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Feed efficiency (FE) traits in pigs are of utmost economic importance. Genetic
improvement of FE related traits in pigs might significantly reduce production cost
and energy consumption. Hence, our study aimed at identifying SNPs and candidate
genes associated with FE related traits, including feed conversion ratio (FCR), average
daily gain (ADG), average daily feed intake (ADFI), and residual feed intake (RFI).
A genome-wide association study (GWAS) was performed for the four FE related traits
in 296 Landrace pigs genotyped with PorcineSNP50 BeadChip. Two different single-
trait methods, single SNP linear model GWAS (LM-GWAS) and single-step GWAS
(ssGWAS), were implemented. Our results showed that the two methods showed
high consistency with respect to SNP identification. A total of 32 common significant
SNPs associated with the four FE related traits were identified. Bioinformatics analysis
revealed eight common QTL regions, of which three QTL regions related to ADFI and RFI
traits were overlapped. Gene ontology analysis revealed six common candidate genes
(PRELID2, GPER1, PDX1, TEX2, PLCL2, ICAM2) relevant for the four FE related traits.
These genes are involved in the processes of fat synthesis and decomposition, lipid
transport process, insulin metabolism, among others. Our results provide, new insights
into the genetic mechanisms and candidate function genes of FE related traits in pigs.
However, further investigations to validate these results are warranted.

Keywords: genome-wide association study, feed efficiency, feed conversion ratio, average daily gain, average
daily feed intake, residual feed intake

INTRODUCTION

Feed accounts for about 65% of the total cost in modern pig production and feed efficiency (FE)
traits in pigs are critical (Sanchez et al., 2017). Better FE dramatically reduces production costs,
thus contributes to a reduction of the final cost of products and decreases farming expenses and
energy consumption (Ding et al., 2018). Breeding programs to improve FE have been undertaken
for many years, but FE related traits, such as average daily feed intake (ADFI) and residual feed
intake (RFI), are still difficult to be improved because they can neither be selected nor directly
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measured (Silva et al., 2019). Usually, FE is evaluated by
four traits: feed conversion ratio (FCR), average daily gain
(ADG), ADFI, and RFI (Onteru et al., 2013). The phenotypic
measurements of FCR, ADFI, and RFI are difficult and costly
which need an automatic feeding system. Besides, the selection
of single FE related traits may affect other traits that are valuable
for pig production, such as growth rate (Horodyska et al.,
2017). This conundrum makes the genetic investigation of
FE very important.

Therefore, it is essential to understand the molecular
mechanism and genetic basis underlying FE related traits for the
improvement of FE. In past decades, hundreds of quantitative
trait loci (QTLs) affecting complex traits in pigs, including FE
related traits, have been detected. Among these, 346, 618, 96, and
96 QTLs for FCR, ADG, ADFI, and RFI have been identified in
different pig populations,1 respectively. However, their molecular
regulation mechanism remains largely unknown.

In recent years, with the development of dense genomic
markers and significant reduction in cost, genome-wide
association study (GWAS) has become increasingly popular
for detecting genetic variants associated with economic traits
(Do et al., 2014b; Ding et al., 2018). Studies have revealed many
potential candidate genes for FE related traits in pigs. For FCR,
several researchers reported that significant SNPs and QTLs
were mainly located on chromosomes (SSC) 4, 6, 7, 8, 17, and
18 (Sahana et al., 2013; Horodyska et al., 2017). Another study
identified three QTLs for ADG, which were located on SSC 4,
14, and 15 (Ji et al., 2019). Compared to FCR and ADG, only
few studies on RFI were carried out in pigs. Onteru et al. (2013)
reported several QTLs on chromosomes 7 and 14 that are related
to RFI in Yorkshire pigs. Recently, Silva et al. (2019) identified
three QTL regions located on SSC1 that are associated with
ADFI. Although high density chips and GWAS had detected
more and more genetic variants in pig economic traits, FE
related traits (ADFI and RFI) still progress slowly because of the
difficultly in phenotype measuring and recording. In addition,
most of these studies, mainly focus on Duroc and Yorkshire
breeds, and FE related traits studies on Landrace have been rarely
reported. So far, according to PigQTLdb,1 four FE related traits
(FCR, ADG, ADFI, and RFI) have been reported 371 QTLs in
Duroc, 185 in Yorkshire and only 46 in Landrace pigs. Therefore,
further investigation is needed to better understand FE related
traits in Landrace population.

In this study, we performed a GWAS in a Landrace population
to identify genomic regions and genes associated with four FE
related traits: FCR, ADG, ADFI, and RFI.

MATERIALS AND METHODS

Ethics Statement
The whole recording procedure of ear tissue samples was
carried out in strict accordance with the protocol approved
by the Institutional Animal Care and Use Committee
(IACUC) at the China Agricultural University. The IACUC

1http://www.animalgenome.org/cgi-bin/QTLdb/SS/index

of the China Agricultural University approved this study
(permit number DK996).

Animals and Phenotypes
In this study 296 Landrace pigs were sampled. Phenotypic
information of two batches comprising 156 and 140 pigs was
recorded from April to July, and July to August in 2018,
respectively. The first batch of 156 pigs was obtained from 46
litters born in April (one to nine individuals from each litter with
an average of three), and the 140 pigs in the second batch born
in July were obtained from 41 L (one to eight individuals from
each litter with an average of three). The original feeding records
were automatically generated by the pig automatic feeding system
(ACEMO128 Feeding station, France). The phenotypic data
comprised individual ID, starting weight, daily feed intake, daily
weight gain, final weight, feeding period, and feed conversion
rate. Data were collected from each pig during the feeding period
(approximately 11 weeks old), from 25 to 100 kg body weight
(BW). The piglets were group-housed in half-open cement-floor
pens (10–12 animals in each pen, with an average space of two
m2 per pig). Each animal was labeled with a unique electronic
identification tag on the ear and detected by the automatic
feeding system. Once a pig visited the feeder, the date and
exact start and stop feeding time, the animal number, and feed
consumption of each visit were recorded.

The traits (ADFI, FCR, and ADG) for each pig were calculated
throughout the testing periods according to the information
provided by the automatic feeding system. ADFI was calculated
by the total amount of recorded feed intake divided by the length
of the fattening period. ADG was calculated by total weight
gain (final weight minus initial weight) during measure periods
divided by the corresponding feeding days. FCR was calculated
as the ratio of total feed intake to total weight gain. Finally, RFI
was calculated following the formula (Do et al., 2013).

RFI = ADFI− (β0 + β1BW+ β2 ∗ ADG+ e)

where β0 is the intercept, β1 represents the partial regression
coefficient of ADFI on BW, β2 is the partial regression coefficient
of ADFI on ADG, and e is the residual error.

The phenotype values of four FE related traits were calculated,
and their corresponding descriptive statistics were performed
(Table 1). The average FCR was 2.47 with a standard deviation of
0.52, whereas ADG and ADFI were 0.79 and 1.93 kg per day on

TABLE 1 | The descriptive statistics of four feed efficiency traits.

Traita N-1b N-2c Mean SDd Min Max p_valuee

FCR 156 140 2.47 0.52 1.05 4.75 1.02E-09

ADG (kg/day) 156 140 0.79 0.12 0.38 1.18 0.89

ADFI (kg/day) 156 140 1.93 0.38 0.68 2.91 2.63E-10

RFI (kg) 156 140 0.01 0.32 −1.00 0.83 1.76E-14

aFCR, feed conversion ratio; ADG, average daily gain; ADFI, average daily feed
intake; RFI, residual feed intake. bN-1 = number of individuals for each trait in
the first batch. cN-2 = number of individuals for each trait in the second batch.
dSD = standard deviation. ep_value = p-value of Student’s test for two batches
data at significance level 0.05.
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average with a standard deviation of 0.12 and 0.38, respectively.
RFI ranged from -1.00 to 0.83 kg with an average of 0.01 and a
standard deviation of 0.32. The Student’s t-test showed that the
data from the two batches of pigs were significantly different for
FCR, ADFI, and RFI. The genetic correlations of FE related traits
were calculated using ASREML software (Gilmour et al., 2015)
four traits were analyzed together. The model fitted for FCR,
ADG, ADFI, and RFI was:

y = µ+ Xb+ Z1a+ Z2t+ e

with

E


y
a
t
e

 =


Xb
0
0
0
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t
e
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Aσ2
a 0 0

0 Iσ2
t 0

0 0 Iσ2
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where, y is the vector of phenotypic values of four trait; µ is
the population mean; b is the fixed effect of the batch; a is
the vector of additive genetic effects; t is the vector of litter
effects; e is a vector of residual error effects. X, Z1, and Z2 are
incidence matrices of y related to b, a, and t, respectively. A
is the genetic relationship matrix, five generations of pedigree
were traced back to construct A, and σa

2 is the additive genetic
variance. I is the identity matrix of appropriate dimension, σt2 is
the variance of litter effect and σe

2 is the residual variance.
Subsequently, genetic correlations were calculated based on

the variance components as follows:

rA =
cov(a1, a2)

σa1σa2

where, rA is the genetic correlation between trait 1 and trait 2, a1
and a2 represent the additive genetic values of trait 1 and trait 2
for same individuals, cov(a1,a2) and σa1, σa2 refer to the genetic
covariance of two traits and genetic standard deviation of trait 1
and trait 2, respectively.

Genotyping and Quality Control
Genomic DNA was extracted from ear samples using a TIANamp
Blood DNA Kit (catalog number DP348; Tiangen, Beijing).
Genotyping was performed on 50697 SNPs across the entire pig
genome using a PorcineSNP50 BeadChip (Illumina, San Diego,
CA, United States). Quality control was performed using PLINK
1.9 software (Chang et al., 2015). Individuals with call rates (CR)
less than 95% were removed and then SNP with CR less than 95%,
minor allele frequencies (MAF) < 5%, or significant deviation
from the Hardy–Weinberg equilibrium (HWE; P < 10 × 10−6)
were removed. After genotype quality control, no individuals
were removed, and 41272 SNPs remained for further analysis.

Genome-Wide Association Study
In this study, two different single-trait methods, single SNP linear
model GWAS (LM-GWAS) and single-step GWAS (ssGWAS)
were implemented to identify significant SNPs associated with
FE related traits.

Linear Model GWAS (LM-GWAS)
A single SNP marker linear regression model was performed
using the following single-trait animal model to detect the
association of SNP with the four FE related traits, respectively.
In order to control population stratification and to account for
shared genetic effects of related individuals, a random polygenic
effect was included in this model (Sanchez et al., 2014):

y = µ+ batch+ bx+ g+ e

where, batch is the fixed effect of the batch; b is the average
effect of the gene substitution of a particular SNP; x is a vector
of the SNP genotype (coded as 0, 1, or 2); g is a vector of
random polygenic effects with a normal distribution g∼N(0,
Gσ2), in which σ2 is the additive polygenic variance, and G is
the genomic relationship matrix constructed using all markers
following Yang et al. (2011) e is a vector of residual effects with
a normal distribution e∼N(0, Iσe2), where I is the identity matrix
of appropriate dimension and σe

2 is the residual variance. For
each SNP marker, the estimation of b and its sampling variance
σb

2 can be obtained through the mixed model equations.

Single-Step GWAS (ssGWAS)
Compared to LM-GWAS, the following single-trait animal model
in ssGWAS proposed by Wang et al. (2012) can simultaneously
use all the SNP information:

y = Xb+ Zu+ e

where b is the fixed effect of batch; u is the vector of additive
genetic effects with a normal distribution µ∼N(0, Gσµ

2), σu
2 is

the additive genetic variance, and G is same as in LM-GWAS. X
and Z are incidence matrices of y related to b and u, respectively.

The effect of each SNP can be estimated by ssGWAS, following
Aguilar et al. (2019) the P-value of each SNP was calculated:

pi = Pt

 ûi√
σ̂2

i /n
, n− 1


where Pt is the distribution function of t distribution, ui is ith SNP
effect, σ̂i

2 is the genetic variance of ith SNP, n is the number of
animals with ith SNP.

The software GCTA (Yang et al., 2011) was used for the
LM-GWAS method. The genetic variance of each SNP was
also provided. For ssGWAS, blupf90 was to estimate genomic
breeding values that were used to further estimate SNP effects and
P-values via postGSf90 (Aguilar et al., 2018).

In order to control false positives, the False Discovery Rate
(FDR) method for multiple testing was used (Benjamin and
Hochberg, 1995; Weller et al., 1998). FDR was calculated as:

FDR =
m× PMax

n

where m is the number of times to be tested, n is the number
of significant SNPs at assigned FDR level, e.g., 0.01. PMax is
the genome-wide significance level empirical P-value of FDR
adjusted. Based on the P-values of SNPs obtained by two different
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methods, the empirical P-value of FDR adjusted at the genome-
wide significance level of 0.01 was calculated on each trait for two
methods in this study.

Population Stratification
In order to assess the influence of population stratification on
the GWAS, A quantile-quantile (Q-Q) plot was generated using
PLINK 1.9 software.

Identification of Candidate Genes
After identifying significant SNPs by GWAS, the genes located in
or overlapping between the 0.25 Mb downstream and 0.25 Mb
upstream region of the significant SNPs were determined using
the Ensembl (Sus scrofa 11.1 genome version).2 QTLdb3 was used
to annotate significant SNPs located in previously mapped QTLs
in pigs. To identify the related pathways and function annotation,
KEGG4 and Gene Ontology analyses5 were performed.

RESULTS

Genetic Correlations of FE Related Traits
The genetic correlations of FE related traits ranged from 0.12
to 0.90, while the standard errors of all genetic correlations
were high. Among the four FE related traits, FCR had the
highest genetic correlations of 0.90 with ADFI, while it had the
lowest genetic correlation of 0.12 with ADG. The corresponding
standard errors were 0.17 and 0.59. The genetic correlation
between FCR and RFI was 0.72 with standard error of 0.18.
Similarly, the genetic correlation of RFI with ADFI was 0.71 with
standard error of 0.14. The genetic correlations of ADG with
ADFI and RFI were 0.51 and 0.38 with standard errors of 0.34
and 0.44, respectively.

Population Stratification
False-positive results for significant SNPs are the most critical
problem in GWAS. Therefore, it is essential to control population
stratification and reduce the occurrence of false-positive results.
The quantile-quantile plots (Q-Q plots) show that the influence of
population stratification was negligible (Figure 1). Moreover, the
average genomic inflation factors (λ) for the four FE related traits
were close to 1 (range 1.02–1.09). The QQ plots and λ suggest that
there were little or no residual population structure effects on the
test statistic inflation. Despite the small sample size, the results of
GWAS were reasonable and worth further investigation.

Identification of Significant SNPs and
QTL Regions Associated With FE
Related Traits
All significant SNPs associated with the four FE related
traits (FCR, ADG, ADFI, and RFI) identified by GWAS are

2http://www.ensembl.org/Sus_scrofa/Info/Index/
3http://www.animalgenome.org/cgi-bin/QTLdb/SS/download?file=gbpSS_11.1
4http://www.kegg.jp/kegg/pathway.html/
5http://www.pantherdb.org/

illustrated in Supplementary Tables 1, 2 and Figures 2, 3.
In LM-GWAS and ssGWAS methods, the empirical P-values
of a multiple testing based on FDR adjusted at the genome-
wide significance level of 0.01 for FCR were 7.48 × 10−4

and 7.17 × 10−4, respectively. For ADG, ADFI and RFI, the
genome-wide empirical P-values obtained by LM-GWAS
were 5.64 × 10−4, 6.53 × 10−4 and 7.58 × 10−4, and
ssGWAS were 5.24 × 10−4, 6.16 × 10−4 and 5.89 × 10−4,
respectively. A total of 55 and 50 genome-wide significant
SNPs were found by LM-GWAS and ssGWAS methods, 32
SNPs out of them were common (Figure 4). Among the
55 significant SNPs identified by the LM-GWAS method,
15, 11, 13, and 16 SNPs were related to FCR, ADG, ADFI,
and RFI, and correspondingly explained 2.66, 1.33, 1.64,
and 1.80% additive genetic variance, respectively. These
SNPs were mainly located on all autosomes except SSC15
(Supplementary Table 1). Among them, two significant
SNPs (WU_10.2_6_122065838, WU_10.2_4_116973174) were
associated with both ADFI and RFI. The ssGWAS method
identified 9, 13, 17, and 11 significant SNPs associated with
FCR, ADG, ADFI and RFI, which were mainly located
on SSC3, 4, 8, 9, and 17, respectively (Supplementary
Table 2), and explained 1.20, 1.79, 2.07, and 1.29% additive
genetic variance. Among the 50 SNPs, three common SNPs
(WU_10.2_6_122065838, ALGA0049005 and ALGA0019602)
were all significant in both ADFI and RFI. In addition,
the SNP WU_10.2_6_122065838 was also identified in
the LM-GWAS method.

Meanwhile, 13 regions were identified by two methods,
as shown in Table 2. Among them, eight common regions
were found by two different methods. Three regions for
FCR were found located on SSC7, SSC17, and SSC18,
respectively. Four regions for ADG were identified on SSC2,
SSC3, SSC4, and SSC5. Four regions for ADFI and five
regions for RFI were also identified. Among them, one
region for ADG and ADFI, and two regions for ADFI and
RFI overlapped. According to Pig QTLdb,1 eight regions
identified in our study overlapped or were close to the
reported QTLs related to FCR, ADG, ADFI, and RFI. Among
them, four regions overlapped and four regions were nearby
the reported QTLs.

Identification of Candidate Genes
All the significant SNPs identified by the two methods were
annotated within the 0.25 Mb downstream and upstream region
with reference to the Sus scrofa 11.1 genome assembly. GO
analysis separately revealed 12 candidate genes for LM-GWAS
and 7 candidate genes for ssGWAS (Table 3). Combined these
two methods, 13 positional candidate genes were detected
for the four FE related traits. Among them, six genes had
function related to FCR, two genes for ADG, four genes
for ADFI, and two for RFI. These 13 candidate genes have
a highlight biology function with FE, which involved in
biological processes such as lipid metabolism, carbohydrate
metabolism, lipid transport, and regulation of insulin secretion.
Among them, six genes were identified in both LM-GWAS
and ssGWAS methods.
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FIGURE 1 | Quantile–quantile plots of GWAS for four feed efficiency traits in a Landrace population. FCR, Feed conversion ratio; ADG, Average daily gain; ADFI,
Average daily feed intake; RFI, Residual feed intake. The x-axis and the y-axis represent the expected and observed -log10(P-value). (A) FCR. (B) ADG. (C) ADFI.
(D) RFI.

DISCUSSION

Sample Size for GWAS
Sample size is a key factor for the efficiency of GWAS; one
drawback of this study is that only 296 Landrace pigs were used to
detect the genetic variants related to FE related traits. Compared
to other traits, the measurements of FE related traits are usually
difficult. Besides, it is not easy to acquire a large sample size. For
instance, Ding et al. (2017) used a comparable population size of
338 Duroc boars to detect feeding behavior and eating efficiency
by GWAS. Ramayo-Caldas et al. (2019) integrated GWAS and

gene expression to identify putative regulators and predictors of
FE using 350 Duroc pigs. To minimize the effect of the small
sample size on GWAS, the phenotypes were strictly measured in
this study, and two different methods were implemented, which
adopted a single-marker only or multiple SNPs simultaneously to
take into account the genetic correlations among relevant traits.

Genetic Correlations and Significant
SNPs With Pleiotropy
GWAS performed in pigs revealed significant associations
for economically-relevant traits. In recent years, researches
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FIGURE 2 | Manhattan plot of the genome-wide association analysis on four feed efficiency traits by using linear model GWAS (LM-GWAS) method. FCR, Feed
conversion ratio; ADG, Average daily gain; ADFI, Average daily feed intake; RFI, Residual feed intake. In the Manhattan plots, negative log10 P-values of the
quantified SNPs were plotted against their genomic positions. The x-axis and the y-axis represent the number of chromosome and the observed -log10(P-value),
respectively. Different colors indicate various chromosomes. The blue lines indicate the genome-wide significant thresholds of FDR adjusted, respectively. For
(A) FCR, it was 7.48 × 10−4. Similarly, (B) ADG was 5.64 × 10−4, (C) ADFI was 6.53 × 10−4, and (D) RFI was 7.58 × 10−4.

performed GWAS on FE related traits, unveiling high genetic
correlations. For instance, Godinho et al. (2018) found that in
purebred pig ADFI highly genetically correlates with FCR (0.71)
and RFI (0.73), respectively. FCR had a high correlation with
RFI (0.82). Do et al. (2013) also found high genetic correlations
between FE related traits in Landrace. They found the genetic
correlation of ADG and ADFI was 0.72. RFI had highly genetic
correlations with FCR (0.91) and ADFI (0.84). Similar results
were also found in our study (Table 2). Furthermore, our
results showed that some significant SNPs with pleiotropic
effects were identified. Four SNPs were significantly associated

with both ADFI and RFI. Moreover, significant SNPs identified
in GWAS overlap between some extent for these two traits.
Based on the regions of merging neighbored significant SNPs,
significant SNPs for ADFI (4 SNPs) and RFI (2 SNPs) were
located in a region of 105.57–106.83 Mb on SSC4. Similarly,
the regions of 102.88–105.56 Mb on SSC8 correlated with both
RFI and ADFI. We speculate that due to the pleiotropy of
the SNPs associated with one trait (ADFI/ RFI), these traits
tend to affect multiple additional phenotypes. Likewise, in cattle,
many concordant QTLs between RFIp (calculated from linear
phenotypic regression) and RFIg (calculated from linear genetic
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FIGURE 3 | Manhattan plot of the genome-wide association analysis on four feed efficiency traits by using single-step GWAS (ssGWAS) method. FCR, Feed
conversion ratio; ADG, Average daily gain; ADFI, Average daily feed intake; RFI, Residual feed intake. In the Manhattan plots, negative log10 P-values of the
quantified SNPs were plotted against their genomic positions. The x-axis and the y-axis represent the number of chromosome and the observed -log10(P-value),
respectively. Different colors indicate various chromosomes. The blue lines indicate the genome-wide significant thresholds of FDR adjusted, respectively. For
(A) FCR, it was 7.17 × 10−4. Similarly, (B) ADG was 5.52 × 10−4, (C) ADFI was 6.16 × 10−4, and (D) RFI was 5.89 × 10−4.

regression) were reported by Nkrumah et al. (2007) 14 common
and 3 distinct QTLs were identified for the two RFI measures.

The Comparison of Different Methods
Single SNP regression model is widely used in GWAS to
identify the association of SNP with traits of interest, whereas
it usually yields a high false-positive rate due to ignoring the
linkage disequilibrium between adjacent SNPs. Some researchers
investigated a haplotype-based sliding window strategy to reduce
the false-positive by using multiple SNPs simultaneously. Some
studies indicated that sliding window could result in different

QTL regions, genes and SNPs with a single SNP method
(Guo Y. et al., 2008; Braz et al., 2019) while some results
showed that sliding window for GWAS could be complementary
to single SNP analysis (Lorenz et al., 2010; Guerra et al.,
2019). The controversy may perhaps depend on the different
genetic architecture of the target trait. Recently, ssGWAS, which
enables simultaneous analysis of an extensive array of SNPs,
demonstrated its superiority in the reduction of false-positive
rates (Wang et al., 2012). Therefore, ssGWAS and LM-GWAS
were both used in our study to reduce false-positive rates and
identified the correctness of our results. Our results reinforce the
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FIGURE 4 | Venn plot of significant SNPs in two methods. Significant SNPs
by linear model GWAS (LM-GWAS) and single-step GWAS (ssGWAS) for four
traits.

high consistency of these two methods, in which 32 common
significant SNPs were identified by both methods (Figure 4).
Meanwhile, Wang et al. (2014) reported that ssGWAS and a
single-marker model had similar results in broiler chickens. So
all these two methods could improve the power of GWAS and
the accuracy of significant SNPs selected.

QTLs Related to FE Related Traits
Alignment of the genetic and physical maps on the Sus scrofa
11.1 genome assembly (Pig QTLdatabase) enabled comparison of
the QTLs detected in our study with previously described QTL
regions, and several of QTLs were selected for further analysis.
The most prominent common regions for FCR were identified
on SSC17, and 18. A QTL from this study located at 20.48–20.96
Mb on SSC18 coincides with a QTL identified for ADG in a
Duroc sire population mapped across the region of 21.47–21.47
Mb (Wang et al., 2015). For ADFI, the most promising QTLs were
detected on porcine SSC9. A QTL located at 128.77–129.09 Mb
on SSC9 overlapped with a QTL for ADFI in a pig line (Reyer
et al., 2017). In addition, other QTLs located in 1.15–2.69 Mb
(SSC17) for FCR and 0.35–0.54 Mb (SSC3) for ADG were all also
consistent with QTLs for BW (Guo Y. M. et al., 2008; Fan et al.,
2009). Two interesting regions containing all 6 significant SNPs
for both ADFI and RFI were detected in the regions of 105.57–
106.83 Mb on SSC4 and 102.88–105.56 Mb on SSC8. Among
them, the QTL located in 105.57–106.83 Mb overlapped with two
identified QTLs for FCR in the regions of 105.64–105.64 Mb and
106.51–124.31 Mb (Wang et al., 2015). Thus, this QTL has been
independently discovered in different populations for ADFI/RFI
and FCR, which further supports the biological relevance of
common genetic variation on FE related traits (Becker et al.,
2013). Another QTL for ADFI/RFI traits located at 102.88–105.56
Mb on SSC8 found in this study was in close proximity to a
QTL (107.04–113.33 Mb) for ADG reported by Haggman and
Uimari (2017). The remaining QTL regions for ADG identified
in this study on SSC2 and 5 were close to regions affecting FE

related traits and growth rate according to literature reports (Fan
et al., 2009; Rothammer et al., 2014). Gregersen et al. (2012)
reported a limited overlap of QTL for a particular trait between
breeds. Although the sample size was limited, our result also had
a large number of overlapping and coinciding QTL regions is in
accordance with others’ GWAS results, and it suggests that our
present study is reliable and accurate in a certain extent, and
worth of further research for verifying candidate genes.

Potential Candidate Genes
Potential Candidate Genes for FCR
Growth rate and feed intake were major influencing factors
of FCR. One candidate gene Phospholipase A2 Group IB
(PLA2G1B), which can encode a secreted member of the
phospholipase A2 (PLA2), is crucial for the biological functions
of lipid metabolic and catabolic processes. Hollie and Hui (2011)
found that PLA2G1B affects the inhibition of lysophospholipid
absorption, and limits lipid catabolic process. Additionally,
PLA2G1B also produces lysophospholipids that limit hepatic
fat catabolism and reduce energy consumption (Labonte et al.,
2010). In previous studies on pigs, lipid metabolism pathway
and energy pathway closely associated with RFI in muscle and
adipose tissues (Lkhagvadorj et al., 2010; Vincent et al., 2015;
Gondret et al., 2016). The PLA2G1B gene can have an effect on
lipid metabolism in pigs and thus, on FCR, the ratio between feed
intake and BW gain. Another candidate gene, Sirtuin 4 (SIRT4),
has a vital role in glutamine metabolism and negative regulation
of insulin secretion. Some researchers found that this gene is
a regulator of insulin secretion, and it can reduce pancreatic
insulin secretion (Anderson et al., 2017; Zaganjor et al., 2017;
Huynh et al., 2018). Insulin sensitivity modulation and glucose
handling influence energy metabolism and FE related traits
(Fontanesi et al., 2012). Moreover, Do et al. (2014b) reported that
insulin secretion affects the metabolic process of carbonization,
which drives feed intake and FCR. In a previous study, lower
insulin secretion led to a decrease in RFI, which triggered fat
deposition (Hoque et al., 2009). The other four candidate genes
(PLCL2, phospholipase C like 2; SPAM1, Sus scrofa sperm adhesion
molecule 1; HYAL4, hyaluronidase 4; ENSSSCG00000016602)
which were reportedly related to FE traits in pigs, are similarly
involved in fat synthesis and decomposition processes, as well as
insulin and lipid metabolism, and lipid transport.

Potential Candidate Genes for ADG
An important FE related trait is ADG, and many animal
nutritionists consider this trait to be a major ethological concern.
The most significant locus, ASGA0036538, was closest to the G
Protein-coupled Estrogen Receptor 1 (GPER1) gene. GPER1 is
associated with positive regulation of insulin secretion, inhibition
of fat cell differentiation (Williams, 2012) and insulin signal
pathway (Kumar et al., 2011). Hayes et al. (2011) reported that the
GPER1 gene could stimulate the release of insulin and prevent the
apoptosis of pancreatic beta cells. Although GPER1 has not been
reported in pigs, it was associated with activate estrogen receptors
involved in the hypothalamic control of multiple homeostatic
functions in mice, such as energy metabolism (Hadjimarkou
and Vasudevan, 2018). Do et al. (2014a) found that genes
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TABLE 2 | Quantitative traits loci (QTLs) related to four feed efficiency traits.

Traita Methodb Chromosome Region (Mb)c Nd QTL region (Mb)e Traits related with QTL

FCR a 7 45.83–45.86 2 45.10–53.98 Average daily gain (Quintanilla et al., 2002)

a&b 17 1.15–2.69 7 0.44–20.053 Body weight (Guo Y. M. et al., 2008b)

a&b 18 20.48–20.96 2 21.47–21.47 Average daily gain (Wang et al., 2015)

ADG a&b 2 147.07–147.11 2 148.27–148.27 Body depth/width (Fan et al., 2009)

a&b 3 0.35–0.54 3 1.79–4.20 Body weight (Fan et al., 2009)

a&b 5 8.85–8.87 3 9.29–9.29 Average daily gain (Rothammer et al., 2014)

ADG\ADFI b 4 120.99–121.96 5 120.51–134.90 Body weight (Bartenschlager and Geldermann, 2003)

ADFI a&b 9 128.77–129.09 2 128.00–128.99 Daily feed intake (Reyer et al., 2017)

128.99–147.51 Body weight (10 weeks) (Yoo et al., 2014)

ADFI\RFI a&b 4 105.57–106.83 6 105.64–105.64 Feed conversion ratio (Wang et al., 2015)

106.51–124.31 Average daily gain (Malek et al., 2001)

a&b 8 102.88–105.56 6 107.04–113.33 Feed intake per feeding (Ding et al., 2017)

RFI b 9 112.25–112.31 3 114.32–123.52 Lipid accretion rate (Duthie et al., 2008)

a 11 5.38–6.37 2 6.01–6.99 Residual feed intake (Jiao et al., 2014)

16.03–16.08 3 15.85–15.85 Feed conversion ratio (Horodyska et al., 2017)

aFCR, Feed conversion ratio; ADG, Average daily gain; ADFI, Average daily feed intake; RFI, Residual feed intake. ba = linear model GWAS (LM-GWAS), b = single-step
GWAS (ssGWAS). cRegion (Mb) = the merging of neighbored significant SNPs. dN = Number of significant SNPs in the region. eQTL region (Mb) = The QTL regions
reported in Pig QTLdb. Values in bold had an overlap region with QTLs for FE related traits in Pig QTLdb.

TABLE 3 | Significant SNPs and related genes for four feed efficiency traits.

Traita Methodb SNP name Chromosome Position (bp) Genec Distanced Gene function

FCR a&b WU_10.2_13_3842462 13 3,655,526 PLCL2 -150,373 Lipid catabolic process

a ASGA0062927 14 40,507,969 SIRT4 +204,081 Negative regulation of insulin
secretion

PLA2G1B +185,650 Lipid metabolic process

a ASGA0062929 14 40,548,521 PLA2G1B +226,202 Lipid metabolic process

a ALGA0097485 18 23,538,749 SPAM1 -51,203 Carbohydrate metabolic process

HYAL4 -85,477

ENSSSCG00000016602 -88,233

ADG a&b ASGA0100941 2 147,068,762 PRELID2 -40,819 Phospholipid transport process

a&b WU_10.2_2_153522747 2 147,112,980 PRELID2 Within Phospholipid transport process

a&b WU_10.2_3_329436 3 537,968 GPER1 -174,192 Positive regulation of insulin secretion;
negative regulation of lipid
biosynthetic process

ADFI a ASGA0005581 1 203,367,107 ACER2 -19,714 Lipid metabolic process

b ALGA0019602 3 68,298,863 HK2 +67,248 Glucose metabolic process; glycolytic
process

a&b ALGA0065251 12 14,839,808 TEX2 Within Lipid transport process

ICAM2 -42115 Insulin metabolic process

RFI b ALGA0019602 3 68,298,863 HK2 +67,248 Glucose metabolic process; glycolytic
process

b WU_10.2_11_4727497 11 50,92,611 PDX1 -211,028 Glucose metabolic process; insulin
secretion

a&b ALGA0060467 11 53,79,554 PDX1 +68,711 Glucose metabolic process; insulin
secretion

aFCR, Feed conversion ratio; ADG, Average daily gain; ADFI, Average daily feed intake; RFI, Residual feed intake. ba , linear model GWAS (LM-GWAS); b, single-step GWAS
(ssGWAS). cPLCL2, Phospholipase C Like 2; SIRT4, Sirtuin 4; PLA2G1B, Phospholipase A2 Group IB; SPAM1, Sperm Adhesion Molecule 1; HYAL4, Hyaluronidase 4;
PRELID2, PRELI Domain Containing 2; GPER1, G Protein-coupled Estrogen Receptor 1; ACER2, Alkaline Ceramidase 2; HK2, Hexokinase 2; TEX2, Testis Expressed 2;
ICAM2, Hexokinase 2; PDX1, Pancreatic and Duodenal Homeobox 1. d

+/-: The SNP located in the upstream/downstream region of the nearest gene.

which are involved in insulin signaling and energy metabolism
pathway played an important function in the regulation of
FE related traits, such as RFI. Our study confirmed previous
investigations. As to PRELI Domain Containing 2 (PRELID2),

which is associated with phospholipid transport process and
related pathway. In previous GWAS studies on pigs, the PRELID2
gene has been reported to be associated with reproduction traits
in Yorkshire pigs (Wang et al., 2018). Its relation to ADG, to
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the best of our knowledge, this genetic association was reported
in pigs for the first time. Auqui et al. (2019) found that fatter
pigs had higher cholesterol levels, suggesting a link between
cholesterol levels and body weight. Their results demonstrated
that PRELID2 could significantly regulate body weight through
cholesterol levels. The three genes above were found by both
LM-GWAS and ssGWAS methods.

Potential Candidate Genes for ADFI
Some breeders are concerned about ADFI because this trait is
highly associated with FE and growth rate (Do et al., 2013).
Both LM-GWAS and ssGWAS methods identified a significant
locus, ALGA0065251. According to the annotation, Intercellular
adhesion molecule 2 (ICAM2) and Testis expressed 2 (TEX2)
are associated with ADFI. ICAM2 has a key function in glucose
stimulus and insulin metabolic process (Qiu et al., 2008). The
relation between insulin signaling pathway and RFI has been
shown in pigs (Do et al., 2014b) and cattle (Chen et al., 2012;
Rolf et al., 2012). In pigs, ICAM2 gene is reported a meat
quality traits involved in lipid metabolism and intramuscular fat
deposition (Jeong et al., 2015). Researchers suggested that ICAM2
was closely related to glucose stimulus and insulin metabolic
processes, which are important for FE. Grefhorst et al. (2019)
reported that TEX2 promotes the transfer of cholesterol and
other lipids in different cyclic lipoprotein. Our results show that
TEX2 is associated with the ADFI trait in Landrace pigs for
the first time. Of note, a strong association between TEX2 and
FE, and growth rate in broilers was reported (Willson et al.,
2017). Another candidate gene Alkaline Ceramidase 2 (ACER2),
is closely associated with lipid metabolism (Zhang et al., 2019).
This gene was identified by the LM-GWAS method. Several
studies also support the notion that lipid metabolism is associated
with RFI in pigs (Lkhagvadorj et al., 2010) and cattle (Herd and
Arthur, 2009). Lkhagvadorj et al. (2010) found many genes in
fat and liver that were differently expressed in low and high
RFI pigs in response to caloric restriction and indicated that
lipid metabolic pathways were important for regulation of RFI.
Nevertheless, the lipid metabolic process is a very broad term, and
therefore it might be worthy of further investigation to identify
the exact sub-process that are involved in ADFI metabolism.
Besides, one candidate gene (HK2, Hexokinase 2) was identified
by the ssGWAS method. This gene was reportedly associated with
glucose metabolism, insulin secretion, and glycolytic regulation
(Wei et al., 2016; Miller et al., 2019). Our findings support a better
understanding of the ADFI trait in pig lipid metabolism.

Potential Candidate Genes for RFI
RFI is an essential trait for animal husbandry and many studies
have been conducted to investigate the genetic architecture
underlying this trait. A variety of pathways may mediate RFI,
such as hormones and growth factors that act through receptor
tyrosine kinases [e.g., epidermal growth factor (EGF), insulin]
(Hayes et al., 2011). Only one common locus ALGA0060467 was
found significantly associated with RFI in the current study and
it is located the upstream of the Pancreatic Duodenal Homeobox
1 (PDX1). SNP, WU_10.2_11_4727497, associated with RFI was
identified by ssGWAS method, it is also close to PDX1. Notably,

the direct link between PDX1 and FE related traits has not been
reported previously in pigs. Interestingly, PDX1 is associated
with some classical pathways such as glucose/energy metabolism
and insulin secretion pathway. In the adult endocrine pancreas,
PDX1 is a pivotal factor for the up-regulation of insulin gene
transcription that, in turn, regulates somatostatin, the expression
of glucokinase, glucose transporter protein-2, and islet amyloid
peptide (Park et al., 2008). Do et al. (2014b) reported that insulin
signaling pathway plays important roles in controlling RFI in
Duroc pigs, and it has been shown that insulin also affects
feed intake and feed behavior in chickens (Shiraishi et al., 2008,
2011). Moreover, many reports showed that PDX1 was closely
related to porcine pancreas development (Choi et al., 2009) and
diabetes (Matsunari et al., 2014). Pancreas and diabetes are closely
related to feed intake, digestion, absorption, and metabolism.
Hence, PDX1 might exert a vital function on feed intake and feed
behavior. Another gene HK2, was found significantly associated
with both RFI and ADFI by using the ssGWAS method as
mentioned before.

CONCLUSION

In summary, the present study indicated that the result of LM-
GWAS and ssGWAS methods are highly consistent. Combining
LM-GWAS and ssGWAS improved not only the power of GWAS
in a small population but also allowed screening of candidate
genes with high reliability (such as PLA2G1B and PRELID2).
This study provides a better understanding of the genetic
mechanisms underlying feed efficiency related traits, which offers
an opportunity for increased feed efficiency using marker-assisted
selection or genomic selection in pigs.
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