogenous competition mechanism
of noncoding RNAs and the importance of the network to
the mechanisms of disease occurrence and development,
it would be desirable to predict and identify them to
elucidate the molecular mechanisms of diseases. To
date, there has been no directly supportive evidence
for the interactive relationships between MALAT1 and
hsa-miR-144-3p and IRS1 in GDM. Through DLRAPom,
their interactive relationships were identified for the
first time, suggesting that the targetable MALAT1/hsa-
miR-144-3p/IRS1 regulatory axis may be closely related
to the pathogenesis of GDM.

Inevitably, the DLRAPom pipeline also had some
limitations. First, since machine learning algorithms
were used in the DLRAPom pipeline, the larger the
sample size, the more advantageous it is to obtain
more reliable and stable prediction results, which is
also determined by the nature of the machine learning
algorithm. In addition, exploring the targetable lncRNA–
miRNA–mRNA axes is the main purpose of the DLRAPom
pipeline, but the current design of the DLRAPom
pipeline only included genomics, transcriptomics and
epigenomics datasets for integrative analyses. Certain
datasets do not fit the current DLRAPom pipeline, such as
proteomics data, metabolomics data and microbiomics
data. Considering that these omics data are also vital in
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a variety of biological processes of disease development
and mediating various mechanisms of the pathogenesis
of diseases, we will update the DLRAPom pipeline with
novel optimization algorithms to fit these omics data
and make the predictive process more flexible and the
results more reliable in the future. Additionally, taking
into account the heterogeneity between individuals and
the heterogeneity caused by the different characteristics
of the different developmental stages of the disease, the
use of multiomics data from the same sample would
allow more promising predictive results to be obtained.

In conclusion, by adding a novel machine learning
model on the basis of conventional analysis and com-
bining experimental verification, the hybrid DLRAPom
pipeline was developed to identify targetable disease-
related lncRNA–miRNA–mRNA regulatory axes. As
stated, DLRAPom is a flexible pipeline, which is an essen-
tial contribution to molecular pathogenesis research of
diseases, as it can effectively predict potential disease-
related ncRNA regulatory networks and provide more
promising candidates.

Key Points

• Our study is the first one to propose a new pipeline
of machine learning-guided integrative multiomics
analysis, which added a novel Optimized XGBoost model
on the basis of conventional WGCNA analysis and
combined experimental validation to precisely predict
targetable disease-related lncRNA–miRNA–mRNA
regulatory axes.

• A novel machine learning algorithm, Optimized XGBoost,
is developed to reduce the degree of overfitting in mul-
tiomics data, and to quantify the importance of each
gene for discovering the most essential protein-coding
biomarker.

• We identified the association of the MALAT1/hsa-miR-
144-3p/IRS1 axis with gestational diabetes mellitus by
the pipeline for the first time.

• Our work presents a new solution for the reliable pre-
diction of disease-related lncRNA–miRNA–mRNA regu-
latory networks, providing useful information for mech-
anistic studies of noncoding regulatory networks impli-
cated in complex diseases.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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