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Abstract 

Background: Trials comparing early and delayed strategies of renal replacement therapy in patients with severe 
acute kidney injury may have missed differences in survival as a result of mixing together patients at heterogeneous 
levels of risks. Our aim was to evaluate the heterogeneity of treatment effect on 60‑day mortality from an early vs a 
delayed strategy across levels of risk for renal replacement therapy initiation under a delayed strategy.

Methods: We used data from the AKIKI, and IDEAL‑ICU randomized controlled trials to develop a multivariable 
logistic regression model for renal replacement therapy initiation within 48 h after allocation to a delayed strategy. We 
then used an interaction with spline terms in a Cox model to estimate treatment effects across the predicted risks of 
RRT initiation.

Results: We analyzed data from 1107 patients (619 and 488 in the AKIKI and IDEAL‑ICU trial respectively). In the 
pooled sample, we found evidence for heterogeneous treatment effects (P = 0.023). Patients at an intermediate‑high 
risk of renal replacement therapy initiation within 48 h may have benefited from an early strategy (absolute risk differ‑
ence, − 14%; 95% confidence interval, − 27% to − 1%). For other patients, we found no evidence of benefit from an 
early strategy of renal replacement therapy initiation but a trend for harm (absolute risk difference, 8%; 95% confi‑
dence interval, − 5% to 21% in patients at intermediate‑low risk).

Conclusions: We have identified a clinically sound heterogeneity of treatment effect of an early vs a delayed strategy 
of renal replacement therapy initiation that may reflect varying degrees of kidney demand‑capacity mismatch.

Keywords: Acute kidney injury, Renal replacement therapy, Heterogeneity of treatment effect, Personalized 
medicine
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Introduction
Acute kidney injury (AKI) affects approximately half of 
critically ill patients and is associated with high mor-
tality and long-term sequelae [1]. Since its introduc-
tion in intensive care units (ICU) in the 1960s [2], renal 
replacement therapy (RRT) has proved to be a major 
breakthrough for the treatment of AKI, saving countless 
lives. However, the optimal timing for RRT initiation in 
patients with severe AKI has been controversial. This is 
illustrated by opposite hypotheses regarding which of an 
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early or a delayed RRT initiation strategy would be supe-
rior to the other in the sample size calculation of recent 
multicenter randomized controlled trials (RCTs) [3–5]. 
Moreover, three trials—the largest on the tropic—did 
not demonstrate any survival benefit from either strategy 
over the other. Likewise, recent meta-analyses concluded 
that, in the absence of life-threatening condition, the tim-
ing of RRT initiation did not affect survival [6, 7].

One suggested reason for the lack of conclusive find-
ings lies in the heterogeneous baseline characteristics of 
patients included in these trials [8]. Meaningful differ-
ences in survival may have been missed as a result of mix-
ing together patients with potential benefit and potential 
harm from a given initiation strategy. For instance, one 
may hypothesize that an early RRT initiation strategy is 
harmful to the patients who would never start it under 
a delayed strategy. In fact, when a delayed strategy is 
implemented, we observed that between a third and half 
of the patients never met the criteria mandating RRT 
initiation. Conversely, experts have speculated that the 
patients who would be susceptible to benefit from an 
early initiation strategy are those who would initiate RRT 
within 48 h under a delayed strategy [9].

Patient management further tailored to individual’s 
characteristics is much anticipated in critical care medi-
cine [10] and AKI [11]. In that respect, the conventional 
subgroup analyses performed “one variable at a time” fail 
to convey meaningful results as they cannot fully capture 
all the relevant heterogeneity in patient characteristics 
[12]. Conversely, approaches using multivariable models 
have the potential to address the challenge of heterogene-
ous treatment effects (HTE) [13].

The concept of kidney demand-capacity mismatch may 
be useful to the personalization of RRT initiation, but it 
has not been evaluated on robust clinical data [14]. In 
this study, we wished to test if estimating the degree of 
demand-capacity mismatch could guide RRT initiation 
strategies. We hypothesized that an early RRT initiation 
strategy is unnecessary or harmful to the patients at low 
risk of RRT initiation under a delayed strategy; and bene-
ficial to the patients at a higher risk. Accordingly, we used 
data from two large multicenter RCTs on RRT timing to 
develop a risk prediction model for RRT initiation within 
48 h after allocation to a delayed strategy and then esti-
mated treatment effects within levels of predicted risks.

Methods
Ethical approval and research transparency
The AKIKI and the IDEAL-ICU trials received approval 
for all participating centers from competent French legal 
authority (Comité de Protection des Personnes d’Ile de 
France VI, ID RCB 2013-A00765-40, NCT01932190 for 
AKIKI and Comité de Protection des Personnes Est I ID 

RCB 2012-A00519-34 for IDEAL-ICU), and consent of 
patient or relatives was obtained before inclusion (except 
in emergencies where deferred consent was allowed 
by the Institutional Review Board). We transparently 
reported our analysis following the PATH [15] and TRI-
POD [16] statements.

Source of data
The study sample included participants from the AKIKI 
and IDEAL-ICU, two multicenter RCTs conducted in 
France. The AKIKI trial was conducted at 31 ICUs from 
September 2013 through January 2016 and recruited 619 
patients with severe AKI who required mechanical venti-
lation, catecholamine infusion, or both (the vast majority 
with septic shock). The IDEAL-ICU trial recruited in 29 
ICUs from July 2012 through October 2016 and included 
488 patients with severe AKI and septic shock. Both tri-
als randomly assigned (1:1) patients to either an early or 
a delayed strategy of RRT initiation. None of these trials 
showed a significant difference between the two strate-
gies on 60-day mortality. The delayed strategy averted the 
need for RRT in 49% and 38% of patients in the AKIKI 
and IDEAL-ICU trials, respectively.

Outcomes
The primary outcome of this study was death at day 60. 
Secondary outcomes included mean differences in num-
ber of days free of RRT, mechanical ventilation and inten-
sive care at 28 days [17] across the same levels of risk.

Prediction model development
We developed a risk prediction model for RRT initia-
tion within 48 h after allocation to a delayed strategy. The 
derivation sample consisted of the 550 patients allo-
cated to the delayed arms of the AKIKI (n = 308) and 
IDEAL-ICU (n = 242) trials (Table  1). We fit a logistic 
regression model, using predefined 14 predictors to pre-
dict the occurrence of RRT initiation within 48  h after 
the start of the delayed strategy. Candidate predictor 
variables were taken from the pre-randomization eligi-
bility screening or clinical examination prior to rand-
omization to the delayed strategy of RRT initiation and 
included age (years), gender (male vs female), potassium 
level (mmol/L), blood urea nitrogen level (mmol/L), pH 
(unitless), the ratio of creatinine at enrollment over cre-
atinine at baseline (unitless), urine output (< 200 ml/day 
vs ≥ 200 ml/day, as was already categorized in the data), 
SOFA score at enrollment (unitless), weight (kg), heart 
failure (yes vs no), hypertension (yes vs no), diabetes 
mellitus (yes vs no), cirrhosis (yes vs no), non-corticos-
teroid immunosuppressive drug (yes vs no). Missing data 
were handled through multiple imputations by chained 
equations using outcomes as well as all aforementioned 
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predictors in the imputation models [18]. Five independ-
ent imputed data sets were generated and analyzed sepa-
rately. The nonlinearity of each continuous variable was 
assessed through penalized spline regression. All contin-
uous variables appeared roughly linearly associated with 
the logit of the outcome probability; hence, no non-linear 
terms were used.

Two strategies were used to select predictors with 
the imputed data [19]. First, we used Wald tests for the 
pooled regression coefficients to simplify the model with 

a backward selection procedure, with P-value cut-offs 
mimicking the use of Akaike information criterion (e.g., 
a cut-off of 0.157 for variables with 1 df). We then used 
a conventional backward elimination procedure in each 
imputed data set and retained the model comprising the 
variables selected in most imputed data sets. Both strate-
gies selected the same variables. Two-by-two interactions 
between each of the selected variables were then exam-
ined using Wald tests for the pooled regression coef-
ficients. No higher-order interactions were considered. 

Table 1 Characteristics of the patients at randomization

All characteristics reported in the table were determined at inclusion in the AKIKI or IDEAL-ICU trial, before initiation of renal replacement therapy

Data are mean (SD), median (IQR) or n (%). AIDS = Acquired Immunodeficiency Syndrome. IQR = Interquartile range. SOFA score = Sequential Organ Failure 
Assessment score

To convert the values for creatinine to milligrams per deciliter, divide by 88.4

*The serum creatinine concentration before ICU admission was either determined with the use of values measured in the 12 months preceding the ICU stay or was 
estimated

Characteristic Delayed strategy Early strategy
n = 550 n = 557

Study

 AKIKI 308 (56.0) 311 (55.8)

 IDEAL‑ICU 242 (44.0) 246 (44.2)

Age—year 67.7 (13.2) 66.5 (13.3)

Weight—kg 81.6 (22.2) 82.4 (22.2)

Male sex 352 (64.0) 351 (63.0)

Pre-existing conditions

 Heart failure 52 (9.5) 44 (7.9)

 Hypertension 304 (55.3) 306 (54.9)

 Diabetes mellitus 92 (16.7) 112 (20.1)

 Cirrhosis 54 (9.8) 54 (9.7)

 Respiratory disease 54 (9.8) 62 (11.1)

 Cancer 100 (18.2) 91 (16.3)

 Hemopathy 27 (4.9) 34 (6.1)

 AIDS 2 (0.4) 5 (0.9)

 Non‑corticosteroid immunosuppressive drug 36 (6.5) 32 (5.7)

 Organ graft 17 (3.1) 5 (0.9)

Severity at enrollment

 SOFA score (0 to 24) 11.5 (3.1) 11.4 (3.2)

 Respiratory SOFA (0 to 4) 2.1 (1.1) 1.9 (1.1)

 Hemodynamic SOFA (0 to 4) 3.5 (1.2) 3.5 (1.2)

 Liver SOFA (0 to 4) 0.8 (1.1) 0.8 (1.1)

 Coagulation SOFA (0 to 4) 2.1 (1.6) 2.2 (1.6)

 Neurologic SOFA (0 to 4) 1.3 (1.5) 1.2 (1.5)

Laboratory values

 Baseline creatinine (IQR), μmol/L* 88 (71–97) 84 (71–97)

 Creatinine at enrollment (IQR), μmol/L 268 (211–343) 267 (198–352)

 Blood urea nitrogen at enrollment (IQR), mmol/L 19 (14–26) 19 (13–26)

 Potassium at enrollment, mmol/L 4.4 (0.8) 4.4 (0.8)

 Bicarbonate at enrollment, mmol/L 18 (5) 18 (5)

 Arterial blood pH at enrollment 7.30 (0.10) 7.30 (0.10)
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Regression coefficients estimates and their variances 
were then pooled across imputed data sets [20].

To evaluate the predictive ability of the model, we first 
calculated the apparent discrimination (c-statistic) and 
calibration (categorization by fifth of predicted risk) in 
the derivation sample. The c-statistic measures how well 
the model discriminates between the patients who initi-
ated RRT within 48 h after allocation a delayed strategy 
and those who did not. The calibration curve, estimated 
using local regression [21]], contrasts observed vs pre-
dicted probabilities of events and evaluates the accuracy 
of the predictions. Internal validation of the model was 
performed by bootstrapping, which allows to correct 
regression coefficients and model performance for opti-
mism [22]. The variable selection strategy was repeated 
in 200 bootstrap samples, and performance of models 
fit in each sample was evaluated in these samples and in 
the original sample. The differences between these two 
performances were averaged and taken as a measure of 
overoptimism. The c-statistic as well as the calibration 
intercept and slope were corrected for bias by subtracting 
measures of overoptimism to the apparent performance 
metrics.

Risk categorization
In the AKIKI (n = 619), IDEAL-ICU (n = 488) and pooled 
(n = 1107) samples, we categorized patients by fifths 
of the risk predicted by our final model. In each fifth of 
risk, we compared early vs delayed strategy of RRT ini-
tiation on primary and secondary outcomes. To account 
for censoring, death at day 60 was calculated from the 
Kaplan–Meier estimator. As HTE are fundamentally a 
scale dependent concept [15], we evaluated treatment 
effects on the absolute risk difference and the hazard 
ratio scales. For each scale we computed a smooth curve 
of the treatment effect across levels of risks by using an 
interaction term between treatment arm and a two knots 
natural spline transform [23] of the predicted risk in a 
Cox model. We assessed the evidence for heterogene-
ous treatment effect by testing the null hypothesis that 
a Cox model using a linear interaction between treat-
ment arm and the predicted risk fits data equally well 
as a Cox model using a similar interaction with a spline 
transform of the predicted risk [24]. Ninety-five percent 
confidence intervals (95% CI) were calculated by boot-
strapping (1000 iterations). All analyses were performed 
using the R statistical software version 4.0.5 (The R Foun-
dation). More precisely, we used the rms package for 
model building and internal validation, the survival pack-
age for survival analyses, the mgcv package for heteroge-
neous treatment effects assessment, the boot package for 
bootstrap, and the mice package for multiple imputation. 
For transparency and reproducibility, the computer code 

used in this study is available as an Additional file 1 at the 
Journal’s website.

Results
Prediction model for RRT initiation
Of the 550 patients included for model derivation (see 
Fig. 1, Panel A), 137 patients (25%) initiated RRT within 
48 h after allocation to a delayed strategy (62 [20%] and 
75 patients [31%] in AKIKI and IDEAL-ICU, respec-
tively). 91% of patients had complete data for all candi-
date predictors (see Additional file  2: Figure S1); there 
were no missing data for the event of RRT initiation. 
The final prediction model included potassium, blood 
urea nitrogen, pH, non-corticosteroid immunosuppres-
sive drug, SOFA and weight. No two-by-two interaction 
between variables was added as none showed statistical 
significance or seemed clinically informative.

The full and final models are presented in Table 2. The 
apparent and bias-corrected c-statistic were 0.73 (95% CI: 
0.70 to 0.80) and 0.70 (95% CI: 0.67 to 0.77), respectively. 
The predictive performance of the final model was good, 
as measured by discrimination and calibration (Fig. 2).

Heterogeneity of treatment effect
For the pooled AKIKI and IDEAL-ICU samples 
(n = 1,107 see Fig.  1, Panel B), baseline characteristics 
at randomization are presented in Table  1. In all fifth 
of risk predicted by our model, patients’ characteris-
tics appeared balanced between the randomization 
arms (see Additional file  2: Table  S1). Patients’ char-
acteristics by fifth of risk predicted by our model are 
provided in the Additional file  2: Table  S2. Heteroge-
neity of treatment effect is presented by fifth of risk in 
Fig.  3. There was no evidence of benefit from an early 
RRT initiation strategy for individuals within the low-
est fifth of RRT initiation risk (absolute risk difference 
[ARD], 1%; 95% CI −  12% to 14%). However, patients 
in the fourth fifth of risk, may have benefited from an 
early strategy of RRT initiation (ARD, −  14%; 95% CI 
− 27% to − 1%). For patients with the highest risk (last 
fifth of risk), we found no evidence of benefit from 
an early initiation strategy (ARD, 7%; 95% CI −  6% to 
20%). On both the absolute (i.e., ARD) and relative (i.e., 
event rate and hazard ratio) scales, the smooth curve 
suggested that an early RRT initiation strategy may be 
harmful in patients at an intermediate-low risk (second 
fifth of risk), while it may be beneficial in patients at an 
intermediate-high risk (fourth fifth of risk). This pat-
tern was consistent in both the AKIKI and IDEAL-ICU 
trials when analyzed separately (see Additional file  2: 
Figure S2). Kaplan–Meier survival for each fifth of risk 
are given in Fig. 4 and in Additional file 2: Figure S3. No 
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difference in secondary outcomes was found between 
early and delayed RRT initiation strategy in any fifth of 
predicted risk (see Additional file 2: Figure S4).

An implementation of our model has been made 
available via a user-friendly web interface at http:// 
rrt- perso naliz ation. eu/. With this web application, cli-
nicians and researchers can obtain the predicted prob-
ability of RRT initiation within 48 h after allocation to a 
delayed strategy in patients with severe AKI. The indi-
vidual treatment effect of an early vs delayed strategy is 
then computed and returned with 95% CIs.

Discussion
Summary of findings
In this study, we developed a prediction model for 
the initiation of RRT within 48  h after allocation to a 
delayed strategy in patients with severe AKI in the ICU. 
We subsequently used the predictions from this model 
to identify subgroups (i.e., fifths) of patients at similar 
risk. We then assessed if the treatment effect of an early 
vs delayed strategy of RRT initiation was heterogeneous 
between these subgroups.

AKIKI trial
619 patients

IDEAL-ICU trial
488 patients

308 in the delayed arm 242 in the delayed arm

550 patients in the
development sample

AKIKI trial
619 patients

IDEAL-ICU trial
488 patients

First fifth of risk
107 in the delayed arm
115 in the early arm

Second fifth of risk
114 in the delayed arm
107 in the early arm

Third fifth of risk
98 in the delayed arm
123 in the early arm

Fourth fifth of risk
106 in the delayed arm
115 in the early arm

Last fifth of risk
125 in the delayed arm
97 in the early arm

1,107 patients
categorized by risk

A

B

311 in the early arm 246 in the early arm

137 initiated RRT within
48 hours

Fig. 1 Study flow diagram for model development (Panel A) and the assessment of heterogeneous treatment effects across different levels of risk 
of RRT initiation within 48 hours after allocation to a delayed strategy (Panel B). RRT = Renal Replacement Therapy

http://rrt-personalization.eu/
http://rrt-personalization.eu/
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We stress that although causal understanding of model 
predictions is always inappropriate, in the case of the 
present HTE, this interpretation is proper as all variables 
included in our model were measured prior to randomi-
zation. In our main analysis, we found substantial HTE 
across levels of predicted risks. Except for the upper 
boundary (i.e., highest levels of risks), the directions of 
the HTE were aligned with our prespecified hypothesis.

From a clinical standpoint, the predicted risk from our 
model may be viewed as a proxy for the severity of kid-
ney demand-capacity mismatch of the patients included 
in the trials. Through this lens, our results seem to indi-
cate that for the most severe patients, an invasive strategy 
i.e., early RRT was unnecessary and/or harmful (ARD in 
the last fifth of predicted risk, 7%; 95% CI, − 6% to 20%). 
This seemed true also of mildly severe patients (ARD in 
the second fifth of predicted risk, 8%; 95% CI, −  5% to 
21%). The only patients who seemed to have benefited 
from early RRT are those at a high but nonextreme risk 
(ARD in the fourth fifth of predicted risk, −  14%; 95% 
CI, − 27% to − 1%). An interpretation for these findings 
is that starting RRT early could harm the lesser severe 
patients because they often have no need for such inva-
sive treatment. On the other hand, early RRT could be 
unnecessary to the most severe patients as their progno-
sis may outweigh potential benefits; or early RRT could 
even harm them through the destabilization of a weak 
equilibrium.

Hitherto, the concept of demand-capacity and person-
alization of RRT initiation did not rely on the analysis of 
robust clinical data. The 2021 Surviving Sepsis Campaign 
guidelines argues for a pragmatic approach: propose a 
wait-and-see strategy for all patients with severe AKI and 
no life-threatening complications in the intensive care 
unit [25].

Strength and limitations
We acknowledge that given large enough sample sizes, 
more advanced machine learning techniques could 
potentially yield a more precise estimation of HTEs. 
These techniques, often referred to as effect-modelling 
approaches, aim to estimate HTE through direct mod-
elling of the treatment effect [26]. Of note, they are also 
vulnerable to misspecification and overfitting, and there-
fore require huge sample sizes [27]. In contrast, we chose 
to implement a risk-modelling approach and relied on 
the PATH guidelines for personalized medicine [15]. On 
the upside, this allowed us to evaluate a clinically sound, 
a priori-specified hypothesis [9]. Compared to black-box 
algorithms, we believe the transparency of our paramet-
ric modelling methodology offers researchers a window 
for interpretability.

Despite the good performance of our prediction model 
as evaluated on biased-corrected metrics, the absence 
of external validation for our prediction model is a limi-
tation. However, in our methodology, the model pre-
dictions are merely a mean for a downstream purpose 
namely, the assessment of HTEs. A poorly perform-
ing model would have limited our ability to find evi-
dence of HTE when treatment effects are in fact truly 
heterogeneous.

Last, in contrast with other instances where predic-
tions from developed models cannot be readily calcu-
lated by clinicians or researchers, we have implemented 
a user-friendly web interface for our approach. We trust 
this will help further disseminate, replicate, or refine our 
findings. We purposely chose to emphasize uncertainty 
for the individualized treatment effects by providing all 
metrics along with their 95% CI. We believe that as deci-
sion tools have not been evaluated in controlled settings, 
clinical judgment should however prevail.

Implications for future research
Precision medicine is an active field of research with 
limited clinical applications so far [28]. Data-driven 
decision support tools have been made available in car-
diology [29], while in critical care HTE were documented 
for crystalloid fluids [30] or ventilation strategies [31], 
In fact, as negative trial findings are widespread, disen-
tangling HTE were judged a research priority in critical 
care [32]. The identification of HTE may also inform the 

Fig. 2 Internal calibration curve and performance of the final model 
for RRT initiation within 48 h after allocation to a delayed strategy. The 
blue line represents ideal calibration. Values of biased‑corrected slope 
above 1 indicates underestimation of risks by the model; while values 
lower than 1 indicates overestimation. Non‑corrected intercept and 
slope will be 0 and 1 by definition for the derivation sample
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design of adaptive trials [33]. For instance, enrichment 
trials recruiting only the patients most likely to benefit 
from an early RRT initiation strategy could yield larger 
treatment effect sizes [34].

We believe the risk-modelling methodology pre-
sented in our study is transportable to treatments as 
diverse as corticosteroids for sepsis [35], proton pump 
inhibitors for gastrointestinal bleeding prevention [36], 
or extracorporeal membrane oxygenation for acute res-
piratory distress syndrome [37].

As for RRT initiation strategies, our findings will 
require further replication using other data sources 
and methodologies. The way in which this can happen 
is twofold. First, as in the present study, researchers 
can consider the static case of an early vs delayed strat-
egy of RRT initiation and use either other RCT data 
or observational data coupled with robust statistical 
methods. Second, researchers may also account for the 
fundamentally dynamic nature of the question. On the 
one hand, AKI staging systems inaccurately reflect the 
timing of the underlying pathology [38]; on the other 
hand definition of the criteria mandating RRT initia-
tion under a delayed strategy ought to be refined [39, 
40]. While the latter problem can be addressed with 
advanced causal inference techniques [41], the former 
can be tackled through cutting-edge pathophysiological 
studies. These two approaches are, in our view, comple-
mentary and we believe researchers should strive to dig 
from both ends.

In this secondary analysis of the AKIKI and IDEAL-
ICU trials, we have provided proof-of-concept for the 
HTE of early vs delayed strategy across levels of base-
line risk of RRT initiation within 48  h after a delayed 
strategy. Though consistent between the two trials, our 
results will require replication and refinement before 
they can be implemented in practice. We believe that 
the risk-modelling methodology we described can help 
move the precision medicine agenda forward as it may 
be applicable to a wide variety of treatments in critical 
care.

Fig. 3 Heterogeneity of treatment effect (early vs delayed strategy) 
across different levels of risk of RRT initiation within 48 h after 
allocation to a delayed strategy. This figure presents heterogeneous 
treatment effect of an early vs a delayed strategy of RRT initiation 
as a function of the baseline risk of RRT initiation within 48 h after 
allocation to a delayed strategy in the pooled AKIKI and IDEAL‑ICU 
sample. The horizontal dashed lines indicate the average treatment 
effect. P value for a constant effect along the predicted risk (test of 
heterogeneity of the treatment effect). Q1 = first fifth of risk (lowest), 
Q2 = second fifth of risk, Q3 = third fifth of risk, Q4 = fourth fifth of 
risk, Q5 = last fifth of risk (highest)
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