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1  | INTRODUC TION

Viruses are the most abundant biological entities on Earth and exist 
in all habitats of the world (Paez‐Espino et al., 2016). They can infect 
all kinds of organisms in a range from the bacteria to animals, in‐
cluding humans. Humans are constantly exposed to a vast diversity 
of viruses, and over two‐thirds of human pathogens belong to vi‐
ruses (Woolhouse & Gaunt, 2007). The viruses have caused colossal 
mortality and morbidity to the human society in history, such as the 
devastating smallpox and Spanish flu outbreaks (Johnson & Mueller, 
2002; Riedel, 2005). Despite the continuous progress in the preven‐
tion and control of viral disease, recent serial outbreaks caused by 

the Middle East respiratory syndrome coronaviruses (Breban, Riou, 
& Fontanet, 2013), avian influenza H7N9 viruses (Gao et al., 2013), 
Ebola viruses (Maganga et al., 2014) and Zika viruses (Mlakar et al., 
2016) indicate that viruses still pose a severe threat to global public 
health.

To this date, the virome with the potential for human infection 
is still far from complete. Generally, a new pathogen would not be 
identified until it caused epidemics or pandemics. Many viruses 
that may have been introduced into human populations remain 
undiscovered (Rosenberg, 2015). Traditional diagnostic methods 
such as polymerase chain reaction, immunological assays and 
pan‐viral microarrays are inadequate for the quick identification 
of novel human‐infecting viruses (Corman et al., 2012; Wootton et 
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Abstract
Viruses have caused much mortality and morbidity to humans and pose a serious 
threat to global public health. The virome with the potential of human infection is still 
far from complete. Novel viruses have been discovered at an unprecedented pace as 
the rapid development of viral metagenomics. However, there is still a lack of meth‐
odology for rapidly identifying novel viruses with the potential of human infection. 
This study built several machine learning models to discriminate human‐infecting 
viruses from other viruses based on the frequency of k‐mers in the viral genomic 
sequences. The k‐nearest neighbor (KNN) model can predict the human‐infecting 
viruses with an accuracy of over 90%. The performance of this KNN model built on 
the short contigs (≥1 kb) is comparable to those built on the viral genomes. We used 
a reported human blood virome to further validate this KNN model with an accuracy 
of over 80% based on very short raw reads (150 bp). Our work demonstrates a con‐
ceptual and generic protocol for the discovery of novel human‐infecting viruses in 
viral metagenomics studies.
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al., 2011). The rapid development of viral metagenomic sequencing 
in recent years provides powerful high‐throughput and culture‐in‐
dependent methods to identify new viruses, which lead to the 
accumulation of new viruses at an unprecedented pace (Alavandi 
& Poornima, 2012). The Global Virome Project (GVP), which was 
proposed and initiated at the beginning of 2018, estimated that 
there are over 1.67 million yet‐to‐be‐discovered viruses in animal 
reservoirs, while 631,000–827,000 of these unknown viruses can 
infect humans (Carroll et al., 2018). Therefore, the development 
of rapid methods for identifying the potential human‐infecting vi‐
ruses is in great need.

Two kinds of methods, the sequence alignment‐based and 
alignment‐free methods, have been developed to predict the 
viral host. For example, the methods based on k‐mers extracted 
from viral genomes (Ahlgren, Ren, Lu, Fuhrman, & Sun, 2016; Li & 
Sun, 2018) or sequence blast have been developed to predict the 
hosts of the phage (Bolotin, Quinquis, Sorokin, & Ehrlich, 2005; 
Edwards, McNair, Faust, Raes, & Dutilh, 2015). Some studies 
also attempted to identify the human virus by using these meth‐
ods. Xu, Tan, Li, Jiang, and Peng (2017) developed SVM models 
to predict the hosts of influenza viruses based on word vectors. 
However, all of these studies focused on one or a few specific 
types of viruses, such as the coronavirus and influenza virus. 
These methods are not suitable for the identification of novel 
human‐infecting viruses from the viral metagenomic sequences. 
Herein, we employed machine learning models to establish a ge‐
neric protocol for the rapid identification of potential human‐in‐
fecting viruses.

2  | MATERIAL S AND METHODS

2.1 | Virus‐host interactions and viral genomes

The virus‐host relationship and the viral genomic sequences were 
obtained from the database of Virus‐Host DB (available at https​://
www.genome.jp/virus​hostd​b/) on 15 July 2018 (Mihara et al., 2016). 
The viroid, satellites and the viruses with genomic sequence <1 kb 
were removed. The resulting dataset of 9,428 viruses includes 1,236 
viruses infecting humans (defined as human‐infecting viruses) and 
8,192 viruses infecting other species.

2.2 | Machine learning models

The machine learning models of k‐nearest neighbor (KNN) (k = 1), 
support vector machine (SVM) (using the linear kernel function), 
Gaussian Naive Bayes classifier (GNBC), random forest (RF) and 
logistic regression (LR) were built with the default parameters 
using the package “scikit‐learn” (version 0.20.2) (Pedregosa et al., 
2011) in Python (version 3.6.2). Because the number of human‐in‐
fecting viruses was much smaller than that of other viruses, the 
“BalanceBaggingClassifier” (Barandiaran, 1998; Breiman, 1996) 
and “BalanceRandomForest” (Chen, Liaw, & Breiman, 2004) in the 
package of “imbalanced‐learn” (version 0.4.3) in Python were used 

to deal with the imbalance of the number of viruses in the model‐
ling with the parameter of “n_estimators” set to be 10.

Ten‐fold cross‐validations were used to evaluate the predic‐
tive performances of the machine learning models through the 
“StratifiedKFold” in the package “scikit‐learn” in Python. The pre‐
dictive performances of the machine learning models were evalu‐
ated by the area under the receiver operating characteristics (ROC) 
curve (AUC), the accuracy, recall rate, specificity and predictive 
precision.

2.3 | Validation of the KNN model by a reported 
human blood DNA virome study

A total of 14,242,328 viral reads and 396 viral contigs were obtained 
from Moustafa's study (Moustafa et al., 2017). Each read or contig 
was queried against the viral sequences from databases of NCBI 
RefSeq and Virus‐Host DB by blastn and blastx, and the viruses with 
the best blast hit from the human‐infecting viruses were considered 
as human‐infecting viruses.

2.4 | Statistical analysis

All the statistical analysis was conducted in R (version 3.5.0).

2.5 | Code and data availability

All the data and codes used in this study are publicly available at 
https​://github.com/Fzhan​g1992/​human-infec​ting_virus_finder

3  | RESULTS

3.1 | Taxonomy distribution of viruses

A total of 9,428 viruses were used in the study. Among them, 
1,236 viruses have been reported to infect humans (human‐infect‐
ing viruses), including 1,043 viruses exclusively infecting humans 
and 193 viruses infecting humans and other species. The human‐
infecting viruses covered all groups of viruses in the Baltimore 
classification (Figure 1a). Over 60% of the human‐infecting viruses 
were single‐stranded RNA (ssRNA) viruses (Figure S1), which also 
had the highest proportion of human‐infecting viruses (28%). 
The second largest component (25%) of the human‐infecting vi‐
ruses was the double‐stranded DNA (dsDNA) virus (Figure S1). 
On the level of family, the human‐infecting viruses were from 30 
viral families. Among them, the families of Caliciviridae (ssRNA), 
Picornaviridae (ssRNA) and Papillomaviridae (dsDNA) were the 
three most abundant ones, which accounted for nearly 60% of the 
human‐infecting viruses (Figure 1b).

Besides the human‐infecting viruses, there were 8,192 viruses 
infecting species other than human, including the archaea, bac‐
teria, fungi, plant, animal and so on. They covered all groups of 
viruses in the Baltimore classification (Figure 1a) and came from 
91 viral families.

https://www.genome.jp/virushostdb/
https://www.genome.jp/virushostdb/
https://github.com/Fzhang1992/human-infecting_virus_finder
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3.2 | Machine learning models for identifying the 
human‐infecting viruses based on k‐mer frequencies 
in the genome

Five machine learning models were built based on k‐mer frequen‐
cies in the viral genome to discriminate the human‐infecting vi‐
ruses from other viruses. These models include KNN, RF, GNBC, 
SVM and LR. K‐mers containing one to six nucleotides were used 
in the models to investigate the effect of the k‐mer length on the 
model performance (Table S1). Figure 2 shows that the AUCs of 
GNBC, SVM and LR models increased as the increase of the k‐mer 
length from one to six, while the AUCs of KNN and RF peaked at 
k‐mer length of four and three, respectively. The AUCs of KNN 
and RF were visibly higher than those of other models (GNBC, 
SVM and LR) at all k‐mer length, suggesting that the KNN and RF 
outperformed other models in discriminating the human‐infecting 
viruses from other viruses. The KNN model achieved the best per‐
formance when the k‐mer was four nucleotides. The model had 
the optimal overall performance with an accuracy of 0.90 and an 
AUC of 0.92 and a strong ability to capture the human‐infecting 
virus with a recall rate of 0.94 (Table 1).

3.3 | Identification of the human‐infecting viruses 
based on contigs of various lengths

In the metagenomics studies, contigs of varying lengths in a range 
from several hundred to several thousand nucleotides were as‐
sembled. Rapid determination of the human‐infecting viruses from 
metagenomic sequences is essential for early warnings of newly 
emerging viruses. Viral genomes were split into non‐overlap‐
ping contigs of 500, 1,000, 3,000, 5,000 and 10,000 nucleotides 
to mimic the metagenomic sequences. The numbers of contigs of 
various lengths in the human‐infecting viruses and other viruses are 
listed in Table S2.

Since the KNN model performed best in discriminating the 
human‐infecting viruses from other viruses based on viral genomes, 
it was used to identify the human‐infecting virus based on contigs. 
The KNN models with k‐mers of different size were built on the con‐
tigs of given lengths (Table S3). As shown in Figure 3, for all contigs 
of varying lengths, the AUCs of the KNN models increased as the in‐
crease of k‐mer sizes from one to four. The models achieved the best 
performance when k‐mer length was four nucleotides. The longer 
the contig was, the better the models performed in identifying the 
human‐infecting viruses (Figure 3 and Table 2). The model built on 
the contig of 10,000 nucleotides had an AUC of 0.96 and a recall rate 
of 0.99, suggesting the model could capture most human‐infecting 
viruses. While on the contig of 500 nucleotides, the model only had 
an AUC of 0.86 and a recall rate of 0.88. Typically, for the models 
built on the contigs of 1,000 nucleotides or longer, they performed 
similarly to those built on the viral genome.

F I G U R E  1   The taxonomy distribution 
of viruses used in this study. (a) The 
taxonomy distribution of the human‐
infecting viruses and other viruses in the 
Baltimore classification. (b) The taxonomy 
distribution of the human‐infecting 
viruses based on viral families [Colour 
figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  2  The AUCs of machine learning models with k‐mer 
lengths in a range from one to six [Colour figure can be viewed at 
wileyonlinelibrary.com]

TA B L E  1   The optimal performance of machine learning models

  KNN RF GNBC SVM LR

K‐mer length 4 3 6 6 6

Accuracy 0.90 0.91 0.84 0.84 0.85

Recall rate 0.94 0.91 0.91 0.88 0.87

Specificity 0.90 0.91 0.83 0.83 0.85

Precision 0.58 0.59 0.45 0.45 0.46

AUC 0.92 0.91 0.87 0.86 0.86

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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3.4 | Validation of the KNN model by a reported 
human blood DNA virome study

The KNN model with k‐mers of four nucleotides was further validated 
through a human blood DNA virome study reported by Moustafa et al. 
(2017). In this study, 19 human viruses were identified from whole‐ge‐
nome sequencing of blood from 8,240 individuals without any infec‐
tious disease. A total of 14,242,328 viral reads of 150 bp, including 
14,010,527 reads from the human‐infecting viruses and 231,801 
reads from other viruses, were obtained in the study. The KNN model 
correctly predicted 81% of the reads from the human‐infecting viruses 
(Table 3). Besides the raw viral reads, a total of 396 viral contigs vary‐
ing from less than 1,000 bp to more than 10,000 bp were assembled 

in the study, including 309 human‐infecting viral contigs and 87 other 
viral contigs. The KNN model correctly predicted 87% of the human‐
infecting viral contigs. Also, the proportion of correct predictions of 
the human‐infecting viral contigs increased from 0.84 to 1 as the con‐
tig lengths increased from several hundred nucleotides to more than 
10,000 nucleotides.

4  | DISCUSSION

Identification of human‐infecting viruses is critical for early warn‐
ings of newly emerging viruses. The rapid accumulation of viral 
metagenomic sequences presents us with unique opportunities 
to identify more and more novel viruses. Unfortunately, there 
is currently an unmet challenge to rapidly identify the potential 
human‐infecting viruses. As far as we know, this study for the 
first time attempted to discriminate the human‐infecting viruses 
from non‐human‐infecting viruses in the perspective of virome. 
The KNN models predicted the human‐infecting viruses with high 
accuracy and sensitivity. Even if the KNN models were built on 
the contigs as short as 1 kb, they performed comparably to those 
built on the viral genomes in the aspect of the AUC and the recall 
rate (Tables 1 and 2). The KNN model was further validated by 
a reported human blood virome study. It correctly predicted the 
human‐infecting viruses with an accuracy of over 80% based on 
the raw reads as short as 150 bp (Table 3). The performance of our 
KNN model on the blood virome study suggested that the model 
can be used in metagenomics for identifying the potential human‐
infecting viruses.

The human‐infecting viruses used here have different ability to 
infect humans. Some of them are human‐specific that have been 

F I G U R E  3  The AUCs of the KNN models with k‐mer lengths 
from one to five built on contigs of various lengths [Colour figure 
can be viewed at wileyonlinelibrary.com]

  500 bp 1,000 bp 3,000 bp 5,000 bp 10,000 bp

Accuracy 0.85 0.87 0.91 0.92 0.92

Recall rate 0.88 0.93 0.96 0.98 0.99

Specificity 0.85 0.86 0.90 0.92 0.92

Precision 0.25 0.28 0.35 0.38 0.32

AUC 0.86 0.90 0.93 0.95 0.96

TA B L E  2   The optimal performance 
of the KNN models with k‐mers of four 
nucleotides built on contigs of various 
lengths

TA B L E  3  Predictive performance of the KNN model in identifying the human‐infecting viruses from a reported human blood DNA 
virome study. a Raw read in the study. 1 kb, 1,000 bp

Length of read/contig 
(L)

Number of reads/contigs Proportion of correct predictions
Overall predictive 
accuracyHuman‐infecting Other Human‐infecting Other

L = 150 bpa 14,010,527 231,801 0.81 0.84 0.82

L < 1 kb 222 75 0.84 0.15 0.67

1 kb ≤ L < 3 kb 61 9 0.93 0 0.81

3 kb ≤ L < 5 kb 13 3 0.92 0 0.75

5 kb ≤ L < 10 kb 10 0 1 0 1

L ≥ 10 kb 3 0 1 0 1

www.wileyonlinelibrary.com
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circulating in human populations for a long time, such as the human 
papillomavirus (Baseman & Koutsky, 2005) and yellow fever virus 
(Akondy et al., 2009); while some are zoonotic viruses that infect 
humans rarely, such as the avian influenza virus and coronavirus 
(García‐Sastre & Schmolke, 2014; Shipley et al., 2019). As shown in 
numerous studies, the zoonotic viruses are very likely to cause epi‐
demics or even pandemics after adaptive evolution. The most recent 
example is Zika viruses. It rarely caused wide‐spread epidemics in 
humans in the 20th century, even in highly enzootic areas, (Weaver 
et al., 2016). However, a few mutations in the viral genome facili‐
tated its rapid spread in human populations (Campos, Bandeira, & 
Sardi, 2015; Duffy et al., 2009; Liu et al., 2017). The virus has caused 
epidemics in 84 countries and has infected more than one million 
people since 2014 (European CDC, 2016; de Oliveira Garcia, 2019). 
Taken together, it is difficult to distinguish the viruses with the 
varying ability of infecting humans. Therefore, the viruses with the 
various ability of infecting humans were considered equally in the 
modelling.

There are some limitations to this study. Firstly, the human‐in‐
fecting viruses used here is far from complete when compared 
to those estimated by the GVP. However, the viruses used in this 
study covered 30 families in all groups of the Baltimore classifica‐
tion, which were similar to those estimated by the GVP (Carroll et 
al., 2018). Besides, the machine learning models had excellent per‐
formances in discriminating the human‐infecting viruses from other 
viruses. They could help much in discovering novel human‐infecting 
viruses. Secondly, the number of human‐infecting viruses was much 
less than that of other viruses. Such a large imbalance may hinder 
accurate modelling. Here, the under‐sampling method was used to 
deal with the imbalance problem so that the KNN model achieved 
excellent overall performances and high sensitivity in identifying the 
human‐infecting viruses. Thirdly, the model was not robust to the 
contamination of human sequences in the viral genomes. It would 
be better to remove such contamination from the viral sequences 
before using the model.

In conclusion, this study built novel computational models to 
predict the human‐infecting viruses in the perspective of virome. 
The high accuracy and sensitivity of the KNN model built on the 
viral contigs of various lengths suggest that the model can be used 
to identify the human‐infecting viruses from the viral metagenomic 
sequences. This work provides an effective strategy for the identi‐
fication of novel human‐infecting viruses in metagenomics studies.
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