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Abstract: Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase
in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right
heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal
smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the
pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen
(RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause
the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth
muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling.
Antioxidant treatment has become a main area of research for the treatment of PAH. This review
mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and
explains why targeting oxidative stress is a valid strategy for PAH treatment.

Keywords: pulmonary arterial hypertension; endothelial dysfunction; oxidative stress; therapeu-
tic strategy

1. Introduction

Pulmonary hypertension (PH) is defined as a resting mean pulmonary artery pressure
of 25 mm Hg or above that affects the arteries in the lungs of patients and the right side
of the heart. Epidemiological studies have shown that the 5-year overall survival rate
of patients with PAH is only 59%. Data demonstrate that if left untreated, numerous
patients with PAH will die within two to three years after diagnosis. Accurate diagnosis
and classification are key to the overall survival rate [1]. The World Health Organization
(WHO) categorizes PH into five groups. Pulmonary arterial hypertension (PAH) is Class I
among these groups, with pulmonary arterial (PA) wedge pressure (PAWP) ≤15 mmHg
and pulmonary vascular resistance (PVR) >240 dyn × s × cm−5 [2]. The main characteristic
of PAH is obstructive remodeling of the pulmonary vascular bed, which causes persistent
elevation of the mean PA pressure at rest, pulmonary vascular resistance, and, ultimately,
right heart failure [3]. Pulmonary vascular remodeling in PAH is not only an accumulation
of different vascular cells in the PA wall (e.g., pulmonary artery smooth muscle cells
(PASMCs), endothelial cells (ECs), fibroblasts, myofibroblasts, and pericytes) but also a loss
of precapillary arteries and perivascular infiltration of inflammatory cells, including B- and
T-lymphocytes, mast cells, dendritic cells, and macrophages. PAH is divided into seven
subgroups [4–7]: idiopathic PAH; heritable PAH; drug- and toxin- (and radiation-) induced
PAH [8]; PAH associated with various conditions, including connective tissue diseases, HIV
infection, portal hypertension, and congenital heart disease; PAH in long-term responders
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to calcium channel blockers; PAH with venous/capillary involvement; and persistent PH
of newborns [9] (see Figure 1).
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Figure 1. Current classification of PAH. Abbreviations: CCB, calcium channel blocker; mPAP, mean
pulmonary arterial pressure; PVOD, pulmonary veno-occlusive disease; PCH, pulmonary capillary
hemangiomatosis; DLCO, diffusing capacity of the lung for carbon monoxide; HRCT, high-resolution
computed tomography; BMPR, bone morphogenic protein receptor type II.; ALK1, activin receptor-
like kinase 1; ENG, endoglin; CAV1, caveolin-1; KCNK3, potassium channel, two-pore domain
subfamily K member 3; and EIF2AK4, eukaryotic translation initiation factor 2α kinase 4 [2,4–6,8,10].

Pulmonary arterial endothelial cell (PAEC) dysfunction is considered the leading
cause of PAH events [11]. Dysfunction of PAECs plays a vital role in the pathogenesis
of PAH through impaired vasoconstriction involved in NO signaling, prostacyclin and
endothelin, endothelial cell proliferation imbalance, abnormal endothelial-mesenchymal
transition, altered production of endothelial vasoactive mediators, altered ion homeostasis,
ion channel dysfunction, and epigenetic disorders [12]. Apoptosis occurs in PAECs due to
genetic susceptibility and exposure to various kinds of damage (e.g., extreme oxidation
emergency, shear stress, and inflammation) [13]. The initial apoptosis of ECs may induce
the release of mediators for the proliferation of vascular SMCs, and apoptotic ECs may
lose regulatory control of SMCs, thus leading to the proliferation of SMCs [14]. Accurate
control of the balance between PASMC proliferation and apoptosis is of great significance
for maintaining the structural and functional integrity of pulmonary vessels. In severe vaso-
proliferative PH, this balance is disrupted, accompanied by increased PASMC proliferation
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and a decreased apoptosis rate, leading to vascular wall thickening and remodeling, namely,
PASMC hyperplasia [15]. Resistance to apoptosis and an increase in the proliferation rate of
PASMCs seem to be necessary for the formation of new intima [11] and are core processes
of vascular remodeling. Abnormal levels of growth factors or cytokines produced by ECs
and SMCs may also play autocrine or paracrine roles in promoting the progression of PA
remodeling, finally leading to PAH [16] with progressive narrowing or complete occlusion
of the vascular lumen (see Figure 2).
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Figure 2. Schematic progression of pulmonary arterial hypertension. Progressive vascular remodeling
associated with PA cell proliferation and apoptosis resistance occurs in the distal pulmonary artery
after endothelial dysfunction. This structural change gradually results in pulmonary lumen occlusion
and increases pulmonary vascular resistance (PVR) and PA pressure. Due to pressure overload,
the right ventricle (RV) initially compensates through hypertrophy and increased contractility to
maintain cardiac output, gradually leading to heart failure and eventual death.

2. Oxidative Stress, DNA Damage, and Oxidative Metabolism in PAH

Oxidative stress reflects an imbalance between the systemic manifestation of ROS and
a biological system’s ability to readily detoxify the reactive intermediates or repair the
resulting damage. ROS and reactive nitrogen species (RNS) are free radicals closely related
to oxidative stress [17], including singlet oxygen (O2), hydroxyl radical (OH), superoxide
anion (O2), hydrogen peroxide (H2O2), nitric oxide (NO), and peroxynitrite (ONOO-).

The stable state of ROS concentration is determined by the interaction between their
production and ROS defense enzymes [18]. Low levels of mitochondrial ROS are thought to
play critical roles in signal transduction mechanisms. ROS produced by respiratory chain
complex I mainly cause oxidative damage, while ROS produced by complex III are mainly
involved in cell signal transduction [19]. There are multiple pathways for intracellular
ROS production [20], including the superoxide anions produced by the mitochondrial
respiratory chain [21], the NO synthase (NOS) uncoupling process, and nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases (Nox), which accept electrons from
oxygen. Nox comprises seven subtypes, i.e., Nox 1–7, and Nox4 was recently found to be a
major source of oxidative stress [22,23].

DNA damage is increased in human PAH lungs, remodeled arteries, PASMCs, and
PAECs [24]. ROS and DNA damage are both biomarkers of PAH susceptibility in multiple
PAH subgroups. DNA damage in PASMCs is associated with excessive expression of
poly (ADP-ribose) polymerase 1 (PARP1), provirus integration site (PIM1), eyes absent
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homolog-3 (EYA-3), checkpoint kinase 1 (CHK-1) and surviving genes [25]. In PAECs,
BMPR2 downregulation can reduce breast and ovarian cancer susceptibility protein 1
(BRCA1) expression and increase susceptibility to DNA damage. The reduced expression
of PPARγ and BMPR2 in PAH-PAECs led to downregulation of the downstream homolo-
gous recombination DNA repair genes ataxia telangiectasia mutated (ATM) and RAD51,
respectively [26]. In addition, mutations in topoisomerase DNA II-binding protein 1
(TOPBP1) are also associated with PAH susceptibility, maintenance of genomic integrity,
prevention of DNA damage during replication, and promotion of PAEC amplification and
apoptosis resistance [25].

Elevated ROS levels also lead to increased amounts of mitochondrial DNA (mtDNA)
damage [27]. Mitochondria are more sensitive to DNA damage than nuclear DNA because
mtDNA lacks the protection of histones. In addition, mtDNA damage repair in PAECs
was slower than that in pulmonary venous ECs and microvascular ECs, suggesting that
mtDNA damage may be related to PAH [24].

In PAH-PAECs, BMPR2 downregulation is related to decreased expression of Tfam
(mtDNA maintenance gene, i.e., transcription factor A, mitochondrial) but increased dam-
age to mtDNA and increased glycolysis, which triggers the dysfunction of PAH-PAECs
in the endothelium. In PAH-PASMCs, mitochondrial HSP90 accumulation increases with
upregulated POLG1 (mitochondrial DNA polymerase γ) and OG1 (8-oxoguanine glycosy-
lase). This is believed to be a regulatory mechanism to maintain mtDNA and metabolic
reprogramming under stress conditions and to promote the survival of PAH-PASMCs [28].

PAH also leads to abnormalities in oxidative metabolism [29]. Cells affected by PAH
acquire a Warburg phenotype characterized by mitochondrial hyperpolarization, a decrease
in pyruvate dehydrogenase complex activity, and a reduction in mitochondrial ROS levels.
This seems to be contrary to the elevated oxidative stress in PAH, which has not been
reported in detail thus far. Many studies have shown that DNA methylation, which
epigenetically silences SOD2, especially in PAH patients, leads to a reduction in H2O2
production and activation of HIF-1α [30], thereby destroying mitochondrial metabolism and
dynamics, increasing aerobic glycolysis, and resulting in accelerated PASMC proliferation
and inhibited apoptosis [26].

3. Oxidative Stress Signal Transduction in Pulmonary Hypertension Vascular Remodeling

The NOS family catalyzes the production of NO from L-arginine. The arginine-NOS-
NO pathway is important in the regulation and remodeling of PAH vascular tension. Recent
studies have shown that the carbonic anhydrase 1-kininogen and selenium protein W/14-
3-3 signaling pathway attenuates the inhibitory effect on eNOS, promotes NO production,
and regulates oxidative stress in Monocrotaline (MCT)-induced rat models [31]. During the
first week in the MCT model, nitrosative stress leads to adaptation of NOS activity to later
increase NO production after two weeks. In the third week, oxidative stress became very
obvious [32]. The accumulation of superoxide anions causes NO content decline and the
uncoupling of eNOS [33], where electrons are transferred from the NOS reductase domain
of dysfunctional enzymes to an oxygenase domain and to molecular oxygen instead of
L-arginine, eventually forming superoxide but not NO [34].

4. Oxidative Stress-Induced Dysfunction of Pulmonary Artery ECs

Pulmonary vascular endothelial dysfunction is associated with reduced bioavail-
ability of NO and increased degradation of NO due to oxidative stress [35,36]. Human
pulmonary ECs mainly express superoxides producing Nox1 and Nox2 and hydrogen
peroxide/superoxide producing Nox4 [37]. Nox-mediated oxidative stress produces su-
peroxide anions, and pulmonary endothelial dysfunction is closely related to PH [38].
Oxidative stress can aggravate endothelial dysfunction, characterized by an increase in the
synthesis and release of endothelium-derived contraction factors (such as endothelin 1 and
ET-1) and a decrease in diastolic factors (such as NO) [32].
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Under hypoxic and oxidative stress, cells can secrete cyclophilin A (CyPA, especially
its acetylated form) and participate in the induction and regulation of EC autophagy in
PH, where a positive feedback relationship relies on autophagy and Nox activity [39,40].
Recent studies have revealed that extracellular CyPA promotes interstitial transformation,
migration, and proliferation in ECs, leading to mitochondrial dysfunction and oxidative
stress [41]. The PAH rat model exposed to 10% hypoxia for 3 weeks showed apoptosis of
endothelial progenitor cells (EPCs), an increase in Nox and vascular peroxidase (VPO1)
expression, and increased H2O2 and hypochlorite levels. These effects could be attenuated
by Nox2 or Nox4 siRNA, demonstrating that ROS derived from the Nox/VPO1 pathway
can promote oxidative damage in EPCs [42]. After hypoxia exposure to pulmonary ECs,
Nox1-derived ROS generation upregulated the expression of the endogenous BMP antago-
nist Gremlin1 by activating the proangiogenic factor Sonic hedgehog, leading to excessive
proliferation of pulmonary ECs and PAH [43]. Other factors, such as Kruppel-like factor 4
(KLF4), also play a role in the pathogenesis of PAH vascular dysfunction [44].

5. Oxidative Stress Signaling-Associated Proliferation of PASMCs

Evidence has shown that ROS may regulate cellular signal transduction, especially
when Nox is the main source of ROS. The inducing role of Nox in the proliferation of
PASMCs has been demonstrated in many PAH models, and it may be related to the
downregulation of the Keap-1/Nrf2 pathway. Nox4-induced ROS triggers PAH; however,
new research also claimed that Nox4 may promote homeostasis pathways in PASMCs,
allowing cell survival and adaptation to ERS [45]. Selenoprotein P in the lung can decrease
the production of glutathione, increase the production of GSSG, upregulate the production
of Nox-induced ROS, and stabilize HIF-1α, thus leading to mitochondrial dysfunction,
proliferation of PAH-PASMCs, and apoptosis [46].

6. Oxidative Stress and Its Signal Transduction in Right Ventricular Hypertrophy

Right ventricular hypertrophy due to PAH can lead to right ventricular failure (RVF)
and eventually to death [47]. This process is largely associated with oxidative stress and
partly due to the inability to upregulate MnSOD in the right ventricle [48]. In chronic
thromboembolic pulmonary hypertension, Nox1, Nox2, and Nox4 were increased in the
right coronary artery, accompanied by oxidative stress and endothelial dysfunction, but
eNOS expression remained unchanged [49]. Dysfunctional mitochondria also release
additional ROS, aggravate oxidative stress status, and lead to MCT- and hypoxia-induced
RVF in PAH rats [50]. On the other hand, lack of NOS2 and NO induction prevented
superoxide scavenging, decreased reactive oxidant formation (ONOO2−), and improved
adaptation of the right ventricle to PAH [51].

PAH is associated with decreased bioavailability of NO and increased asymmetric
dimethyl arginine (ADMA), an endogenous NOS inhibitor. Dimethylarginine dimethy-
laminohydrolase 1 (DDAH1) knockout rats showed significantly increased plasma and
pulmonary ADMA content and decreased eNOS protein content and NO release, aggravat-
ing oxidative stress, pulmonary vascular remodeling, and fibrosis in MCT-induced PAH
rats. This study indicated that DDAH1 degrades ADMA and protects the right ventricle
from hypertrophy in PAH rats [52]. Protein kinase G (PKG)-Iα is oxidized to a dithionin-
activated state by Nox-4, SOD3, cystathionine γ-lyase, etc., and its expression is increased
in the lungs of PAH patients and in hypoxic PAH mice. PKG-Iα is involved in endogenous
and adaptive redox mechanisms by promoting vasodilation, thus limiting the remodeling
caused by PAH and related adverse pulmonary artery and right heart remodeling, making
it another important target for PAH treatment [53].

7. Oxidative Stress Is Involved in the Formation of Pulmonary Hypertension through
Growth Factors and Their Signal Transduction Systems

ROS promotes the expression and/or activation of growth factors, including p38
mitogen-activated protein kinase (MAPK), nonreceptor tyrosine kinase c-SRC, TGF-β1,
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VEGF, fibroblast growth factor 2 (FGF2), platelet-derived growth factor (PDGF), and perox-
isome proliferators-activated receptor-γ-coactivator-1 (PGC-1α) [54]. In addition, growth
factors also stimulate the production of ROS. Oxidative stress promotes the endothelial-to-
mesenchymal transition of PAHs by activating the TGF-β pathway [41]. Nox4 mediates
TGF-β1-dependent pulmonary vascular remodeling and PDGF and HIF-1α activities. The
multidirectional interactions between Nox-derived ROS, HIF-1α, and TGF-β1 may be
the key to the pathogenesis of PAH [55]. Growth differentiation factor-15 (GDF-15) is a
multifactor cytokine and a member of the TGF superfamily. GDF-15 gene expression in
cardiomyocytes, vascular SMCs, and ECs leads to significantly associated oxidative stress,
inflammation, and tissue damage. GDF-15 is highly expressed in the vascular chambers of
patients with PAH and hypoxia and may be a new indicator of PH [56]. In vascular SMCs,
c-Src is also necessary for ROS production. The binding of AT-II to the AT1 receptor triggers
Nox-dependent O2 production, which leads to phosphorylation and activation of EGFR.
In PASMCs, H2O2-mediated oxidation stimulates intracellular intrinsic protein tyrosine
kinase activity and the formation of the covalently modified EGFR dimer. Similar to EGFR,
PDGFR promotes the proliferation and migration of PASMCs during PAH development by
activating Nox4-induced abnormal oxidative stress, which can be effectively eliminated by
CD248 knockout or antibody therapy [57]. In addition, PDGF promotes apoptosis resis-
tance of pulmonary arterial ECs and the development of endothelial plexus lesions [58].
VEGF binds to the tyrosine kinase receptor (VEGFR-1/VEGFR-2) located in the vascular en-
dothelium with high affinity. VEGF overexpression in neonatal mice induces NOS (iNOS),
eNOS-dependent pulmonary edema, and oxidative stress. In VEGF-transgenic mice, NOS
inhibition has been shown to reduce oxidative stress [59].

8. General Advancements in the Antioxidant Treatment of PAH
8.1. Current PAH Treatments

There is no cure for PAH, but treatments are available to control symptoms and
improve quality of life. Current medicines for PAH treatment include endothelin receptor
antagonists (e.g., bosentan and ambrisentan), prostacyclin analogs (e.g., epoprostenol and
misoprostol), agonists of the prostacyclin receptor (e.g., selexipag), phosphodiesterase
(PDE-5) inhibitors (e.g., sildenafil and vardenafil), angiotensin II, and the sGC stimulator
(e.g., riociguat) [35,60].

8.2. Latest Strategies for Oxidative Stress in PAH
8.2.1. Preclinical Strategies: Antioxidants

Table 1 shows the very recent advances in medicines targeting oxidative stress. Al-
ginate oligoside (AOS) acts as an antioxidant and anti-inflammatory agent in PAH by
inhibiting MCT-induced pulmonary vascular remodeling. AOS blocks the TGF-β1/p-
Smad2 signaling pathway, downregulates the expression of MDA, Nox, and proinflam-
matory cytokines, reduces macrophage infiltration, and upregulates the expression of
anti-inflammatory cytokines [61]. Sulforaphane upregulates the expression of Nrf2 and
its downstream gene NQO1 and reduces SuHx-induced pulmonary vascular remodeling,
inflammation, and fibrosis [62]. As a natural antioxidant, ellagic acid has a protective effect
on PAH and lung and heart injury in SD rats caused by porcine pancreatic elastase, which
reduces antioxidant levels [63]. Oral melatonin administered to maternal sheep in the
late gestation period improved the pulmonary vascular function of plateau PAH lambs,
enhanced antioxidant capacity, and reduced the production of ROS and nitrotyrosine, a
marker of oxidative stress in small pulmonary vessels [64,65]. 18β-Glycyrrhetinic acid
downregulated MDA levels, improved SOD, CAT, T-AOC, and GSH-PX functions, and
inhibited PAH-induced oxidative stress in rats [66]. Oral administration of the ASK1 in-
hibitor GS-444217 (or selonsertib) reduced pulmonary arterial pressure and reduced right
ventricular hypertrophy in the PAH model in a dose-dependent manner [67,68]. PIM1 phos-
phorylates KU70 and enhances nonhomologous end-joining DNA repair in PAH, and its
pharmacological inhibitors SGI-1776 and TP-3654 attenuate PAH in MCT and fawn-hooded
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rat models [69]. Celastramycin increases the protein level of Nrf2, enhances mitochondrial
energy metabolism, and restores mitochondrial network formation in PASMCs [70]. Celas-
trol inhibits the expression of CyPA and Bsg in the heart and lungs, thereby improving heart
failure and postcapillary PAH in mice [69]. In addition, it was shown that exercise training
alleviated oxidative stress in the gastrocnemius of rats with MCT-induced PAH [71].

Table 1. Preclinical treatments and mechanisms targeting oxidative stress in PAH.

Drugs Type of Drug Animals Model Biological
Indicators Administration Therapeutic Effect References

Alginate
Oligosaccharide

(AOS)

biodegradable
polymer

Sprague-Dawley
rats MCT (i.p.)

p47-phox,
p67-phox, and

gp91-phox,
subunits of

NADPH oxidase,
MDA

i.p.

Down-regulate the expressions
of malondialdehyde and

NADPH by inhibiting the
TGF-β1 /p-Smad2 signaling

pathway to prevent the
pulmonary vascular

remodeling induced by MCT

[61]

Vardenafil Phosphodiesterase-5
inhibitor

Sprague-Dawley
rats MCT (i.p.)

8-iso-
prostaglandin-F2a,

3-nitrotyrosine,
eNOS, NO, MDA,
SOD, Nox2, Nox4

i.g.

Suppress proliferation and
enhanced apoptosis of

pulmonary artery smooth
muscle cells, attenuating small
pulmonary artery remodeling,

and right ventricular
hypertrophy

[72]

Pentaerythritol
Tetranitrate — — Wistar rats MCT (i.v.) HO-1, ICAM-1 i.g.

PETN therapy improved
endothelium-dependent
relaxation in pulmonary

arteries and reduced oxidative
stress

[73]

Sulforaphane Nrf2 activator Male mice

SU5416 and
10%

hypoxia
(SuHx)

Nrf2, NQO1,
NLRP3 i.g.

Reduce SuHx-induced
pulmonary vascular

remodeling, inflammation,
and fibrosis

[62]

Crocin — — Sprague-Dawley
rats MCT (i.p.) OXR1, P21, Nrf2 i.p.

Crocin co-treatment
significantly improved the

hemodynamic, oxidative stress
biomarkers and histological

data of the PAH rats

[74]

Melatonin — — Newborn sheep

Chronic
hypobaric
hypoxia
(Putre,

3600 m)

SOD2, CAT, GPx1,
VDAC, p47-phox,

Xantine
Oxidase,

8-isoprostanes,
4HNE, and

nitrotyrosine

i.g.

Reduced major sources of
pro-oxidative ROS at the

cellular level, reduced
oxidative stress and enhanced

antioxidant status at the
pulmonary level of neonatal

PAH

[64,65]

Resveratrol Polyphenolic
compound

Sprague-Dawley
rats Hypoxia Nrf2, HIF-1 α i.g.

Exert antiproliferation,
antioxidant, and

anti-inflammation effects
[75]

Ellagic Acid — —
Male

Sprague-Dawley
rats

Porcine
pancreatic
elastase (in-
tratracheal)

SOD, catalase, and
glutathione i.g. Reduce oxidative stress and

prevent PAH [63]

18β-Glycyrrhetinic
Acid — —

Male
Sprague-Dawley

rats
MCT (i.p.) Nox2, Nox4 i.g.

Reduce the changes in
oxidative stress biomarkers
and inhibit Nox2 and Nox4

expression

[66]

Celastramycin — — Wild-type mice; SD
rats

3 wk of
hypoxic
exposure
(10% O2);

SU5416, s.c.

ROS, Nrf2, Nox,
GSH/GSSG, SOD2 Osmotic pump; i.p.

Increase protein levels of Nrf2
(nuclear factor

erythrocyte-related factor 2)
and improve pulmonary

hypertension

[70]

Celastrol Tripterygium
wilfordii extractive

cROCK1−/− and
cROCK2−/− mice TAC CyPA, Bsg, Nox2,

Nox4 i.p. Inhibit CyPA/Bsg-NF-κB axis
and enhance ROS production [76]

Hybridization of
Isosorbide 5

Mononitrate and
Bardoxolone

Methyl

A NO donor and a
semisynthetic
derivative of
oleanolic acid

Male
Sprague-Dawley

rats
MCT (i.h.) NO, Nox4 i.t.

By inactivating Nox4,
excessive proliferation of

vascular pericytes was
inhibited, macrophage

infiltration and oxidative stress
were reduced, and cardiac

hypertrophy and fibrosis were
significantly reduced in rats

with pulmonary hypertension

[77]
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Table 1. Cont.

Drugs Type of Drug Animals Model Biological
Indicators Administration Therapeutic Effect References

Combination of
Dichloroacetate

and Atorvastatin
— —

Male
Sprague-Dawley

rats
MCT (i.h.) CHOP, Bcl2 i.g.

The combined treatment of
DCA/ATO significantly

reduces the right ventricular
systolic blood pressure

accompanied by a decrease in
right heart hypertrophy and
reduces vascular remodeling,
thereby inhibiting excessive

PASMC proliferation

[78]

Baicalein Natural flavonoid
Male

Sprague-Dawley
rats

MCT (i.h.) MDA, SOD,
GSH-Px, Bax, Bcl-2 i.g.

Inhibit oxidative stress and
alleviated pulmonary vascular
remodeling in MCT-induced

PAH

[79]

17-β estradiol Estrogen
Male

Sprague-Dawley
rats

MCT (i.h.) T-AOC, MDA,
Nox4 i.p.

Inhibit Nox4-mediated
oxidative stress and alleviated
MCT-induced right ventricular

remodeling of PAH rats

[80]

Copaiba Oil — — Male Wistar rats MCT (i.p.) eNOS i.g.
Reduce oxidative stress and
apoptosis signaling in RV of

rats with PAH
[81]

Dimethyl
Fumarate

Antioxidative and
anti-inflammatory

agent
Male C57BL/6

mice
Hypoxic
chamber HO-1, NOX4 i.p.

Mitigate oxidative stress
damage and inflammation in

lung
[82]

Bucindolol β-adrenergic
blocker Male Wistar rats MCT (i.p.) eNOS, SOD-1 i.p.

Decrease (21%) PVR and
increase RV workload, thereby

improving the vascular
remodeling of the pulmonary

artery

[83]

Rosuvastatin — —
Male Ren2 and

Sprague-Dawley
rats

Transgenic
(mRen2) 27

rats

3-NT, NO(x), Nox,
and endothelial

NO synthase
expression

i.p.

Improve cardiovascular
outcomes/risk by restoring

endothelial and SMC function,
inhibiting SMC proliferation,
reducing oxidative stress and
inflammation in the vascular

wall

[84]

Carvacrol — — Male Wistar rats Hypoxia SOD, GSH, MDA,
caspase-3 i.p.

Attenuate the pulmonary
vascular remodeling and

promotes PASMC apoptosis
[85]

Trapidil — — Male Wistar rats MCT (i.p.)
NADPH oxidases,
glutathiones/total

glutathiones
i.p.

Improve hemodynamic,
echocardiographic, and redox

state parameters of right
ventricle

[86]

Tetrandrine Bisbenzylisoquinoline
alkaloid

Male
Sprague-Dawley

rats
MCT (i.p.) cGMP, PKG-1,

iNOS i.p.

Alleviate MCT-induced PAH
through regulation of NO

signaling pathway and
antioxidant and

antiproliferation effects

[87]

Trimethoxystilbene Resveratrol analog
Male

Sprague-Dawley
rats

Hypoxic
chamber Nox2, Nox4, VPO1 i.g.

Attenuate hypoxia-induced
pulmonary vascular

remodeling and right ventricle
hypertrophy accompanied by

downregulation of Nox2,
Nox4, and VPO1 expression

[88]

Hydrogen — —
Male

Sprague-Dawley
rats

MCT (i.h.) STAT3, NFAT

Housed ad libitum
to hydrogen-

saturated
water

Ameliorate MCT-induced
PAH in rats by suppressing
macrophage accumulation,

reducing oxidative stress, and
modulating the STAT3/NFAT

axis

[89]

Blueberry extract herb Male Wistar rats MCT (i.p.) NADPH, SOD,
GPx, ETA/ETB

i.g.

Decrease the mean pulmonary
artery pressure and total

reactive species concentration
and lipid oxidation

[90]

Ocimum Sanctum
(Linn) herb Male Wistar rats MCT (i.h.)

Thiobarbituric
Acid Reactive

Substances
(TBARS); GSH;
Catalase; SOD;

Nox1

i.g.

Decrease Nox-1 expression
and increase

expression of Bcl2/Bax ratio
caused by MCT

[91]

Honokiol herb
Male

Sprague-Dawley
rats

MCT (i.p.) CyPA i.g. Alleviate autophagy and PAH
regulated by CyPA in PAECs [39]
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Table 1. Cont.

Drugs Type of Drug Animals Model Biological
Indicators Administration Therapeutic Effect References

GS-
444217/Selonsertib ASK1 inhibitor SD rats

MCT
(i.h)/Sugen/

hypoxia

phosphorylation of
p38 and JNK i.g.

Reduce pulmonary arterial
pressure and RV hypertrophy

in PAH models associated
with reduced ASK1

phosphorylation, reduced
muscularization of the

pulmonary arteries, and
reduced fibrotic gene
expression in the RV

[67]

SGI-1776, TP-3654 Pim1 inhibitor Male SD rats
MCT

(i.h)/Fawn-
Hooded

Rats (FHR)

Repair of DNA
damage i.g.

Improve significantly
pulmonary hemodynamics
(right heart catheterization)

and vascular remodeling
(Elastica van Gieson)

[69]

Combination therapy has become a bellwether for PAH treatment. Novel hybridization
of isosorbide 5 mononitrate and bardoxolone methyl inhibited excessive proliferation of
perivascular cells, reduced macrophage infiltration, and oxidative stress, and exerted
inhibitory effects on double vasodilation and vascular remodeling in rat PAH models [77].
Combined administration of chloroacetic acid (DCA) and atorvastatin (ATO) upregulated
oxidative stress, reduced PASMC activity, and reduced mitochondrial membrane potential
in MCT rat models [78,92].

8.2.2. Preclinical Strategies: Herbal Treatments

Natural herbs and plants also offer many new strategies that target oxidative stress in
PAHs. Crocin exerted a protective effect on PAH induced by MCT in rats by regulating the
oxidation resistance 1 (OXR1) signaling pathway [74]. Ocimum sanctum (Linn) reduced the
expression of thiobarbiturate reactants and Nox1, promoted the release of catalase, and had
a beneficial effect on MCT-induced PH in rats [91]. Blueberry extracts reduced the activity
of Nox and XO expression, improved the activity of SOD, restored sulfhydryl content and
the expression of Nrf2, and increased the expression ratio of ETA/ETB in the lungs of rat
PAH models [90]. Honokiol alleviates CyPA-regulated autophagy and PAH in pulmonary
arterial ECs [39].

8.2.3. Clinical Trials

Emulsion of N-3 long-chain polyunsaturated fatty acids (LC-PUFAs) plays an impor-
tant role in fetal and infant growth and development. A recent clinical study (NCT04031508)
on neonatal PPHN was conducted to explore potential changes in markers of inflammation
and oxidative stress. Olaparib is currently being studied in an open-label, single-arm study
with a primary endpoint of changes in PVR at 16 weeks (NCT03251872) [93] for its role
in DNA damage and PARP inhibition. A current crossover trial is investigating whether
dehydroepiandrosterone (DHEA), which has direct effects on NO and ET-1 synthesis and
signaling, direct antihy-pertrophic effects on cardiomyocytes, and mitigates oxidative
stress [94] can be used to measure right ventricular longitudinal tension by cardiac mag-
netic resonance imaging at 18 weeks compared with placebo and to evaluate its side effects
and safety in patients with PH (NCT03648385). Olaparib is an oral PARP inhibitor and
has been approved for the treatment of ovarian cancer in Canada, Europe, and the United
States. Currently, the safety of olaparib in PAH patients is being investigated, and the
sample size in future phase 2 trials is being refined to assess its efficacy (NCT03782818).
There is evidence showing that bromodomain-containing protein 4 (BRD4, an upstream
target protein of Keap1/Nrf2 and a key regulator of oxidative stress in a variety of cell
types [95]) plays a key role in the pathologic phenotype of PAH. In some animal models,
BRD4 inhibition can reverse PAH. Apabetalone is an oral BRD4 inhibitor that is currently in
clinical development and has a suitable safety profile (NCT03655704). A proof-of-concept
phase II clinical trial was recently completed in which researchers evaluated a first-in-class
ASK1 (Apoptosis signal-regulating kinase-1 (ASK1), a member of the mitogen-activated pro-
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tein (MAP) kinase family that is activated by oxidative stress and promotes inflammation
and apoptosis [96]) inhibitor (selonsertib) in 151 adult patients with PAH (NCT02234141).
Participants were randomized to receive 2, 6, or 18 mg selonsertib tablets once daily for
24 weeks during the treatment phase (Period 1) and may have continued on this dosing
during the long-term treatment phase (Period 2). However, the last results provided in
2019 were disappointing due to no obvious efficacy compared with the placebo group.

9. Conclusions

In summary, PAH is associated with a generalized state of enhanced oxidative stress
(Figure 3). Oxidative stress is involved in the formation and development of PAH in many
ways, including pulmonary vascular remodeling, dysfunction of pulmonary ECs, prolifera-
tion of PASMCs, and right ventricular hypertrophy, at which the development of treatments
for PAH targeting oxidative stress is mainly aimed. The development of therapy for PAH
targeting oxidative stress is still an open and hot field with no perfect preclinical model to
fully replicate human PAH injury and no satisfying and precise treatment. Therefore, we
need more relevant targets and thorough preclinical and clinical research.
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Figure 3. Schematic mechanisms of oxidative stress in PAH. Abbreviations: PDE, phosphodiesterase-
5, PKG-Iα, protein kinase G-Iα, CyPA, cyclophilin A, VPO1, vascular peroxidase1, KLF4, Kruppel-like
factor 4, ADMA, asymmetric dimethyl arginine, BMP, bone morphogenic protein, BRCA1, breast and
ovarian cancer susceptibility protein 1, TOPBP1, topoisomerase DNA II-binding protein 1, PARP1,
poly (ADP-ribose) polymerase 1, PIM1, provirus integration site, EYA-3, eyes absent homolog-3,
CHK-1, checkpoint kinase 1, POLG1, mitochondrial DNA polymerase γ, OG1, 8-oxoguanine glycosy-
lase, FGF2, fibroblast growth factor 2, PDGF, platelet-derived growth factor, PGC-1α, peroxisome
proliferators-activated receptor-γ-coactivator-1, GDF-15, growth differentiation factor-15.
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