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Intra-individual methylomics detects the impact
of early-life adversity
Shan Jiang1, Noriko Kamei2 , Jessica L Bolton2 , Xinyi Ma1, Hal S Stern3, Tallie Z Baram2,4, Ali Mortazavi1

Genetic and environmental factors interact during sensitive
periods early in life to influence mental health and disease via
epigenetic processes such as DNA methylation. However, it is not
known if DNA methylation changes outside the brain provide an
“epigenetic signature” of early-life experiences. Here, we used a
novel intra-individual approach by testing DNA methylation from
buccal cells of individual rats before and immediately after ex-
posure to one week of typical or adverse life experience. We find
that whereas inter-individual changes in DNA methylation reflect
the effect of age, DNA methylation changes within paired DNA
samples from the same individual reflect the impact of diverse
neonatal experiences. Genes coding for critical cellular metabolic
enzymes, ion channels, and receptors were more methylated in
pups exposed to the adverse environment, predictive of their
repression. In contrast, the adverse experience was associated
with less methylation on genes involved in pathways of death and
inflammation as well as cell-fate–related transcription factors,
indicating their potential up-regulation. Thus, intra-individual
methylome signatures indicate large-scale transcription-driven
alterations of cellular fate, growth, and function.
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Introduction

Experience, particularly during sensitive periods early in life,
leaves indelible marks on an individual’s ability to cope with life’s
challenges, influencing resilience or vulnerability to emotional
disorders (1, 2, 3, 4, 5). There is evidence that the mechanisms by
which early-life experiences influence the function of neurons
and neuronal networks involve modification of the repertoire and
levels of gene expression via epigenetic processes (1, 2, 3, 4, 6, 7, 8,
9, 10, 11). Among epigenetic processes, changes in DNA methyl-
ation of individual genes and at the genomic scale have been
reported, and these generally correlate with gene expression (2, 6,
12, 13, 14). However, it is not known if DNAmethylation changes might
provide a useful “epigenetic signature” of early-life experiences in

an individual child. Such a readily accessible measure might serve
as a biomarker for vulnerability or resilience to mental illness.
Obviously, it is not possible to repeatedly sample DNA from brain
cells in humans to assess DNA methylation changes for predicting
and preventing disease. Therefore, current approaches use pe-
ripheral cells, including white blood cells (WBCs) or buccal swabs
(mixed epithelial/WBC), which are available repeatedly and non-
invasively. Here, we tested the feasibility of using peripheral DNA
samples to assess the impact of diverse neonatal experiences on an
individual by directly comparing two samples collected at different
time points from the same individual rat in groups exposed to
distinct early-life experiences with defined onset and duration. We
have previously established that these diverse experiences provoke
specific phenotypic outcomes later in life (4, 15, 16). Specifically,
we imposed “simulated poverty” by raising pups for a week (from
postnatal day P2 to P10) in cages with limited bedding and nesting
(LBN) materials. This manipulation disrupts the care provided by
the rat dam to her pups and results in profound yet transient stress
in the pups, devoid of major weight loss or physical changes. This
transient experience provokes significant and life-long deficits in
memory and generates increases in emotional measures of anhe-
donia and depression (15, 16, 17).

Here, we tested if adversity during a defined sensitive de-
velopmental period in rats leads to a detectable epigenomic sig-
nature in DNA from buccal swab cells. We obtained intra-individual
epigenomic signatures of early-life adversity using reduced rep-
resentation bisulfite sequencing (RRBS) (18) to identify changes in
DNA methylation profiles. Comparisons were made both between
two samples from an individual rat (P2 versus P10) and between
samples from rats subjected to the two neonatal experiences. We
found that assessing the overall methylation profile of samples
enabled detection of age and development effects (17, 19), dis-
tinguishing P2 samples from those obtained on P10 but did not
separate the two groups of pups based on their experience. In
contrast, the changes in DNA methylation in two samples obtained
from the same rat enabled clear differentiation of the control
versus the adverse experience, likely by obviating large inter-
individual variance. Thus, our findings establish the feasibility of
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identifying markers of adverse experiences that portend risk or
resilience to mental illness, with major potential translational
impact.

Results

Methylation level changes across individuals reflect postnatal
age rather than early-life experiences

We obtained a mix of epithelial and WBC DNA from individual rat
pups twice, on P2 and P10, using buccal swabs (see the Materials
and Methods section). We obtained buccal swabs rather than
peripheral WBCs for three reasons. First, the swab, lasting
seconds, is much less stressful than a painful needle prick to
obtain peripheral blood, and this stress might influence
methylation in itself. Second, this approach provides a more
direct comparison with human studies where ethical reasons
preclude needle pain, although buccal swabs are routinely
implemented (20, 21). Finally, several studies found that DNA
methylation profiles in buccal swab cells are more similar to
patterns from several brain regions than methylation profiles in
WBCs (21, 22, 23, 24). Following the initial samples collected on P2
from a group of naive pups, the rats were divided into two
groups: one was exposed to simulated poverty. The other was
reared in a typical environment for one week. Samples from
individuals in both groups were collected again on P10. We
examined for intra-individual epigenomic signatures of early-
life adversity and compared both P10 samples from groups with
two divergent neonatal experiences as well as the changes in
methylation levels between matched samples from the same
individual rat (P2 versus P10; Fig 1A).

DNA methylation status was assessed using RRBS, with libraries
sequenced to an average of 20 million mapped reads, and we
reliably detected an average of 482,000 CpGs in both samples of the
same individual (Fig S1; see the Materials and Methods section). We
performed differential methylation analysis between P2 and P10 for
each individual and identified 3,417 significantly differential
methylation regions (DMRs) after coalescing CpGs within 100 base
pairs that were shared in at least two individuals from each ex-
perience group (Fig 1B).

We analyzed the DNA methylation levels of these DMRs in P2 and
P10 for both the control and adversity-experiencing (LBN) groups
across individuals using k-means clustering and observed sub-
stantial changes in the DNA methylation level during the one-week
interval in both control and LBN (Fig 2A). The DNA methylation levels
of individual samples clearly distinguished rats at different ages (Fig
2A). We further performed principal component analysis (PCA) on the
percentage of DNA methylation of these DMRs and found that in-
dividual samples were separated by age using the first three prin-
cipal components (up to 62.1% variances explained), indicating a
substantial change in DNA methylation associated with age (Figs 2B,
S2, and S3). The separation by age still held when cohort effects were
considered (Figs S4, S5, and S6). These data demonstrate that de-
velopment and agemodify the buccal swabmethylome (19, 23, 25, 26).
PC2, which accounts for 20.7% of the variance, was the dominant
component distinguishing samples of different ages (Fig 2B). We
found that the PC2 DMRswithmost positive weights for predicting the
increased age (P10) had reduced methylation level in P10, whereas
DMRs with most negative PC2 weights had increased methylation
level in P10 (Figs S2 and S3). However, the PCA analyses of the P2 and
P10 methylome profiles did not separate the control group from the
adversity-experiencing group (Fig 2C). Thus, although the level of DNA

Figure 1. Experimental design and DMRs calling across individuals.
(A) Experimental design and analysis pipeline. Six control and five LBN individuals were collected for cohort 1; four control and four LBN individuals were collected
for cohort 2. (B) Histogram of the number of significant DMRs based on the number of individuals sharing the same experience. LBN: a paradigm of simulated poverty
and early-life adversity. P2, P10 = postnatal days 2, 10.
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methylation in buccal swabs reflects an epigenetic signature of age, it
provides little information about antecedent life experiences.

Intra-individual changes in methylation can distinguish early-life
experience

To probe the impact of the early-life adversity experienced by an
individual on DNA methylation patterns of the same individual, we
explored intra-individual fold changes in methylation (referred to
as “delta methylation,” defined as log2(P10/P2) of the methylation
level of P2 and P10 from the same individual) rather than the
absolute value of methylation levels for each pup by taking ad-
vantage of the two samples collected immediately before and after
a week of imposed adversity. We clustered and aligned these δ
methylation profiles in both early-life experiences. We then ex-
amined the intra-individual methylation changes in detail and
found that the patterns of changes in methylation within an in-
dividual were distinct depending on group assignment (Fig S7). PCA
on δ methylation changes of individual samples reveals that δ
methylation within an individual distinguished the control and LBN
groups (Figs 3A and S8). Specifically, the fourth principal component
(PC4), accounting for 4.2% of the variances, distinguishedmost LBNs
from controls (Figs 3A and S8). To examine the basis of the sep-
aration between LBNs and controls by PC4, we examined the rel-
ative contribution of individual DMRs to the overall difference in
PC4, and, guided by the slope of the weight distribution, selected a

cutoff threshold at ±2.5 × 10−2 to identify 193 DMRs with the most
positive weights and 225 DMRs with the most negative weights (Fig
3B and C). Importantly, the adverse and control experiences dif-
ferentially changed levels of methylation in an experience-specific
manner. Thus, within the top-predicting DMRs, the prediction of
belonging to the LBN group (afforded by the intra-individual
methylation changes in 193 most positive weight–associated DMRs)
involved relatively more methylation, compared with controls (Fig
3B). In contrast, intra-individual changes in the 225 most negative
weight–associated DMRs suggested generally less methylation
level in LBNs than the ones in control experience (Fig 3C). These
results indicate that intra-individual changes in methylation-level
profiles before and after a defined experience provide a novel
epigenetic signature that identifies the nature of the experience.

Downstream significance of differential methylation resulting
from age and experience

The paragraphs above demonstrate that profiles of absolute levels
of DNA methylation in mixed epithelial/WBC samples from buccal
swab can separate pups by age, whereas the nature of methylation
changes in the same individual (δ methylation) distinguishes dif-
ferent early-life experiences. Although the relations of levels of
methylation and of gene expression are not linear, we sought to
examine the genes involved in methylation changes related to age
and those related to experience.

Figure 2. Separation of individuals by age by profiles of methylation levels on significantly DMRs.
(A) Heat map of CpG methylation percentage on the 3,417 DMRs identified in Fig 1 and showing individual samples. The profile is presented as 10 clusters that are
identified using k-means clustering. Blue: low methylation percentage, orange: high methylation percentage. (B) PCA of methylation profiles of individual samples,
focusing on the 3,417 significant DMRs. Individual samples are labeled by age; blue: P2, red: P10. (C) PCA of individual samples focusing on the same DMRs. Individual
samples are labeled by experience; cyan: control, green: LBN.
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Principal component (PC2) distinguished rats by age (Fig 2B). We
focused only on analyzing the control group to obviate potential
effect of the adversity experience (Fig S3). We found that 249 DMRs
contributed to most of the overall differences in PC2, which pre-
dicted the age being P10 in controls. Of these, 135 DMRs were less
methylated, whereas 114 DMRs were more methylated in P10 (Fig 4A
and Table S1). We performed gene association analysis on these
top-predicting DMRs of P10 and found that our 135 most positive
weight PC2 DMRs were associated with 105 genes, whereas the 114
most negative weight PC2 DMRs were associated with 91 genes.
These age-related genes could be clustered into distinct functional
categories (Fig 4B). In general, genes with decreased methylation
level, predictive of augmented gene expression, were involved in
energy metabolism (Man1c1, B4galt4, Mcart1, Mrc2, Ampd3, and
Arhgef17), cytoskeleton and trafficking (Fry, Krt42, RGD130731, Itga6,
and Fbxo9), receptors and ion channels (Htr2a, Scarf2, Kcnip1, and
Traf3), and cellular responses to growth hormones (Fgfr3, Ltbp1, and
Net1). Gene ontology analysis identified gene clusters involved in
response to injury, regulation of growth, and ion transport (Fig S3).
By contrast, genes with increased methylation (i.e., expected to be
less expressed with increasing age) were enriched in transcription
(Otx1, Pax9, Dlx4, Irx4, Satb2, and Nr2f2) and kinases (Srcin1, Map3k6,
Atp8b4, and Jak3) (Fig 4B). These findings suggest that age-related
methylation changes are strongly involved in developmental pro-
cesses in the neonatal organism.

To characterize the genes influenced by the adverse LBN ex-
perience, we performed gene association analysis on the top-
predicting PC4 DMRs of LBN (Fig 3) and found that the 193 most
positive weight PC4 DMRs were associated with 135 genes, whereas
the 225 most negative weight PC4 DMRs were associated with 165
genes (Fig 4C and Table S2). The 193 most positive weight DMRs had
generally more methylation compared with controls, which sug-
gests reduced gene expression (relative repression) after the LBN

experience. The corresponding 135 genes coded for critical cellular
enzymes and interacting proteins essential for normal metabolism
and growth such as cellular cytoskeleton and trafficking (Sys1,
Map3k8, and Plekhg5) and cellular metabolism (Mrpl23 and Hs6st1).
Other genes within this group include Sipa1, Eif3k, Ttll5, Mark2,
Ralgapa2, Net1, H6pd, Tet3, Dapp1, Sulf2, Ppp1r21, Dusp7, and Nudt9.
In addition, these PC4 positive weight–associated genes coded for
receptors/ion channels and transmembrane-signaling proteins
(Chrna9, Grik5, Gpr39, Nrp2, Fzd5, Pcnx1, and Cd83), response to
inflammation (Pdcd6ip, Tnfrsf1b, Card10, Traf3, and Cxcr4), and
transcription factors responding to growth factors (Sim2, Meis1,
Lrrfip, and Rai1) (Fig 4D). The combined expected repression of
these genes would lead to disruption of typical growth, metabolism,
and maturation processes that are fundamental to the developing
organism. In contrast, the 165 genes with the most negative PC4
weight DMRs were generally less methylated in the adversity-
experiencing rats (i.e., predicted to be expressed at relatively
higher levels) and were strongly enriched in homeobox genes
involved in very early cell specification (Six2, Hoxb5, Satb2, Six1, Dlx1,
and Nkx2-3), as well as other transcription factors and corepressors
(Tfap2c, Skor1, Tbx3, Gata3, Tbx4, and Hr). In addition, the group
included genes involved in apoptosis and inflammation, including
Dapk1, Gdnf, Mog, and Tnfaip2 (Fig 4D). Increased expression of
these genes would indicate a reversion to earlier, more primitive,
cell state and evidence of inflammation and reprogramming,
perhaps to avoid death.

Discussion

We find here that comparing cohort-wide DNA samples obtained at
different developmental ages reveals the signature of age and
development on the peripheral methylome, as widely reported.

Figure 3. Intra-individual methylation analysis of significant DMRs separates individual rats by experience.
(A) PCA performed on the difference in methylation levels (δ methylation) between P10 and P2 (log2(P10/P2)) of an individual pup. We focus on the 3,417 identified
DMRs and label individuals by experience; cyan: control, green: LBN. PC4 provides the discrimination. (B) δ Methylation profile, average δ methylation, and absolute
methylation levels (in percent) of 193 DMRs with most positive weights in PC4. DMRs are ranked by weights from high to low. (C) δ Methylation profile, average δ
methylation, and absolute methylation levels of 225 DMRs with most negative weights in PC4. DMRs are ranked by weights from high to low.
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However, these inter-individual analyses do not distinguish the
divergent impacts of diverse experiences that take place during the
intervening developmental epoch. By contrast, paired samples
from the same individual before and after an adverse or typical
developmental experience enable clear distinction of each of these
experiences: we identify epigenetic “scars” and “kisses” that, at
least in the rodent, precede and predict later-life emotional
functions.

Although it is known that early-life experiences drive gene ex-
pression changes and thus further influence the maturation of
brain and other organs in mammalian individuals, our knowledge
about specific epigenetic regulations involved into these processes
are limited. Among epigenetic regulations, DNA methylation is
known to correlate with gene expression changes. However, it is not
known if DNA methylation changes might provide a useful “epi-
genetic signature” of early-life experiences in an individual child.
Therefore, this study addresses two critical questions to un-
derstand the nature of DNA methylation changes in early-life ex-
periences: (1) Does a short period of early postnatal life change
methylation patterns in individuals? (2) Can methylation changes
be used to distinguish individuals who had experienced early-life
adversity? Consistent with previous studies, we find that simple
comparison of methylation levels across a cohort cannot distin-
guish rats with different early-life experiences, although the sig-
nature of growth/age is apparent. We further develop a novel

approach and demonstrate for the first time that intra-individual
changes in methylation patterns can robustly distinguish in-
dividuals with adverse experiences from those reared in typical
conditions, thus potentially serving as a predictive signature in
individuals.

Although cognizant of the complex relation of DNA methylation
levels and gene expression, we speculate here on the downstream
consequences of the potential expression changes of gene families
and individual genes that differentiate adverse and typical de-
velopment. Among the genes differentially methylated in the
groups of rats studied here, many overlapped in the LBN and
control groups, suggesting that they are modified primarily by age
rather than experience. Importantly, our PCA analyses of intra-
individual methylation changes identified the PC4 genes that were
differentially methylated in the P10 LBN rats compared with the
same rats on P2, but that were not affected in P10 versus P2
controls. These genes might then provide information about the
processes associated with the early-life adversity experience that
might carry long-term consequences.

Indeed, analyses of the top contributing genes to the distinction
of having survived adversity in P10 rats was revealing: in LBN rats,
there was a striking enrichment of increased methylation (in-
dicative of reduced expression) in genes carrying out typical
processes of metabolism, trafficking, and growth. In contrast, there
was an expected overexpression (reduced methylation) of gene

Figure 4. Expected consequences of age- and experience-related DMRs.
(A) Analysis of the PC2 weights that separate the P2 and P10 samples by age. (B) Most positive (orange) and negative (purple) weights are enriched in genes associated
with functional categories listed in (B). (C) Analysis of PC4 weights that separate individual rats that had experienced early-life adversity (LBN) or typical rearing
conditions (controls). (D) Most positive (dark green) and negative (sky blue) weights are enriched in genes associated with functional categories listed in (D).

Early-life adversity differential methylation Jiang et al. https://doi.org/10.26508/lsa.201800204 vol 2 | no 2 | e201800204 5 of 8

https://doi.org/10.26508/lsa.201800204


families associated with inflammation, death, and reversion to
more primitive developmental states. These seem to be orches-
trated by differentially methylated transcription factors. How the
adversity experience provokes these changes is unclear and may
involve molecular signals, including hormones and nutrients that
modulate the complex enzymatic processes that govern DNA
methylation status (27, 28, 29).

In summary, we show here the influence of a short epoch of
adversity during a developmental sensitive period on intra-
individual rodent methylome. In future studies, it would be ex-
citing if this DNA methylation signature of early-life adversity is
applied in human neonates and infants.

Materials and Methods

Animals

Subjects were born to primiparous Sprague Dawley rat dams
(around P75) that were maintained in the quiet animal facility room
on a 12-h light/dark cycle with ad libitum access to laboratory chow
and water. Parturition was checked daily, and the day of birth was
considered postnatal day 0 (P0). Litter size was adjusted 12 per dam
on P1, if needed. On P2, pups from several litters were gathered, and
12 pups (6 males and 6 females) were assigned randomly to each
dam to obviate the potential confounding effects of genetic vari-
ables and litter size. Each pup was identified by a rapid (<2 min) foot
pad tattooing using animal tattoo ink (Ketchum).

Early-life adversity paradigm

The experimental paradigm involved rearing pups and dams in
“impoverished” cages for a week (P2–P9) as described elsewhere
(30, 31, 32). Briefly, routine rat cages were fitted with a plastic-coated
aluminum mesh platform sitting ~2.5 cm above the cage floor
(allowing collection of droppings). Bedding was reduced to only
cover cage floor sparsely, and one-half of a single paper towel was
provided for nesting material, creating a LBN cage. Control dams
and their litters resided in standard bedded cages, containing 0.33
cubic feet of cob bedding, which was also used for nest building. For
each experiment, pups form several litters were mixed and then
assigned randomly to a control or an LBN dam. This procedure
minimizes the potential effects of pup genetic background on
outcomes. Control and experimental cages were undisturbed
during P2–P9 and housed in a quiet room with constant temper-
ature and a strong laminar airflow, preventing ammonia accu-
mulation. For technical reasons, the study was conducted in two
“batches” (cohorts). These cohorts differed solely in the dates at
which they were conducted.

Collection of buccal swab from each pup

The first buccal swab was collected from both cheeks of each pup
before randomization on P2, using a HydraFlock swab (Puritan
diagnostics, LLC). After an hour’s rest with their mother, a second
buccal swab was collected, enabling sufficient DNA from each pup.

Pups were then randomized to controls or LBN cages. During P3–P9,
behaviors of dams in both control and adversity/LBN cages was
observed daily, to ascertain the generation of fragmented un-
predictable caring patterns by the adverse environment (33, 34). On
P10, buccal swabs were collected as described for P2, and then all
litters were transferred to normal bedded cages.

Isolation and quantification of DNA for making RRBS libraries
from rat buccal swab

The buccal swab was placed into DNA shields (Zymo Research)
immediately after swabbing. DNA was prepared from the DNA
shields solution using the Quick-gDNA MiniPrep kit (Zymo Re-
search) following the manufacturer’s protocol. The quantity of
double-stranded DNA was analyzed using Qubit, and RRBS libraries
were prepared from 40 ng of genomic DNA digested with Msp I and
then extracted with DNA Clean & Concentrator-5 kit (Zymo Re-
search). Fragments were ligated to pre-annealed adapters con-
taining 59-methyl-cytosine instead of cytosine according to
Illumina’s specified guidelines (www.illumina.com). Adaptor-ligated
fragments were then bisulfite-treated using the EZ DNA Methylation-
Lightning kit (Zymo Research). Preparative-scale PCR was performed,
and the resulting products were purified with DNA Clean & Con-
centrator for sequencing. Amplified RRBS libraries were quantified
and qualified by Qubit, Bioanalyzer (Agilent), and Kapa Library
Quant (Kapa systems) and then sequenced on the Illumina NextSeq
500 platform.

RRBS data processing and detection of DMRs

Adaptor and low-quality reads were trimmed and filtered using
Trim Galore! 0.4.3 (35) with the parameter “--fastqc –stringency 5
–rrbs –length 30 –non_directional.” Reads were aligned to the rat
genome (RGSC 6.0/rn6) by using Bismark 0.16.3 (36) with “--
-non_directional” mode. CpG sites were called by “bismark_
methylation_extractor” function from Bismark. Single CpG sites
with more than 10-reads coverage were kept for DMR calling. Dif-
ferential methylation sites (DMSs) were first called using Methy kit
(R 3.3.2) (37) between P2 and P10 from the same individual with a
false discovery rate lower than 0.05. DMSs were shared in at least
two individuals in either control or LBN groups, and DMSs falling
within 100 base pairs were then merged into DMRs.

Calculation of DNA methylation level/percentage
and δ methylation

Themethylation percentage/level was calculated as the ratio of the
methylated read counts over the sum of both methylated and
unmethylated read counts for a single CpG site or across CpGs for a
region. The δ methylation was calculated using the log2 trans-
formation of the ratio of methylation level in the P10 sample and
the methylation level in the P2 sample, defined as log2(P10/P2).
Increased methylation in P10 is shown as a positive value, whereas
decreased methylation in P10 is shown as a negative value.
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PCA and k-means clustering

Before PCA analysis, DNA methylation level of DMRs is batch-
corrected by using removeBatchEffect function from limma (R
package) with setting cohorts as batches. PCA analysis was per-
formed on these batch-corrected DMRs by using IncrementalPCA
function from scikit-learn (38) using python 2 for both Figs 2 and 3.
The value of k was set to 10 for the k-means clustering based on a
preliminary hierarchical clustering analysis. A DNA methylation
heat map was generated with heat map.2 function in R 3.5.0 and a δ
methylation heat map was generated using Java TreeView (39).

Gene analysis

Genes associated with DMRs were identified using Homer 4.7 (40).
For subsequent analyses, genes were kept if (1) CpGs were located
within 20 kb of TSS in intergenic, promoter-TSS, and TTS positions;
(2) CpGs were located within gene exons or introns. Gene ontology
analysis was performed using Metascape (41) using the hyper-
geometric test with corrected P-value lower than 0.05.

Data access

Reads and processed data from RRBS assays have been submitted
to the Gene Expression Omnibus data repository (http://www.ncbi.
nlm.nih.gov/geo/) under accession number GSE119640.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800204.
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