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1  | INTRODUC TION

Viruses are the most abundant biological entities on Earth and exist 
in all habitats of the world (Paez‐Espino et al., 2016). They can infect 
all kinds of organisms in a range from the bacteria to animals, in‐
cluding humans. Humans are constantly exposed to a vast diversity 
of viruses, and over two‐thirds of human pathogens belong to vi‐
ruses (Woolhouse & Gaunt, 2007). The viruses have caused colossal 
mortality and morbidity to the human society in history, such as the 
devastating smallpox and Spanish flu outbreaks (Johnson & Mueller, 
2002; Riedel, 2005). Despite the continuous progress in the preven‐
tion and control of viral disease, recent serial outbreaks caused by 

the Middle East respiratory syndrome coronaviruses (Breban, Riou, 
& Fontanet, 2013), avian influenza H7N9 viruses (Gao et al., 2013), 
Ebola viruses (Maganga et al., 2014) and Zika viruses (Mlakar et al., 
2016) indicate that viruses still pose a severe threat to global public 
health.

To this date, the virome with the potential for human infection 
is still far from complete. Generally, a new pathogen would not be 
identified until it caused epidemics or pandemics. Many viruses 
that may have been introduced into human populations remain 
undiscovered (Rosenberg, 2015). Traditional diagnostic methods 
such as polymerase chain reaction, immunological assays and 
pan‐viral microarrays are inadequate for the quick identification 
of novel human‐infecting viruses (Corman et al., 2012; Wootton et 
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Abstract
Viruses have caused much mortality and morbidity to humans and pose a serious 
threat to global public health. The virome with the potential of human infection is still 
far from complete. Novel viruses have been discovered at an unprecedented pace as 
the rapid development of viral metagenomics. However, there is still a lack of meth‐
odology for rapidly identifying novel viruses with the potential of human infection. 
This study built several machine learning models to discriminate human‐infecting 
viruses from other viruses based on the frequency of k‐mers in the viral genomic 
sequences. The k‐nearest neighbor (KNN) model can predict the human‐infecting 
viruses with an accuracy of over 90%. The performance of this KNN model built on 
the	short	contigs	(≥1	kb)	is	comparable	to	those	built	on	the	viral	genomes.	We	used	
a reported human blood virome to further validate this KNN model with an accuracy 
of	over	80%	based	on	very	short	raw	reads	(150	bp).	Our	work	demonstrates	a	con‐
ceptual and generic protocol for the discovery of novel human‐infecting viruses in 
viral metagenomics studies.
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al., 2011). The rapid development of viral metagenomic sequencing 
in recent years provides powerful high‐throughput and culture‐in‐
dependent methods to identify new viruses, which lead to the 
accumulation	of	new	viruses	at	an	unprecedented	pace	(Alavandi	
& Poornima, 2012). The Global Virome Project (GVP), which was 
proposed	 and	 initiated	 at	 the	beginning	of	 2018,	 estimated	 that	
there are over 1.67 million yet‐to‐be‐discovered viruses in animal 
reservoirs,	while	631,000–827,000	of	these	unknown	viruses	can	
infect	humans	 (Carroll	 et	 al.,	 2018).	 Therefore,	 the	development	
of rapid methods for identifying the potential human‐infecting vi‐
ruses is in great need.

Two kinds of methods, the sequence alignment‐based and 
alignment‐free methods, have been developed to predict the 
viral host. For example, the methods based on k‐mers extracted 
from	viral	genomes	(Ahlgren,	Ren,	Lu,	Fuhrman,	&	Sun,	2016;	Li	&	
Sun,	2018)	or	sequence	blast	have	been	developed	to	predict	the	
hosts of the phage (Bolotin, Quinquis, Sorokin, & Ehrlich, 2005; 
Edwards, McNair, Faust, Raes, & Dutilh, 2015). Some studies 
also attempted to identify the human virus by using these meth‐
ods. Xu, Tan, Li, Jiang, and Peng (2017) developed SVM models 
to predict the hosts of influenza viruses based on word vectors. 
However, all of these studies focused on one or a few specific 
types of viruses, such as the coronavirus and influenza virus. 
These methods are not suitable for the identification of novel 
human‐infecting viruses from the viral metagenomic sequences. 
Herein, we employed machine learning models to establish a ge‐
neric protocol for the rapid identification of potential human‐in‐
fecting viruses.

2  | MATERIAL S AND METHODS

2.1 | Virus‐host interactions and viral genomes

The virus‐host relationship and the viral genomic sequences were 
obtained from the database of Virus‐Host DB (available at https ://
www.genome.jp/virus	hostd	b/)	on	15	July	2018	(Mihara	et	al.,	2016).	
The viroid, satellites and the viruses with genomic sequence <1 kb 
were	removed.	The	resulting	dataset	of	9,428	viruses	includes	1,236	
viruses infecting humans (defined as human‐infecting viruses) and 
8,192	viruses	infecting	other	species.

2.2 | Machine learning models

The machine learning models of k‐nearest neighbor (KNN) (k = 1), 
support vector machine (SVM) (using the linear kernel function), 
Gaussian Naive Bayes classifier (GNBC), random forest (RF) and 
logistic regression (LR) were built with the default parameters 
using the package “scikit‐learn” (version 0.20.2) (Pedregosa et al., 
2011) in Python (version 3.6.2). Because the number of human‐in‐
fecting viruses was much smaller than that of other viruses, the 
“BalanceBaggingClassifier”	 (Barandiaran,	 1998;	 Breiman,	 1996)	
and “BalanceRandomForest” (Chen, Liaw, & Breiman, 2004) in the 
package of “imbalanced‐learn” (version 0.4.3) in Python were used 

to deal with the imbalance of the number of viruses in the model‐
ling with the parameter of “n_estimators” set to be 10.

Ten‐fold cross‐validations were used to evaluate the predic‐
tive performances of the machine learning models through the 
“StratifiedKFold” in the package “scikit‐learn” in Python. The pre‐
dictive performances of the machine learning models were evalu‐
ated by the area under the receiver operating characteristics (ROC) 
curve	 (AUC),	 the	 accuracy,	 recall	 rate,	 specificity	 and	 predictive	
precision.

2.3 | Validation of the KNN model by a reported 
human blood DNA virome study

A	total	of	14,242,328	viral	reads	and	396	viral	contigs	were	obtained	
from Moustafa's study (Moustafa et al., 2017). Each read or contig 
was queried against the viral sequences from databases of NCBI 
RefSeq and Virus‐Host DB by blastn and blastx, and the viruses with 
the best blast hit from the human‐infecting viruses were considered 
as human‐infecting viruses.

2.4 | Statistical analysis

All	the	statistical	analysis	was	conducted	in	R	(version	3.5.0).

2.5 | Code and data availability

All	 the	 data	 and	 codes	 used	 in	 this	 study	 are	 publicly	 available	 at	
https ://github.com/Fzhan g1992/ human‐infec ting_virus_finder

3  | RESULTS

3.1 | Taxonomy distribution of viruses

A	 total	 of	 9,428	 viruses	 were	 used	 in	 the	 study.	 Among	 them,	
1,236 viruses have been reported to infect humans (human‐infect‐
ing viruses), including 1,043 viruses exclusively infecting humans 
and 193 viruses infecting humans and other species. The human‐
infecting viruses covered all groups of viruses in the Baltimore 
classification (Figure 1a). Over 60% of the human‐infecting viruses 
were	single-stranded	RNA	(ssRNA)	viruses	(Figure	S1),	which	also	
had	 the	 highest	 proportion	 of	 human-infecting	 viruses	 (28%).	
The second largest component (25%) of the human‐infecting vi‐
ruses	 was	 the	 double-stranded	 DNA	 (dsDNA)	 virus	 (Figure	 S1).	
On the level of family, the human‐infecting viruses were from 30 
viral	 families.	Among	 them,	 the	 families	of	Caliciviridae	 (ssRNA),	
Picornaviridae	 (ssRNA)	 and	 Papillomaviridae	 (dsDNA)	 were	 the	
three most abundant ones, which accounted for nearly 60% of the 
human‐infecting viruses (Figure 1b).

Besides	the	human-infecting	viruses,	there	were	8,192	viruses	
infecting species other than human, including the archaea, bac‐
teria, fungi, plant, animal and so on. They covered all groups of 
viruses in the Baltimore classification (Figure 1a) and came from 
91 viral families.

https://www.genome.jp/virushostdb/
https://www.genome.jp/virushostdb/
https://github.com/Fzhang1992/human-infecting_virus_finder
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3.2 | Machine learning models for identifying the 
human‐infecting viruses based on k‐mer frequencies 
in the genome

Five machine learning models were built based on k‐mer frequen‐
cies in the viral genome to discriminate the human‐infecting vi‐
ruses from other viruses. These models include KNN, RF, GNBC, 
SVM and LR. K‐mers containing one to six nucleotides were used 
in the models to investigate the effect of the k‐mer length on the 
model	performance	 (Table	S1).	Figure	2	 shows	 that	 the	AUCs	of	
GNBC, SVM and LR models increased as the increase of the k‐mer 
length	from	one	to	six,	while	the	AUCs	of	KNN	and	RF	peaked	at	
k-mer	 length	 of	 four	 and	 three,	 respectively.	 The	AUCs	 of	 KNN	
and RF were visibly higher than those of other models (GNBC, 
SVM and LR) at all k‐mer length, suggesting that the KNN and RF 
outperformed other models in discriminating the human‐infecting 
viruses from other viruses. The KNN model achieved the best per‐
formance when the k‐mer was four nucleotides. The model had 
the optimal overall performance with an accuracy of 0.90 and an 
AUC	of	0.92	and	a	strong	ability	 to	capture	the	human-infecting	
virus with a recall rate of 0.94 (Table 1).

3.3 | Identification of the human‐infecting viruses 
based on contigs of various lengths

In the metagenomics studies, contigs of varying lengths in a range 
from several hundred to several thousand nucleotides were as‐
sembled. Rapid determination of the human‐infecting viruses from 
metagenomic sequences is essential for early warnings of newly 
emerging viruses. Viral genomes were split into non‐overlap‐
ping contigs of 500, 1,000, 3,000, 5,000 and 10,000 nucleotides 
to mimic the metagenomic sequences. The numbers of contigs of 
various lengths in the human‐infecting viruses and other viruses are 
listed in Table S2.

Since the KNN model performed best in discriminating the 
human‐infecting viruses from other viruses based on viral genomes, 
it was used to identify the human‐infecting virus based on contigs. 
The KNN models with k‐mers of different size were built on the con‐
tigs	of	given	lengths	(Table	S3).	As	shown	in	Figure	3,	for	all	contigs	
of	varying	lengths,	the	AUCs	of	the	KNN	models	increased	as	the	in‐
crease of k‐mer sizes from one to four. The models achieved the best 
performance when k‐mer length was four nucleotides. The longer 
the contig was, the better the models performed in identifying the 
human‐infecting viruses (Figure 3 and Table 2). The model built on 
the	contig	of	10,000	nucleotides	had	an	AUC	of	0.96	and	a	recall	rate	
of 0.99, suggesting the model could capture most human‐infecting 
viruses. While on the contig of 500 nucleotides, the model only had 
an	AUC	of	0.86	and	a	recall	 rate	of	0.88.	Typically,	 for	the	models	
built on the contigs of 1,000 nucleotides or longer, they performed 
similarly to those built on the viral genome.

F I G U R E  1   The taxonomy distribution 
of viruses used in this study. (a) The 
taxonomy distribution of the human‐
infecting viruses and other viruses in the 
Baltimore classification. (b) The taxonomy 
distribution of the human‐infecting 
viruses based on viral families [Colour 
figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  2  The	AUCs	of	machine	learning	models	with	k‐mer 
lengths in a range from one to six [Colour figure can be viewed at 
wileyonlinelibrary.com]

TA B L E  1   The optimal performance of machine learning models

 KNN RF GNBC SVM LR

K‐mer length 4 3 6 6 6

Accuracy 0.90 0.91 0.84 0.84 0.85

Recall rate 0.94 0.91 0.91 0.88 0.87

Specificity 0.90 0.91 0.83 0.83 0.85

Precision 0.58 0.59 0.45 0.45 0.46

AUC 0.92 0.91 0.87 0.86 0.86

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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3.4 | Validation of the KNN model by a reported 
human blood DNA virome study

The KNN model with k‐mers of four nucleotides was further validated 
through	a	human	blood	DNA	virome	study	reported	by	Moustafa	et	al.	
(2017). In this study, 19 human viruses were identified from whole‐ge‐
nome	sequencing	of	blood	from	8,240	individuals	without	any	infec‐
tious	disease.	A	 total	of	14,242,328	viral	 reads	of	150	bp,	 including	
14,010,527	 reads	 from	 the	 human-infecting	 viruses	 and	 231,801	
reads from other viruses, were obtained in the study. The KNN model 
correctly	predicted	81%	of	the	reads	from	the	human-infecting	viruses	
(Table 3). Besides the raw viral reads, a total of 396 viral contigs vary‐
ing from less than 1,000 bp to more than 10,000 bp were assembled 

in	the	study,	including	309	human-infecting	viral	contigs	and	87	other	
viral	contigs.	The	KNN	model	correctly	predicted	87%	of	the	human-
infecting	viral	 contigs.	Also,	 the	proportion	of	correct	predictions	of	
the	human-infecting	viral	contigs	increased	from	0.84	to	1	as	the	con‐
tig lengths increased from several hundred nucleotides to more than 
10,000 nucleotides.

4  | DISCUSSION

Identification of human‐infecting viruses is critical for early warn‐
ings of newly emerging viruses. The rapid accumulation of viral 
metagenomic sequences presents us with unique opportunities 
to identify more and more novel viruses. Unfortunately, there 
is currently an unmet challenge to rapidly identify the potential 
human-infecting	 viruses.	 As	 far	 as	 we	 know,	 this	 study	 for	 the	
first time attempted to discriminate the human‐infecting viruses 
from non‐human‐infecting viruses in the perspective of virome. 
The KNN models predicted the human‐infecting viruses with high 
accuracy and sensitivity. Even if the KNN models were built on 
the contigs as short as 1 kb, they performed comparably to those 
built	on	the	viral	genomes	in	the	aspect	of	the	AUC	and	the	recall	
rate (Tables 1 and 2). The KNN model was further validated by 
a reported human blood virome study. It correctly predicted the 
human-infecting	viruses	with	an	accuracy	of	over	80%	based	on	
the raw reads as short as 150 bp (Table 3). The performance of our 
KNN model on the blood virome study suggested that the model 
can be used in metagenomics for identifying the potential human‐
infecting viruses.

The human‐infecting viruses used here have different ability to 
infect humans. Some of them are human‐specific that have been 

F I G U R E  3  The	AUCs	of	the	KNN	models	with	k‐mer lengths 
from one to five built on contigs of various lengths [Colour figure 
can be viewed at wileyonlinelibrary.com]

 500 bp 1,000 bp 3,000 bp 5,000 bp 10,000 bp

Accuracy 0.85 0.87 0.91 0.92 0.92

Recall rate 0.88 0.93 0.96 0.98 0.99

Specificity 0.85 0.86 0.90 0.92 0.92

Precision 0.25 0.28 0.35 0.38 0.32

AUC 0.86 0.90 0.93 0.95 0.96

TA B L E  2   The optimal performance 
of the KNN models with k‐mers of four 
nucleotides built on contigs of various 
lengths

TA B L E  3  Predictive	performance	of	the	KNN	model	in	identifying	the	human-infecting	viruses	from	a	reported	human	blood	DNA	
virome study. a Raw read in the study. 1 kb, 1,000 bp

Length of read/contig 
(L)

Number of reads/contigs Proportion of correct predictions
Overall predictive 
accuracyHuman‐infecting Other Human‐infecting Other

L = 150 bpa 14,010,527 231,801 0.81 0.84 0.82

L < 1 kb 222 75 0.84 0.15 0.67

1	kb	≤	L	<	3	kb 61 9 0.93 0 0.81

3	kb	≤	L	<	5	kb 13 3 0.92 0 0.75

5	kb	≤	L	<	10	kb 10 0 1 0 1

L	≥	10	kb 3 0 1 0 1

www.wileyonlinelibrary.com
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circulating in human populations for a long time, such as the human 
papillomavirus (Baseman & Koutsky, 2005) and yellow fever virus 
(Akondy	et	 al.,	 2009);	while	 some	are	 zoonotic	 viruses	 that	 infect	
humans rarely, such as the avian influenza virus and coronavirus 
(García-Sastre	&	Schmolke,	2014;	Shipley	et	al.,	2019).	As	shown	in	
numerous studies, the zoonotic viruses are very likely to cause epi‐
demics or even pandemics after adaptive evolution. The most recent 
example is Zika viruses. It rarely caused wide‐spread epidemics in 
humans in the 20th century, even in highly enzootic areas, (Weaver 
et al., 2016). However, a few mutations in the viral genome facili‐
tated its rapid spread in human populations (Campos, Bandeira, & 
Sardi, 2015; Duffy et al., 2009; Liu et al., 2017). The virus has caused 
epidemics	 in	84	countries	and	has	 infected	more	 than	one	million	
people since 2014 (European CDC, 2016; de Oliveira Garcia, 2019). 
Taken together, it is difficult to distinguish the viruses with the 
varying ability of infecting humans. Therefore, the viruses with the 
various ability of infecting humans were considered equally in the 
modelling.

There are some limitations to this study. Firstly, the human‐in‐
fecting viruses used here is far from complete when compared 
to those estimated by the GVP. However, the viruses used in this 
study covered 30 families in all groups of the Baltimore classifica‐
tion, which were similar to those estimated by the GVP (Carroll et 
al.,	2018).	Besides,	the	machine	learning	models	had	excellent	per‐
formances in discriminating the human‐infecting viruses from other 
viruses. They could help much in discovering novel human‐infecting 
viruses. Secondly, the number of human‐infecting viruses was much 
less than that of other viruses. Such a large imbalance may hinder 
accurate modelling. Here, the under‐sampling method was used to 
deal with the imbalance problem so that the KNN model achieved 
excellent overall performances and high sensitivity in identifying the 
human‐infecting viruses. Thirdly, the model was not robust to the 
contamination of human sequences in the viral genomes. It would 
be better to remove such contamination from the viral sequences 
before using the model.

In conclusion, this study built novel computational models to 
predict the human‐infecting viruses in the perspective of virome. 
The high accuracy and sensitivity of the KNN model built on the 
viral contigs of various lengths suggest that the model can be used 
to identify the human‐infecting viruses from the viral metagenomic 
sequences. This work provides an effective strategy for the identi‐
fication of novel human‐infecting viruses in metagenomics studies.
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