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A high-throughput assay for 
quantitative measurement of PCR 
errors
Dmitriy A. Shagin1,2,3, Irina A. Shagina2,3, Andrew R. Zaretsky2,3, Ekaterina V. Barsova1,3, Ilya 
V. Kelmanson1,3, Sergey Lukyanov1,2, Dmitriy M. Chudakov   1,4,2,5 & Mikhail Shugay1,2,5

The accuracy with which DNA polymerase can replicate a template DNA sequence is an extremely 
important property that can vary by an order of magnitude from one enzyme to another. The rate of 
nucleotide misincorporation is shaped by multiple factors, including PCR conditions and proofreading 
capabilities, and proper assessment of polymerase error rate is essential for a wide range of sensitive 
PCR-based assays. In this paper, we describe a method for studying polymerase errors with exceptional 
resolution, which combines unique molecular identifier tagging and high-throughput sequencing. Our 
protocol is less laborious than commonly-used methods, and is also scalable, robust and accurate. In 
a series of nine PCR assays, we have measured a range of polymerase accuracies that is in line with 
previous observations. However, we were also able to comprehensively describe individual errors 
introduced by each polymerase after either 20 PCR cycles or a linear amplification, revealing specific 
substitution preferences and the diversity of PCR error frequency profiles. We also demonstrate that the 
detected high-frequency PCR errors are highly recurrent and that the position in the template sequence 
and polymerase-specific substitution preferences are among the major factors influencing the observed 
PCR error rate.

Polymerase error rate is a critical factor affecting the accuracy of a wide range of molecular biology techniques, 
including DNA cloning1, PCR-based single-nucleotide polymorphism (SNP) and mutation detection2 and library 
preparation for high-throughput sequencing3, 4. Correct assessment of polymerase fidelity is therefore a prerequi-
site for obtaining robust and reproducible results in a wide variety of studies5.

The earliest PCR fidelity assay was a cloning-based technique6, which was successfully used to assess the 
fidelity of various DNA polymerase enzymes7. Techniques based on direct sequencing of PCR cloning products 
are commonly used at present8. The main drawback of these assays is that they are not very scalable: sequencing 
individual clones is laborious, and it is not feasible to gather a sample of errors large enough to comprehensively 
describe error patterns and frequency distribution. The latter information is highly valuable due to the remarkable 
difference in individual error frequencies, as discussed below.

High-throughput sequencing-based methods can in theory overcome the problem of cloning-based methods, 
but relatively poor sequencing quality turns out to be the limiting factor when quantifying polymerase accuracy. 
With typical quality scores of Phred 30–40, the sequencing error rate of Illumina instruments is more than an 
order of magnitude higher than the error rates of high-fidelity polymerases. Moreover, the sequencing quality 
and error rate are nucleotide-specific9, leading to additional biases when attempting to estimate PCR error rate 
from sequencing data. It was previously pointed out10 that the Roche 454 platform can be used to overcome these 
limitations due to its low substitution error rate11. However, this instrument’s low read yield and variable read 
length make it unfeasible to conduct a comprehensive study involving multiple polymerases and template mole-
cules. Accordingly, the original study with the Roche 454 system relied on single template molecules obtained by 
limiting dilution. This led to an indirect per-base-per-cycle error rate estimate, drawn from a two-step PCR with 
60 cycles separated by a limiting dilution step. Moreover, this setup cannot fully rule out the presence of residual 
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sequencing errors, as the overall PCR error rate was estimated to be 0.06%10, while 454 sequencing can only reli-
ably call variants with greater than 0.1% frequency11.

To overcome this limitation, we have turned to a technique based on unique molecular identifiers (UMI)12–14, 
which makes it possible to trace individual DNA templates throughout different library preparation stages. This 
technique has been successfully combined with high-throughput sequencing in various configurations for a wide 
range of applications that require precise quantification of rare variants13, 15, 16. Our template DNA molecules are 
subjected to two rounds of PCR amplification. By introducing a sampling bottleneck after the first PCR reaction, 
we were able to discriminate errors introduced during that PCR procedure from those that are introduced in sub-
sequent amplification and sequencing steps. Using this approach, we have observed specific PCR error patterns 
that are recurrent and are highly specific for each polymerase. Our results reveal the complexity of the frequency 
distribution of individual PCR errors, which vary greatly across substitution types and positions in the template 
and cannot be evaluated with a single mean error rate estimate. Using a DNA library that was not subjected to 
PCR amplification prior to sequencing, we demonstrate that the errors associated with high sequencing quality 
scores resemble the PCR error pattern, providing evidence for bridge-PCR amplification errors in high-filtered 
high-throughput sequencing data. Our analysis also shows that the position in the template sequence and 
polymerase-specific substitution preferences are among the major factors influencing PCR error rate.

Results
A high-throughput sequencing assay for PCR error quantification.  Our protocol involves five steps 
(Fig. 1a). We began by tagging each input template molecule (step 1) with a random 14-mer nucleotide tag (UMI) 
in a linear amplification procedure, and then performing PCR amplification (step 2) with one of nine different 
assayed polymerases (see Materials and Methods and Table 1). This first PCR step consisted of 20 (25 for Phusion 
polymerase) cycles starting from a single-strand template; assuming the PCR efficiency to be 1.8 (ref. 17), we 
would expect ~105–106-fold amplification of the input DNA.

Next, we performed a series of dilutions to remove PCR duplicates generated during the 1st PCR step (step 3),  
ensuring that at most a single DNA molecule is sampled for each input template. These are then subjected to a 
second PCR step (step 4) of 22–29 cycles, followed by high-throughput sequencing analysis (step 5). Because of 
the dilution procedure, all sequencing reads with the same UMI tag are derived from copies generated during the 
second PCR step, and the most frequently detected sequence variant within the sequencing read group will rep-
resent the exact sequence that was sampled from the first PCR reaction. This strategy allows us to correct errors 
associated with the second PCR and sequencing steps by assembling a majority consensus sequence while pre-
serving errors produced at previous stages13, 15. The sequencing error correction in this case is trivial: for a sample 
of UMI tags each covered by five 100-bp-long reads and a sequencing quality of Phred 30 (0.1% errors per read at 
a given position), the probability of observing a sequencing error that is present in at least 3 out of 5 reads at the 

Figure 1.  Experimental design for UMI-based evaluation of PCR errors. (a) Schematic representation of our 
five-stage experiment to evaluate errors introduced during conventional PCR amplification. DNA molecules 
were tagged with unique molecular identifiers (UMI) using linear amplification (1), followed by PCR 
amplification with various polymerases (2). We predict approximately 1.3 × 105-fold amplification given a PCR 
efficiency of 1.8 and 20 cycles of PCR. Next, we performed a series of dilutions (~106-fold downsampling) (3) to 
ensure that no more than one molecule with a given UMI tag is subjected to a second round of PCR (4). Finally, 
the PCR-amplified pool was subjected to high-throughput sequencing. The downsampling step guarantees that 
errors produced during the first PCR will represent the more frequent variant within reads tagged with the same 
UMI after sequencing, clearly distinguishing them from errors introduced at subsequent stages. Sequencing 
reads were processed (5) to ensure that only errors from the first PCR are retained, while those arising during 
the second PCR step and sequencing errors are filtered. (b) A simpler protocol for evaluating the error rate of 
the linear amplification stage used for UMI attachment. Such errors are indistinguishable from those arising 
during the first PCR step in the experimental setup depicted in (a), and the results from this simpler procedure 
are used to adjust the error rates inferred for conventional PCR amplification.
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same position is less than 1 per million UMI tags. We then estimated the resulting error rate for each polymerase 
as the ratio of the number of errors in the consensus sequences to the product of the total number of UMI tags 
(templates), the template length, and the number of cycles in the first PCR step.

We additionally ran the same protocol without the dilution step between the first and second PCR (Fig. 1b), 
which allowed us to correct all PCR and sequencing errors except those introduced at the linear amplification 
stage. Notably, we found that the frequency of these linear amplification-associated errors is 5 ± 1 times higher 
(Table 1) than the per-cycle error rate of the subsequent PCR amplification. The latter can be attributed to two 
factors: higher dNTP concentration that increases the error rate7, and differences in polymerase efficiency, as the 
per-cycle error rate is inversely proportional to efficiency18. The dNTP concentration is greatly depleted over the 
course of 20 cycles19, and thus the mean dNTP concentration during the first PCR reaction step is smaller than 
at the start of the reaction. We observed the highest (~8-fold) and lowest (~2.9-fold) error rate ratio between the 
linear amplification and PCR reaction steps for the Phusion and Encyclo polymerase samples, respectively, which 
had the lowest and highest UMI tag count (Table 1) produced from the same starting amount of DNA, making 
these polymerases the least and most efficient, respectively. The expected number of linear amplification errors 
was then subtracted from the total number of errors for each sample to produce a final error rate estimate.

Our error rate estimates (Table 1) were in good agreement with previously published data8, and highly con-
sistent between two independent experiments (Table 1, Supplementary Figure 1, R = 0.97, P = 3 × 10−6). We 
observed a clear peak in the number of reads tagged with the same UMI for each polymerase (Supplementary 
Figure 2), suggesting that almost all of the individual molecules that were sampled after the first PCR step are 
found in the resulting sequencing read dataset. The correlation between individual UMI coverage and the number 
of cycles in the second PCR step (Supplementary Figure 3, R = 0.91, P = 2 × 10−8) further confirms that we were 
successful at implementing the sampling bottleneck, which ensures that only errors generated by the second PCR 
step and sequencing will be corrected by consensus assembly, leaving the errors from the first PCR step intact. The 
number of observed UMIs tags (Table 1) was highly variable across polymerases due to differences in efficiency. 
The lowest value was observed for Phusion polymerase (2,699 in two experiments combined), whereas Encyclo 
polymerase produced the highest value (287,076 in two experiments combined). On average, there were 110,236 
UMI tags per PCR assay in two experiments combined.

It is necessary to note that the Phusion polymerase yielded very few starting molecules despite having the 
highest number of amplification cycles and largest amount of input DNA (see Supplementary Table 3). This can 
be attributed to low polymerase efficiency, and can be dealt with by substantially increasing the amount of input 

Polymerase* Exp.
Error 
count UMI tags

Error rate, x10−5 
[95% CI]

Error rateLA, 
x10−5

Error ratecorr, 
x10−5 [95% CI]

Encyclo 1 24557 185560 4.30 [4.25, 4.35]
12.79

3.68 [3.63, 3.73]

Encyclo 2 14211 101516 4.55 [4.48, 4.62] 3.93 [3.86, 3.99]

Kapa HF 1 339 7876 1.40 [1.25, 1.55]
8.17

1.00 [0.88, 1.13]

Kapa HF 2 2519 57052 1.44 [1.38, 1.49] 1.04 [0.99, 1.08]

Phusion 1 30 1348 0.72 [0.47, 0.98]
4.99

0.48 [0.27, 0.69]

Phusion 2 23 1351 0.55 [0.33, 0.78] 0.31 [0.14, 0.48]

SD-HS 1 6714 33076 6.60 [6.46, 6.74]
26.89

5.29 [5.16, 5.42]

SD-HS 2 10362 58518 5.76 [5.66, 5.86] 4.45 [4.36, 4.54]

SNP-detect 1 457 13870 1.07 [0.97, 1.17]
5.04

0.83 [0.74, 0.91]

SNP-detect 2 848 32310 0.85 [0.80, 0.91] 0.61 [0.56, 0.66]

Taq-HS 1 1875 15137 4.03 [3.86, 4.20]
18.36

3.13 [2.98, 3.29]

Taq-HS 2 3113 24082 4.20 [4.07, 4.34] 3.31 [3.18, 3.43]

Tersus-buffer1 1 2550 46927 1.77 [1.70, 1.83]
5.98

1.48 [1.41, 1.54]

Tersus-buffer1 2 5504 154226 1.16 [1.13, 1.19] 0.87 [0.84, 0.89]

Tersus-buffer2 1 6282 130891 1.56 [1.52, 1.60]
5.1

1.31 [1.28, 1.35]

Tersus-buffer2 2 1299 30683 1.38 [1.30, 1.45] 1.13 [1.06, 1.19]

TruSeq 1 312 14164 0.72 [0.64, 0.79]
4.1

0.52 [0.45, 0.58]

TruSeq 2 362 16705 0.70 [0.63, 0.78] 0.50 [0.44, 0.57]

KTN 1 16802 132733 4.12 [4.06, 4.17]
12.92

3.49 [3.43, 3.54]

KTN 2 6298 44331 4.62 [4.51, 4.73] 3.99 [3.89, 4.09]

Table 1.  Error rate estimates from two independent experiments. The table shows the number of mismatches 
that remain after consensus sequence assembly for reads tagged with the same UMI, the total number of unique 
UMI tags observed, and error rate estimates for 20 (25 for Phusion) cycles of PCR amplification with a 150-bp 
template. Error rate estimates are provided as the number of erroneous bases per template base per cycle, with 
95% confidence intervals (CI) calculated using normal approximation for binomial proportions. Error rateLA 
represents estimates for the linear amplification step, while Error ratecorr represents the estimate of conventional 
PCR error rate after correcting for linear amplification errors. *Encyclo (Evrogen JSC), Kapa HiFi PCR Kit 
(Kapa Biosystems), Phusion High-Fidelity DNA Polymerase (NEB), SD-HS29, SNP-detect, HS Taq, Tersus 
in buffer 1 (Mg2+ 3.5 mM, Ph 8.5), Tersus in buffer 2 (Mg2+ 2.5 mM, Ph 8.0) (Evrogen JSC), TruSeq Custom 
Enrichment Kit (Illumina), KTN (KlenTaq N polymerase)30.
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DNA. Thus, careful protocol adjustments should be performed when dealing with low-efficiency polymerases. It 
was not feasible to study individual errors and nucleotide patterns for the amount of input molecules observed 
with Phusion, and this polymerase was therefore excluded from further analysis.

Substitution type preferences and unique fingerprint of PCR errors.  We next analyzed the fea-
tures of PCR errors inferred from datasets obtained as described above in the context of substituted nucleotide 
types, and compared them across tested polymerases. The strong preference for transitions (purine-purine and 
pyrimidine-pyrimidine substitutions) over transversions (purine-pyrimidine substitutions) in DNA polymerase 
errors has been extensively described, and was previously demonstrated for both DNA replication in living cells20 
and PCR reaction products8, although some notable counter-examples do exist21.

We computed ratios for A > C/T > G, A > G/T > C, A > T/T > A, C > A/G > T, C > G/G > C and C > T/G > A 
substitutions by determining the share of corresponding substitutions in each sample (Fig. 2a, top). The analysis 
of PCR errors produced during 20 PCR cycles shows that all polymerases display a strong transition error pref-
erence (Table 2), but fall into two categories based on the dominant substitution type: C > T and G > A for Kapa 
HF, SNP-detect, Tersus-buf1, Tersus-buf2 and TruSeq, and A > G and T > C for Encyclo, SD-HS, Taq-HS and 
KTN. We also analyzed error spectra from linear amplification, which has the advantage of preserving the strand 
information and therefore allows us to distinguish all twelve substitution types (Fig. 2a, bottom). Interestingly, at 
this level, several polymerases showed a dominant transversion error type: A > T for SD-HS, and C > A for Kapa 
HF, Taq-HS, and TruSeq (Table 3). Another peculiar observation is that 20% (the second most common error 
type) of TruSeq errors were G > T transitions, which are extremely rare for other polymerases. SD-HS, being the 
most error-prone polymerase, also showed the most uniform error spectrum.

While there are some general similarities between error spectra across polymerases, we decided to test 
whether each of them has a unique error fingerprint. We computed error profiles as the frequency of each of three 
possible substitutions at each template position and applied hierarchical clustering to these profiles (Fig. 2c). 
Interestingly, the clustering produced matching error profiles for each of the polymerases in two independent 
experiments. We identified four discrete clusters, with co-clustering of Kapa HF/TruSeq, SNP-detect/Tersus-buf1/
Tersus-buf2 and KTN/Encyclo/Taq-HS, with SD-HS as an outlier. These clusters are in partial agreement with the 
substitution type preferences shown in Table 3: Kapa HF/TruSeq are both C > A prone, SNP-detect/Tersus-buf1/
Tersus-buf2 show high G > A rate, and SD-HS is distinctive in terms of its dominant A > T substitution type. On 
the other hand, there was no evidence for clustering of error profile units (frequency value for a given position 
and substitution type) by substitution type, suggesting that the unique fingerprint of each polymerase is produced 
in a context-specific manner and is not completely defined by differences in the share of errors having certain 
substitution types.

Complexity of frequency distribution and recurrence of individual PCR errors.  Practical applica-
tions require careful assessment of background noise introduced by PCR—namely, the recurrence of PCR errors 
and their individual frequencies. As seen in Fig. 3, we detected high-frequency errors at a similar rate for all poly-
merases in 20 cycle PCR reactions in two independent experiments. These recurrent errors can reach a frequency 
of >0.1%, putting them in the sensitivity range of state-of-art assays for circulating tumor DNA detection22. 
Replicate experiments23 are unfeasible in this scenario, and therefore appropriate PCR error models and other 
techniques such as the UMI approach should be used instead for ultra-deep sequencing.

It has been previously demonstrated that mutations induced in living cells by DNA polymerase are distributed 
in a highly non-uniform manner, and genomes contain hot-spot regions with high mutation frequency24. This 
frequency variance is an important factor to take into account when building statistical models of PCR errors. 
The resolution provided by our protocol allowed us to study the distribution of individual error frequencies 
and substitution types, and their differences across polymerases. As can be seen from Fig. 4, the histogram of 
error frequencies is a complex mixture of distributions corresponding to different substitution types and cannot 
be described with a single mean error rate value for each polymerase. In some cases, such as C > T, G > A and 
A > G,T > C substitutions in KTN and Encyclo samples, these distributions are evident in the mixture.

Figure 4 highlights the important fact that describing error frequencies with a generic polymerase fidelity esti-
mate can be highly misleading. First, there is a strong variance in the frequency distribution across different substi-
tution types. Moreover, in many applications, such as detection of rare mutations in tumor and viral genomes13, 25  
and the characterization of T- and B-cell receptor sub-variants15, the accuracy of variant calling is limited by 
the probability of an error with a given substitution type occurring at a given position. If this probability is not 
known precisely, the distribution of error frequencies for the corresponding substitution type and the worst case 
of high-frequency errors should be taken into account instead of relying on the average PCR error rate.

Evidence of residual PCR errors in quality-filtered sequencing data from an unamplified 
library.  Illumina sequencing involves a bridge PCR step, where each solid phase-immobilized molecule is 
amplified to ~1,000 copies9. A PCR error at the initial step of the cluster generation process (or at the second step, 
in case of inefficient amplification) can produce a dominant erroneous variant that will be read from the clus-
ter13. These errors can limit the accuracy of ultra-deep sequencing, as they are not eliminated by increasing the 
sequencing quality or discarding low-quality base calls. To study the errors introduced at this step, we sequenced 
a cloned DNA library that was not subjected to PCR amplification prior to sequencing, and which contained 
the same template that was used for PCR error quantification. Sequencing errors were then filtered by raising 
the sequencing quality threshold. We expected that with an increase in quality threshold, the bridge-PCR error 
signature would become dominant as sequencing errors diminish.

Indeed, as can be seen in Fig. 5a, C > A and G > T errors become dominant beyond a quality threshold of 
Q30, a signature that closely resembles the one observed in the error spectrum of the TruSeq and Kapa HF 
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polymerases. For further validation, we computed the correlation between the error profiles of each linear ampli-
fication assay and the quality-filtered sequencing data. Figure 5b shows that the correlation between the sequenc-
ing error profile and the TruSeq error profile steadily increases with the rising quality threshold, whereas no such 

Figure 2.  Substitution type preferences and unique error profiles of different polymerases. (a) Share of each 
substitution type produced during 20 PCR cycles (top) and one cycle of linear amplification (bottom) in each 
sample. Substitution frequencies were normalized to the ratio of the corresponding base type in the template 
sequence. Note that linear amplification preserves the strand information and thus allows us to resolve all twelve 
possible substitution types. (b) Hierarchical clustering of PCR error profiles, computed as the frequency of each 
of three possible substitutions at each template position produced in two independent experiments. Correlation 
and Euclidean distance were used to cluster polymerases (columns) and substitutions (rows), respectively. The 
color panel at left shows substitution type, as represented in the legend at top.

Polymerase
A > C, 
T > G

A > G, 
T > C

A > T, 
T > A

C > A, 
G > T

C > G, 
G > C

C > T, 
G > A

Encyclo 4% 59% 5% 2% 1% 29%

Kapa HF 2% 10% 2% 14% 1% 71%

SD-HS 3% 31% 14% 5% 17% 30%

SNP-detect 5% 27% 1% 2% 1% 64%

Taq-HS 3% 56% 7% 7% 2% 25%

Tersus-buffer1 5% 35% 2% 6% 1% 52%

Tersus-buffer2 5% 45% 2% 2% 1% 46%

TruSeq 6% 13% 3% 25% 3% 50%

KTN 4% 60% 4% 2% 1% 29%

Table 2.  Frequency of substitution types produced during 20 PCR cycles. Relative frequency of each of 
six substitution types that can be inferred without strand information across all errors produced by each 
polymerase. We used pooled data from two independent experiments to construct the table, with frequencies 
normalized to the ratio of the corresponding base in the template sequence. The most frequent substitution for 
each polymerase is shown in bold.
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Polymerase A > C A > G A > T C > A C > G C > T G > A G > C G > T T > A T > C T > G

Encyclo 6% 22% 3% 10% 2% 19% 25% 1% 1% 1% 11% 1%

Kapa HF 3% 4% 1% 42% 1% 23% 16% 1% 7% 0% 2% 0%

SD-HS 5% 11% 22% 8% 7% 13% 16% 3% 4% 4% 6% 0%

SNP-detect 8% 9% 0% 5% 2% 26% 42% 0% 1% 1% 6% 0%

Taq-HS 4% 15% 8% 24% 2% 13% 19% 1% 2% 4% 8% 0%

Tersus-buffer1 9% 6% 0% 22% 1% 18% 38% 1% 1% 1% 4% 0%

Tersus-buffer2 10% 10% 0% 6% 2% 22% 40% 1% 1% 1% 7% 0%

TruSeq 5% 3% 1% 43% 1% 8% 15% 1% 20% 0% 2% 0%

KTN 6% 24% 3% 8% 2% 19% 26% 0% 1% 1% 10% 0%

Table 3.  Frequency of substitution types produced during linear amplification. Relative frequency of each of 
twelve possible substitution errors produced by each polymerase. We used pooled data from two independent 
experiments to construct the table, with frequencies normalized to the ratio of the corresponding base in the 
template sequence. The most frequent substitution for each polymerase is shown in bold.

Figure 3.  Recurrent high-frequency errors in two separate experiments. Scatter plots of individual substitution 
frequencies obtained from two independent experiments with 20 cycles of PCR. Red circles indicate PCR errors 
that were not detected in one of the experiments; in this case, their frequency is assumed to be 1 divided by the 
corresponding region coverage. Linear fitting is shown by blue lines.
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correlation is observed for the error profiles from other polymerases (except for a minor trend observed for Kapa 
HF). Moreover, clustering of the TruSeq error profile and sequencing error profiles at quality thresholds of Q10 
and Q35 shows that Q35 errors appear more similar to those produced by TruSeq than those observed at Q10 
(Fig. 5c). Overall, this provides evidence for persistent bridge-PCR sequencing errors that can limit the precision 
of sequencing, especially for high-quality Illumina HiSeq datasets.

Summarizing the contributions of different factors that affect PCR error rate.  So far, we have 
described individual polymerase substitution preferences, leaving aside the context and positioning of PCR 
errors. We next set out to build a model of PCR error rate that incorporates all of these aforementioned factors. 
We have used linear PCR data as it contains data from a single strand in contrast to 20 cycle PCR reaction and 
allows to distinguish all four bases and the exact position on the template with respect to PCR primer.

In order to examine the error rate across different parts of the template sequence, we normalized the error 
rate as follows: log-transformed error rate values for each sample and template base type were scaled to have zero 
mean and unit standard deviation. We observed a complex trend of error rate change with respect to position 
in the template, suggesting that some portions of the template are more error-prone, even when controlling for 
polymerase type and substituted nucleotide type (Fig. 6a).

We next fitted a linear model that explains the log-transformed error rate using error position on 
the template, GC content of the region surrounding the error, substituted nucleotide type, polymerase 
type and polymerase-specific substitution preference (i.e., interaction between substituted nucleotide- 
and polymerase-related factors). To account for the position factor, we divided the template into 15-bp 
non-overlapping bins and used the bin index as a categorical variable in our model. The contribution of each 

Figure 4.  Frequency distribution of individual PCR errors. The mixture of individual error (grouped by 
position and substitution type) frequency histograms for each substitution type (shown by color) in each 
sample. Dashed line shows the mean PCR error rate estimate after 20 PCR cycles.
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factor to the observed PCR error rate was then assessed using ANOVA (Fig. 6b). The type of polymerase explained 
28.4% (P < 10−132) of variance, followed by substituted nucleotide type (17.6%, P < 10−94), polymerase-specific 
substitution preference (11.1%, P < 10−49), position (9.4%, P < 10−47) and GC content (0.8%, P < 10−6). 
Interestingly, polymerase-related factors explained most of the known variance in PCR error rate (39.5%), and 
this relatively simple model explained as much as 67% of the overall error rate variance. On the other hand, the 
surrounding GC content has little influence on error rate, suggesting a non-trivial relationship between error rate 
and nucleotide context. The comparison of observed and fitted PCR error rates is shown in Fig. 6c; fitted values 
display good correlation with the observed error rate (R = 0.63, P < 10−116).

Discussion
Given the widespread use of high-throughput sequencing assays that include PCR amplification steps for 
high-precision tasks such as detection of ultra-rare mutations, it is critical to develop proper methodol-
ogy to quantify errors and artefacts that arise in the process of sequencing library preparation. Analysis of 
high-throughput sequencing data mostly relies on quality scores to measure the accuracy of variant calling, but 
it has become evident that even when sequencing errors are efficiently eliminated the data is not error-free, and 
in fact contains recurrent high-frequency PCR errors that undermine accuracy15, 26. This is further supported by 
our findings from this work (Figs 3–5), and comprehensive characterization of PCR error rate profiles will be a 
prerequisite for further development of methods such as rare mutation detection in tumor and viral genomes or 
monitoring of circulating tumor DNA.

The novel high-throughput, UMI-based PCR error rate assay described in the present work efficiently over-
comes the limitations of previous techniques, generating substantial PCR error statistics from a large population 
of individual DNA template molecules and several polymerases using a single HiSeq lane. With this method, we 
were able to reveal the complexity of polymerase error profiles and highlight non-uniform error rate distributions 
that are apparently fundamental characteristics of individual polymerase enzymes. While high-fidelity polymer-
ases have much lower error rates on average than their error-prone counterparts, we still observed some overlap 
between them at the level of individual error frequencies (Fig. 4). These high-frequency errors, being recurrent 
(Fig. 3) and having a rate of more than 10−4 (corresponding to an extremely high Phred quality score of 40) could 
be easily mistaken for real variants. However, the pattern of those high-frequency errors is in good agreement 
with the substitution preferences of the corresponding polymerase enzyme (Fig. 2a and Tables 2 and 3); if prop-
erly quantified, these error profiles can be used to correct confidence scores for variant calls.

The results obtained in the present study can be used to develop statistical models of PCR errors that will 
improve the accuracy of existing variant-calling software. Such models will be extremely useful for certain 
high-precision applications, such as the detection of rare somatic mutations26, 27. One of the limitations of the 

Figure 5.  Evidence for bridge PCR errors in quality-thresholded sequencing data. (a) Erroneous variants from 
an unamplified control were thresholded by sequencing quality, and the error rate of each substitution type was 
computed as the ratio of corresponding errors to the number of reads that have quality greater than or equal to 
the threshold. The overall error rate was between 10−3–10−4 when no filtering was applied, in keeping with the 
fact that most bases in this experiment have a sequencing quality score of Phred 35. Errors characteristic for the 
TrueSeq polymerase signature after one cycle of linear amplification (C > A, G > T) become dominant beyond 
the Phred 30 quality threshold. (b) Correlation between the PCR error profile (i.e., frequencies of substitutions 
at each template position) and errors in the amplification-free control at various sequencing quality thresholds. 
(c) Hierarchical clustering of error profiles produced by TrueSeq and profiles obtained at Q10 and Q35 quality 
thresholds with an unamplified control.
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current work is that it relies on a generic PCR efficiency value to estimate error rates. However, with proper cali-
bration, the current protocol can be employed to quantify polymerase efficiency.

The protocol described here is relatively simple to implement and the resulting data can easily be interpreted 
without sophisticated bioinformatic analysis. By taking advantage of the scalability of the current protocol and 
starting from a more complex library that incorporates multiple distinct regions, one can quantify amplification 
biases, infer the context shaping the unique fingerprint of the polymerase (Fig. 2b), explain differences in the PCR 
error rate across the template (Fig. 6), and ultimately reveal the landscape of PCR error hot-spots that limit the 
precision of current high-sensitivity methods15, 26, 28.

Materials and Methods
Preparation of UMI-labeled libraries.  The 150-nt template DNA fragment, flanked by Illumina TruSeq 
adapters, was cloned into the pAl-TA plasmid (Evrogen, Russia). This template, cut from the plasmid, repre-
sents a ready-for-sequencing product, and was further used as an unamplified control. To control for possible 
cross-sample contamination in the sequencing output, nine indexed sub-variants of the control template were 
generated individually for each polymerase being compared (Supplementary Table 1). These were cloned into the 
pAl-TA plasmid and verified by Sanger sequencing. Each plasmid DNA template was further amplified in one of 
10 (for each individual polymerase being tested, with the exception of Tersus polymerase which was tested two 
times in two different buffers) three-stage reactions (see Supplementary Table 2 for oligonucleotides used and 
Supplementary Table 3 for polymerase-specific reaction conditions).

Linear amplification.  UMIs were introduced via three cycles of linear amplification with the TruSeq_NNNtest_
pol oligonucleotide. Plasmid DNA template was pre-heated for 2 min at 70 °С. Linear amplification was per-
formed in 50 μl reaction volume using one of the nine DNA polymerases being compared in the buffer provided 
by manufacturer. We used the following linear amplification program: 5 min at 95 °С; 3x [15 s at 95 °С, 20 s at 
58 °С, 30 s at 72 °С]; 2 min at 72 °С. The product was purified using the MinElute PCR Purification Kit (Qiagen) 
and eluted in 11 μl of sterile water.

First PCR.  10 μl of each linear amplification reaction product was used as a template for the PCR reaction, 
which was performed in a 50 μl volume using oligonucleotides TruSeqPCR_Uni-short-21 and TruSeqRev_test-
pol_Bridge, with the same DNA polymerase employed in the previous linear amplification step in the buffer 
provided by manufacturer. We used the following program: 5 min at 95 °С; 20x (25x for Phusion) [15 s at 95 °С, 
20 s at 60 °С, 30 s at 72 °С]; 2 min at 72 °С.

Second PCR (for tracking first PCR and linear amplification errors).  2 μl of reaction product from the first PCR 
step were diluted with 78 μl of sterile water. 2 μl of diluted product were again diluted in 998 μl of sterile water. 

Figure 6.  Template position and other factors affecting PCR error rate. (a) Normalized log10 error rate for 
each template position. The normalization was performed by scaling log-transformed error rate values for 
each nucleotide type and polymerase to zero mean and unit standard deviation. The Spearman correlation 
coefficient between normalized error rate and position is R = −0.21 (P < 10−11). (b) Percent of variance in 
error rate explained by GC content, nucleotide type, polymerase, polymerase-specific nucleotide preference, 
and position. GC content was computed within a 15-bp window centered on the erroneous base. The position 
variable was computed by splitting the template sequence into non-overlapping 15-bp bins, where the index of 
the bin corresponding to each erroneous base was used as a variable. Explainable variance was computed using 
ANOVA of a linear model that includes all of the aforementioned factors. (c) Observed error rate plotted against 
the error rate predicted using the linear model. The correlation between the observed and predicted error rate 
was R = 0.63 (P < 10−116).
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2 μl of diluted product were used as a template for a second PCR reaction, performed in a 50 μl volume. TruSeq_
Universal_long and TruSeq_Rev_long_Index oligonucleotides were used, introducing sample-specific indexed 
Illumina TruSeq adapters. Tersus DNA polymerase (Evrogen, Russia) was used for all samples. We used the fol-
lowing program: 5 min at 95 °С; 22–29x [15 s at 95 °С, 20 s at 60 °С, 30 s at 72 °С]; 2 min at 72 °С.

Second PCR (for tracking linear amplification errors only).  2 μl of reaction product from the first PCR step were 
diluted with 78 μl of sterile water. 2 μl of this diluted product were used as a template for a second PCR reaction, 
performed in a 50 μl volume. TruSeq_Universal_long and TruSeq_Rev_long_Index oligonucleotides were used, 
introducing sample-specific indexed Illumina TruSeq adapters. Tersus DNA polymerase (Evrogen, Russia) was 
used for all samples. We used the following program: 5 min at 95 °С; 14–18x [15 s at 95 °С, 20 s at 60 °С, 30 s at 
72 °С]; 2 min at 72 °С.

Concentrations of the resulting PCR products were measured using a Qubit 2.0 Fluorometer (Invitrogen, 
USA). Products of the 10 PCR reactions, along with EcoRI-cut control template, were pooled in equimolar pro-
portions, purified with the QIAquick PCR Purification kit (Qiagen), and stored at −20 °C before sequencing. 
Sequencing was performed on a single lane of an Illumina HiSeq 2500 using the 100 + 100 nt paired end kit for 
linear amplification-only experiments (step 3b above) and 150 + 150 nt paired end kit for linear amplification plus 
20 cycle PCR experiments (step 3a above).

Analysis of high-throughput sequencing datasets.  Four datasets were generated using the proto-
col described above: two independent experiments measuring the linear amplification error rate and two inde-
pendent experiments measuring both the linear amplification and PCR error rates from 20 cycles. Additionally, 
sequencing data were obtained for an unamplified library. Datasets were analyzed using the MAGERI (https://
github.com/mikessh/mageri) pipeline31. Briefly, UMI tags were extracted and tags that were read less than five 
times were filtered, as these would not provide enough consensus sequence coverage to correct PCR and sequenc-
ing errors. While the majority of UMI tags filtered due to low coverage represent errors in UMI sequence, an addi-
tional round of filtering was performed by looking for UMI tags that have a similar “parent” sequence that differs 
by 1 or 2 mismatches and with a coverage ratio of less than 1:20 and 1:200, respectively. Consensus sequences 
were then assembled for reads grouped by UMI tag and were aligned to a synthetic reference. The output of the 
variant-calling module of MAGERI was used for further analysis. Datasets and all results reported in the text can 
be reproduced by running an R markdown template available at https://github.com/mikessh/polyfid (this also 
includes a script to process the data for the unamplified library). Note that no additional filtering was performed 
for called variants as, according to our estimates, all second PCR step and sequencing errors are filtered at the 
consensus assembly stage (see Results section).
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