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Abstract: Glyphosate is widely used worldwide as a potent herbicide. Due to its ubiquitous use,
it is detectable in air, water and foodstuffs and can accumulate in human biological fluids and
tissues representing a severe human health risk. In plants, glyphosate acts as an inhibitor of the
shikimate pathway, which is absent in vertebrates. Due to this, international scientific authorities
have long-considered glyphosate as a compound that has no or weak toxicity in humans. However,
increasing evidence has highlighted the toxicity of glyphosate and its formulations in animals and
human cells and tissues. Thus, despite the extension of the authorization of the use of glyphosate
in Europe until 2022, several countries have begun to take precautionary measures to reduce its
diffusion. Glyphosate has been detected in urine, blood and maternal milk and has been found to
induce the generation of reactive oxygen species (ROS) and several cytotoxic and genotoxic effects
in vitro and in animal models directly or indirectly through its metabolite, aminomethylphosphonic
acid (AMPA). This review aims to summarize the more relevant findings on the biological effects and
underlying molecular mechanisms of glyphosate, with a particular focus on glyphosate's potential to
induce inflammation, DNA damage and alterations in gene expression profiles as well as adverse
effects on reproduction and development.

Keywords: glyphosate toxicity; inflammation; cancer; reproduction and development

1. Introduction

Glyphosate (N-phosponmetyl glycine; CAS registry number 1071-83-6; molecular
formula C3-H8-N-O5-P) is one of the most widely used herbicides in the world. It was
patented under the trade name of Roundup in 1974 by the Monsanto agrochemical industry.
Monsanto’s patent expired in 2001 and since then glyphosate has been manufactured
by many companies, including Bayer, a leading producer of glyphosate in Germany.
Glyphosate and glyphosate-based herbicides (GBHs) were authorized for agricultural use
in 1974 in the USA by the Environmental Protection Agency (EPA) while, in Europe, it was
commercialized in 2002 after the approval of the European Commission [1].

Glyphosate, formulated as Roundup, is a broad-spectrum herbicide. Its main function
is to eliminate weeds in crops of wheat, canola and soybeans, even though, in wheat
crops, it is also used as a desiccant before the harvest [2]. In addition, glyphosate is used
in urban areas, in parks and in marine contexts to eliminate aquatic plants [3]. In the
mid-1990s the use of glyphosate and GBHs increased rapidly because of the development
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of glyphosate-resistant GM crops. In 2012, 127,000 tons of glyphosate were used in the USA
and 700,000 tons worldwide [4]. Indeed, the USA is the nation where there is the largest
use of glyphosate and GBHs. More than 750 products on the US market contain it and their
use has been approved in more than 130 countries [5–7]. Due to its massive use, glyphosate
is detectable in the air, water and in foodstuffs and consequently in biological fluids as
urine, blood and maternal milk [8]. However, the specificity of glyphosate in inhibiting
the activity of 3-phosphoshikimate 1-carboxyvinyltransferase (EPSPS), the key enzyme
of the shikimate pathway, which is absent in vertebrates, has led, for a long time, to the
idea that this pesticide could not represent a serious risk for human health [9]. While it
is true that epidemiological studies on humans have reported only a possible, slight rise
in the development of non-Hodgkin’s lymphomas among glyphosate-exposed farmers,
in-vitro studies, however, have shown that this substance causes genetic damage, increases
oxidative stress, interferes with the estrogen pathway, can be able to compromise brain
functions and has been correlated with various forms of cancer [10–12]. With reference
to the above evidence, the health effects of glyphosate have become a topic of crucial
importance for research. The International Agency for Research on Cancer (IARC) carried
out an in-depth analysis of research studies on the effects of glyphosate in humans and
animals. This analysis ended, in 2015, with the decision to include this pesticide in the
group 2A (probably carcinogenic to humans). In 2015, the European Food Safety Authority
(EFSA) conducted another technical assessment entrusted to the German Federal Institute
for Risk Assessment (BFR) and, from these valuations, it emerged that glyphosate was
unlikely to represent a carcinogenic hazard for humans. Both views were met with criticism
among the scientific community and society at large. Consequently, recent years have
witnessed a plethora of studies on glyphosate toxicity and several reviews and opinion
articles have also emerged in the peer-reviewed literature. In addition, the BFR is based in
Germany, the country in which one of the main producers of glyphosate is based, and three
consultants from the glyphosate agrochemical industry resided in the technical commission
of the BFR. In November 2017 the UE decided to extend the authorization for glyphosate
use until 2022. Although the judgment on the human health risk of glyphosate remains
still uncertain, several countries have begun to take precautionary measures to reduce the
inappropriate use of glyphosate and GBHs [5].

From the above observations, it emerges that the unsafety of glyphosate and GBHs
represents a real emergency, therefore the aim of this review is to update the knowledge
about the effects of this herbicides with particular reference to its immunomodulatory
action, mutagenic/carcinogenic potential and its effects on reproduction and development.
Through critically analyzing the overall aspects of glyphosate toxicity, we provide our
insights, with aim to raise awareness about its use.

2. Glyphosate Action and Contamination Routes

Glyphosate inhibits the activity of EPSPS, an enzyme required in the shikimate path-
way for the synthesis of the aromatic amino acids alanine, tyrosine and phenylalananine in
plants [13] (Figure 1). Aromatic amino acids are necessary to obtain different compounds
that perform regulatory and defense functions, the lack of these amino acids lead to plant
death [9,14].

The presence of the carbon phosphate bond (Figure 2) makes glyphosate quite resistant
to degradation. Despite this, the degradation of glyphosate involves the breakdown of the
carbon–nitrogen (C–N) bond, which leads to the production of aminomethylphosphonic
acid (AMPA), the main metabolite of glyphosate [15,16]. However, glyphosate itself has a
low toxicity and GBHs contain other substances that help glyphosate's entry into plants,
increasing its toxicity. For example, it has been shown that Roundup is more toxic than
glyphosate alone [17]. Roundup includes the co-formulant polyetholoxylated tallow amine
(POEA) which appears to be the ingredient with the greatest toxic effects [18,19].
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Figure 1. The shikimate pathway in plants. The shikimate pathway converts phosphoenolpy-
ruvate (PEP) and erythrose 4-phosphate (E 4-P) into chorismate, the precursor of three aromatic 
amino acids. Glyphosate inhibits the 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase en-
zyme, preventing this synthesis. DAHP: 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase; 
DHQ: 3-deidroquianate synthase; DHQ/SDH dehydratase: 3-dehydroquianate dehydratase; 
DHQ/SDH dehydrogenase: 3-dehydroquianate dehydrogenase; SK: shikimate kinase; CS: choris-
mate synthase. 

 
Figure 2. Chemical structures of glyphosate and its co-genres: aminomethylphosphonic acid (AM-
PA), glycine and glutamic acid. 

Figure 1. The shikimate pathway in plants. The shikimate pathway converts phosphoenolpyru-
vate (PEP) and erythrose 4-phosphate (E 4-P) into chorismate, the precursor of three aromatic
amino acids. Glyphosate inhibits the 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase enzyme,
preventing this synthesis. DAHP: 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase; DHQ:
3-deidroquianate synthase; DHQ/SDH dehydratase: 3-dehydroquianate dehydratase; DHQ/SDH
dehydrogenase: 3-dehydroquianate dehydrogenase; SK: shikimate kinase; CS: chorismate synthase.
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Furthermore, GBHs are applied to crops several times each season, both for removal of
weeds and for drying before the grain harvest. The decomposition of glyphosate takes place
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in living plants as well as in the soil, this means that both glyphosate and its metabolites,
such as AMPA, can be found in plant products [2,20].

The wide use of glyphosate and its ability to accumulate in the environment has
increased concerns about the possible side effects that this compound can have on human
health. GBHs tend, in fact, to accumulate in soil, water, plant products and food including
grains, fruits and cereals, and they are not removed by washing nor degraded by cook-
ing [21,22]. Recent research has shown that glyphosate is present in significant quantities
in the meat of cattle and in the urine of the cows that consume contaminated food [23].
Indeed, there are not yet sufficient studies explaining the pharmacokinetics of glyphosate in
vertebrates and its transport and bioaccumulation in various tissues. It has been shown that,
in rats, after the oral ingestion of 400 mg/kg of pesticide, the concentration of glyphosate
in the blood is equal to 5 µg/mL. In the 5 h following administration, glyphosate diffuses
into the tissues, and it has half-lives, in terms of distribution and elimination, of 4 and 15 h,
respectively [24].

In a study lead at the Ramazzini Institute, Sprague Dawley rats were subjected to oral
administration, for 13 weeks, of water containing glyphosate or Roundup at levels equal
to the United States Acceptable Daily Intake (US-ADI). It was found that glyphosate is
excreted in the urine as a compound not modified and in greater quantities with respect
to its main metabolite AMPA (see Figure 2 for the chemical structure). The amount of
glyphosate present in urine increases in relation to the duration of treatment suggesting a
possible bioaccumulation [16]. Accordingly, other in-vivo studies showed that once in the
body glyphosate tends to accumulate in the kidneys, liver, colon and is then excreted via
the feces or urine [12,16,25].

Although not a direct target, humans can be contaminated through occupational
exposure and diet [21,26,27]. The preferential entry route is the dermal route. However,
glyphosate can get into the human body also by inhalation, ingestion or by eating contami-
nated food [22] (Figure 3). On this hand, glyphosate has been found in high proportions in
the urine of farmers and other biological fluids, such as blood and maternal milk, and it
is also present in 60–80% of general population, including children [2,28]. This suggests
that daily exposure to this pesticide, as well as its presence in the human body, could
compromise human health.
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Several recent reviews [2,13,14,29] have shown a significant correlation between the
onset of various chronic diseases and the increased use of glyphosate, however, to date
there are not sufficient data explaining how glyphosate and GBHs could alter human and
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animal metabolism and the molecular pathways targeted by glyphosate have not been
completely elucidated. Available data suggest that the chemical structure of glyphosate
and its metabolite AMPA are similar to those of glycine and glutamate (Figure 2), agonists
of n-methyl-D-aspartate receptor (NMDAR) [30,31]. Moreover glyphosate, acting as an
analogue of the amino acid glycine, can be mistakenly included in polypeptide chains
during protein synthesis, generating abnormalities in proteins that play a fundamental
role in metabolic and regulatory processes. The replacement of glyphosate with preserved
glycine residues might explain, in part, the reason for the correlation between glyphosate
exposure and the onset of various diseases [32]. In fact, recent findings obtained in MDA-
MB-231 breast cancer cells did not show any difference between global proteome changes
in glyphosate treated and untreated cells; only ADP/ATP translocase and serine/arginine—
rich-splicing factor 6 exhibited statistically significant modifications in glyphosate treated
cells [33], suggesting that the pesticide can target specific proteins. Indeed, glyphosate
exposure seems to be involved in various diseases of modern era, such as obesity, diabetes,
liver and kidney dysfunction, autism, dementia, Parkinson’s and Alzheimer’s disease,
leukemia, various forms of cancer and inflammatory diseases.

3. Immunomodulatory and Inflammatory Effects of Glyphosate
3.1. Glyphosate—Induced Effects in Liver, Kidney and Lung

Many studies have found that glyphosate exerts its toxicity inducing inflammation
and oxidative stress in various types of cells [34–40]. Oxidative stress, due to the excessive
production of reactive oxygen species (ROS) or to poor antioxidants defenses, can dam-
age proteins, lipids and activate apoptotic pathways and/or the onset of inflammatory
processes. El-Shenawy et al. [35] demonstrated an oxidative stress response in Albino
male rats intraperitoneally administered with sub-lethal concentrations of Roundup or
glyphosate alone. They found a significant time-dependent depletion of GSH and induction
of oxidative stress in hepatic tissue mediated by the elevated levels of lipid peroxidation
in both glyphosate- and Roundup-treated rats. Furthermore, increased nitric oxide (NO)
and tumor necrosis factor α (TNF-α) levels were observed in the same exposed animals,
suggesting a role for Roundup and its active ingredient, glyphosate, as antioxidant disrup-
tors. Roundup and glyphosate were also capable of altering kidney function promoting
an increase in blood urea [35]. Accordingly, renal and liver dysfunction were observed
by Mensage et al. [36] who carried out a two-year study by giving rats water containing
Roundup at a concentration of 0.1 ppb with a corresponding amount of glyphosate equal
to 0.05 µg/L. Their results showed that Roundup caused an increased incidence of anatom-
ical signs of disease and changes in blood and urine parameters that are symptomatic
of functional liver and kidney failure. This investigation was also deepened through a
molecular approach by analyzing the gene expression profiles in the liver and kidney.
Altered expression patterns typical of mitochondrial dysfunctions and pathologies, such as
fibrosis, necrosis and ischemia, were observed [35]. Another in-vivo study showed the
effects of Roundup on adipose tissue and the liver, which are the main organs having
a role in maintaining homeostatic energy. Adult male rats were exposed to increasing
concentrations of Roundup (from 5 to 250 mg/kg body weight, [bw]) orally every day for
14 days. After 2 weeks of treatment, significant increased levels of inflammatory markers,
such us interleukin (IL)-1β, TNF-α, and IL-6, were found at 100 and 250 mg/kg bw/day,
together with liver damage ascribable to steatosis and non-alcoholic fatty liver. The forma-
tion of micro and macro-vesicular steatosis was observed after the treatment with the same
doses of Roundup [37,38]. These doses exceed both the acceptable operator exposure level
(AOEL, 0.1 mg/kg bw/day) and the acceptable daily intake (ADI, 0.5 mg/kg bw/day) for
consumers fixed by EFSA [41]. However, this does not exclude that those similar alterations
could be achieved with a low-dose chronic exposure to Roundup and the authors do not
provide any evidence for the effects of pure glyphosate. Of note, experimental evidence
from mouse models, collected from a farm, that there inhaled air samples after spraying
with glyphosate, pointed out that this pesticide could represent a risk factor for the onset
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of occupational asthma. In fact, the exposure to an average of 17.33 µg of glyphosate-rich
air samples (corresponding to about an airborne concentration of 22.59 ng/m3) induced
an increase in cell counts of eosinophils and neutrophils and mast cells in the lungs of
exposed mice. The onset of the inflammatory process was also confirmed by analyzing
the cytokines pattern typically produced in the case of asthma, such as IL-5, IL-10, IL-13
and Interferon-γ (IFN-γ). In this case, the authors do not specify if farmers were exposed
to pure glyphosate or GBHs, however, these results suggest that exposure to glyphosate
induces damage to the epithelial barrier of the airways, the first source of contact with
inhaled pesticides. The damage of the epithelium involves the release, especially, of the
cytokine IL-33 and thymic stromal lymphopoietin (TSLP), which are known to amplify the
inflammatory response, inducing bronchial hyperactivity [39,40].

3.2. Glyphosate—Induced Effects in the Intestine

Glyphosate appears to be related to intestinal inflammation [42]. The intestine, in fact,
is very susceptible to the presence of pesticides, representing one of the first barriers
with which exogenous substances come into contact [43]. Some studies have reported
that pesticides can alter the integrity of the intestinal barrier and oxidative stress is one
of the mechanisms by which these substances induce toxicity [44,45]. In line with these
observations, the administration of glyphosate (at doses between 10 and 40 mg/kg) in
pigs weaned for 35 days caused an increase of the enzymes superoxide dismutase (SOD),
glutathione (GSH) peroxidase 1 (GSH-Px1), catalase (CAT) and levels of malondialdehyde
(MDA, indicator of lipid peroxidation) in the duodenum. Increases in nuclear factor
erythroid 2–related factor 2 (Nfr2) mRNA levels in both the duodenum and the jejunum
were also found. The Nfr2 gene encodes the major regulator of the cytoprotective response
to endogenous and exogenous stress caused by ROS. In fact, under normal conditions,
Nrf2 protein binds with small MAF proteins (sMAF) to the antioxidant response element
(ARE) in the regulatory regions of the target genes. Thus, in the duodenum and jejunum,
glyphosate-induced Nrf2 expression, together with the reduction of the GPx1 mRNA and
the simultaneous induction of the NF-kB transcription factor mRNA, strongly suggests a
decrease in intestinal antioxidant capacity, which can lead to chronic inflammation and
tissue damage [42].Glyphosate also interferes indirectly with the intestinal immune system
by creating an imbalance in resident microbiota. As previously explained, the shikimate
pathway is absent in vertebrates but exists in plants and microorganisms, including gut
microbiota. Glyphosate (75–300 mg/L) and the GBHs Chlorpyrifos (CPF, 50–200 µM)
can influence the activity of some intestinal microorganisms such as Escherichia coli and
Lactobacillus reuteris, which, in turn interact with the immune system. Indeed, these bacterial
strains, if treated with glyphosate or CPF and then cultured with mucosal-associated
invariant T cells, stimulate the release of pro-inflammatory cytokines such as TNF-α and
INF-γ [46].

3.3. Glyphosate—Induced Effects in Blood Cells

It is noteworthy that our immune system is essential for survival, offering us protection
against pathogens through innate immunity, the first line of defense, and the more powerful
acquired immunity that develops later. The immune system, however, is a double-edged
weapon. Damage to the latter can favor the onset of various diseases by causing a weak or
excessive response [47].

Immunodeficiency can be primary, but it can become secondary following the ex-
posure to chemical compounds. Growing studies have shown there is a correlation be-
tween alterations in the immune system and exposure to organophosphate pesticides like
glyphosate [48,49]. Lioi et al. [50,51] were the first to report that low concentrations of
pure glyphosate (from 17 to 170 µM) can induce oxidative stress in human and animal
lymphocyte cultures, inducing the activity of glucose 6-phosphate dehydrogenase (G6PD),
the key enzyme of the pentose phosphate pathway that ensures the NADPH necessary to
preserve the intracellular pool of reduced GSH [50,51]. More recent studies conducted by
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Pereira et al. [52] investigated the immunological profile of a group of farmers exposed
for 15 days to the use of multiple pesticides. The exposed group was made of 43 people
(from 29 to 72 years old) and compared with a control group of 30 people (from 32 to
66 years old). A significant increase in monocytes, dendritic cells and total T cells was
observed in the glyphosate-exposed group compared to the controls. The altered number
of leukocytes was also associated to an increase in the production of the inflammatory
cytokine IL-6 in exposed farmers [52]. In another in-vitro study, performed by Barbasz
et al. [53], the potential toxic effect of three pesticides, including glyphosate, was tested
on two human immune-cell lines: the human histiocytic lymphoma cell line (U-937) and
the human promyelocytic cell line (HL-60). The concentration of pesticide chosen to treat
cell lines was equivalent to the amount to which farmers or the general population are
usually exposed. From a cell-vitality analysis, it was shown that cells, treated for 24 h with
3600 µg/mL of glyphosate, survived only in 20% of cases as compared with controls, thus
corroborating previous results on the cytotoxicity of this pesticide. Lipid peroxidation
was also assessed by determining the MDA concentration: the MDA concentration in the
U-937 cell line increases four times more than the control group, suggesting that glyphosate
cytotoxicity could be mediated by the induction of strong oxidative stress [53].

3.4. Neurodegenerative Glyphosate—Induced Effects

Environmental stressors such as pesticides can contribute to neurological disorders
through mechanisms involving inflammation, oxidative stress and apoptosis; thus, long-
term glyphosate exposure could cause neurodegenerative diseases. From this point of view,
Cattani et al. [54] found that rat maternal sub-chronic exposure to GBHs containing 0.36%
of glyphosate in drinking water and corresponding to 70 mg of glyphosate/kg bw/day
affected cholinergic and glutamatergic neurotransmission in offspring's hippocampus, from
both immature and adult rats. The observed decrease of glutamate uptake and increased
Ca2+ influx, in both 15-day old and 60-day old rats, indicated a persistent glutamate
excitotoxicity from the developmental period to adulthood. These events culminated in
oxidative stress phenomena, astrocyte dysfunction and depressive-like behaviors [31,54].

In another in-vitro study, performed in the human neuroblastoma cell line SH-SY5Y,
glyphosate (5 mM) and AMPA (10 mM) treatments induced cytotoxic effects increasing
MDA levels, NO and ROS production, as well as caspase (CASP) 3/7 activity. Also found
was the enhanced expression of pro-apoptotic genes such as CASP3, CASP9, TNFα, Tumor
Protein 53 (TP53), up-regulation of the Wnt pathway and down-regulation of Growth
Associated Protein 43 (GAP43) and Tubulin Beta 3 Class III (TUBB3) mRNA, hallmarks of
neuronal development. Furthermore, the authors showed alterations in the expression
profiles of several genes of cell death pathways, suggesting that glyphosate and AMPA
can affect neuronal development by inducing oxidative stress and cell death via apoptotic,
autophagic and necrotic pathways [34]. Although insufficient, these preliminary data on the
neurotoxicity of glyphosate indicate that environmental exposure to this pesticide and its
formulations could be a concern during neuronal cell development and migration. On the
other hand, from the observed involvement of the Wnt pathway in the glyphosate-induced
effects arises the problem that this pesticide can impair not only the normal functionality
of the typical inflammation pathways but also those that link inflammation to cancer risk.

4. Carcinogenic and Mutagenic Effects of Glyphosate

The biotransformation of xenobiotics leads to the cellular production of reactive
intermediates, such as ROS, that can damage DNA, inducing various mutations and
uncontrolled proliferation that ultimately lead to cancer. In recent years, the potential
genotoxic effects of glyphosate have been subject of debate both in the scientific community
and among international agencies. The discrepancies between the results on glyphosate-
induced DNA damage are mainly due to the different experimental methodologies used,
making it difficult to reach unambiguous and clear conclusions [11].
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Although the clastogenic effects of glyphosate have not been detected in bovine pe-
ripheral lymphocytes in vitro [55], other studies indicated that this herbicide has genotoxic
effects at the cellular and genomic levels in different types of cells, especially peripheral
blood mononuclear cells (PBMCs) [50,51]. Andreotti et al. [13] recently conducted an
epidemiological study showing that, out of 54,251 people who use pesticides, 44,932 used
glyphosate and 5779 developed cancers. Authors also suggested a specific correlation with
the risk of developing acute myeloid leukemia (AML) in the group exposed to the highest
amount of glyphosate [13]. Since DNA damage alters numerous cellular processes, evalu-
ating the genotoxic potential of these xenobiotics appears to be crucial in assessing human
health risk. The most frequent lesions that occur in DNA consist of single-strand breaks,
double-strand breaks, different types of chromosomal aberrations and DNA oxidative dam-
age involving a modification of the nitrogenous bases; however, changes in the methylation
profile of several genes must be also considered as they are associated with an increased
risk in developing cancer [56,57]. From this point of view, Santovito et al. [58] evaluated,
in vitro, the effects of glyphosate concentrations corresponding to the acceptable daily in-
take (ADI) established by EFSA (0.5 µg/mL) and its submultiples on human lymphocytes.
They observed that glyphosate was able to induce micronuclei (MNi) and chromosomal
aberrations, such as chromatid and chromosome breaks, dicentric chromosomes, ring
and acentric fragments, suggesting a cancer risk for exposed subjects [58]. These data
corroborated the results previously obtained by Lioi et al. [50,51], who showed a weak
but significant genotoxic effect, in terms of chromosomal aberrations and sister chromatid
exchanges (SCEs)/cell, in human and bovine lymphocytes exposed to glyphosate [50,51].
The finding by Lioi et al. [50,51], indicating an increase of SCEs/cells, also suggested a
reduced efficiency of DNA repair enzymes, most of which are epigenetically regulated.
In another study by Wozniak et al. [57] it was determined the genotoxic potential not only
of glyphosate but also of its formulation Roundup and its metabolite AMPA. It was found
that all compounds can cause single-strand breaks, while glyphosate (at a concentration of
1000 µM) and Roundup at a concentration of 10 µM caused comparable DNA damage in
the Comet assay. Of note, the authors suggested that DNA lesions were caused by oxidative
stress, leading to the formation of 8-oxodG, which is known to favor the incorporation of
adenine in place of cytosine causing G: C -> T: A transversion. They also demonstrated a
greater toxicity of Roundup compared with glyphosate alone [59].

It is well known that xenobiotic substances can also induce epigenetic mutations.
Changes in the level of general methylation or within the promoter regions of genes in-
volved in different cellular processes can have important consequences for eukaryotic cells,
including the increase of cancer risk [60–62]. From this perspective, recent studies showed
that glyphosate at low concentrations (from 0.5 to 0.1 mM) reduced the methylation of
P21 and TP53 suppressor gene promoters, which are notoriously involved in apoptotic
pathways [62]. According to these findings, a global condition of DNA hypomethylation
was found in PBMCs treated with higher concentrations of glyphosate (0.5 to 10 mM); how-
ever, hypermethylation was observed in the promoter region of the p53 gene following the
treatment with 0.25- and 0.5-mM [63]. Altogether these observations strongly suggest that
glyphosate can induce epigenetic effects by disturbing the normal methylation processes
and gene expression in human PBMCs, probably leading to cell transformation. Accord-
ingly, the IARC working group has concluded that there is a link between glyphosate
exposure and non-Hodgkin’s lymphoma [5,10,64].

The genotoxic activity of glyphosate and GBHs have also been demonstrated in the
human liver-cell line HepG2. In these cells, the treatment with glyphosate and four different
formulations of Roundup containing increasing amounts of the active ingredient (from
7.2 to 450 g/L) induced DNA damage and anti-estrogenic activities on estrogen receptors
α and β (ERα, ERβ). Interestingly, the effects were more dependent on the formulations
than on glyphosate concentration, suggesting that GBHs can be more toxic than the pure
glyphosate [65]. Similar results were obtained by Koller et al. [66], who investigated the
potential adverse effect that glyphosate and Roundup can cause on a human-derived buccal
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epithelial cell line, TR146. In this case, the comet assay and the MNi tests demonstrated
that the substances at the concentration of 20 mg/L promote DNA damage, probably by
inducing single-strand breaks, apurinic sites, MNi and nuclear buds (NB) and, in this study,
Roundup was more active than glyphosate [66]. Furthermore, in Hep-2 cells exposed to
glyphosate at a concentration range of 3 to 7.5 mM for 4 h, the comet assay revealed a
statistically significant increase in DNA damage [67]. In addition to the evident genotoxic
effect that glyphosate and GBHs can have, it has been seen that, in some forms of cancer,
they can favor the maintenance of tumor condition by inducing multidrug resistance
(MDR). Despite originating in healthy human cells, cancer cells undergo rapid mutations
and develop different mechanisms of adaptation to stress conditions that can ensure greater
survival. These include the MDR mechanism. The acquisition of the MDR phenotype is
one of the main problems encountered in the treatment of various forms of cancer such
as glioblastoma multiforme (GBM). This phenomenon is related to an overexpression of
ABC membrane transporters (such as P-glycoprotein) [68], breast cancer-resistance protein
(Bcrp) and glutathione s transferase (GSTs) [69]. The chronic presence of pesticides in the
body could activate MDR mechanisms. In the human glioblastoma cell line U87 it has
been shown that, consequent to exposure to the combined action of various pesticides
(including glyphosate), cells develop resistance to chemotherapeutic agents. In these
resistant U87 cells, there was an increase in the expression of all biomarkers involved in
the MDR mechanism (such as GST, P-gp/ABC, MRP) and a greater resistance to apoptosis
and oxidative stress [70]. From this point of view, it would be necessary to increase our
knowledge on the adverse effects of the contemporary exposure to several pesticides,
as this could occur, particularly, for farmers.

Other studies on the human cancer cell lines HEC1A (endometrial cancer cell line) and
MDA-MB-231 (estrogen receptor (ER) negative breast cancer line) the genotoxic effects of
glyphosate and its co-genres Roundup and Wipeout were also correlated with the estrogen
receptors status. These effects were found mainly by using short time treatments and
moderate doses (from 75 to 500 µg/mL); glyphosate induced significant DNA damage
in both cell lines. Indeed, the toxic effect was higher in HEC1A (ER positive) compared
with MDA-MB-231 (ER negative). MDA-MB-231 are considered hormone-independent
cells that express low levels of the ERα and ERβ receptors and, therefore, in this case it is
possible that glyphosate acts through a non-estrogenic mechanism, suggesting a potential
endocrine-disruptive role for this pesticide [71]. In line with this hypothesis, in T47D cells,
a human hormone-dependent breast-cancer cell line, glyphosate concentrations ranging
from 10−12 to 10−6 M has been shown to have a pro-proliferative effect. The estrogen
response element (ERE) luciferase assay—performed by using the T47D-KBluc cell line
transfected with a triplet ERE-promoter luciferase reporter-gene construct—gave evidence
that glyphosate behaves like a xenoestrogen that can induce ERE activation. This mech-
anism is inhibited by the estrogen antagonist ICI 182,780 corroborating that glyphosate
activity is mediated by ERs. Therefore, although the binding of glyphosate to ERs is not
yet documented, its ability to stimulate the ERE-regulated transcription suggest that it
could have a stimulatory effect through an ER-dependent mechanism [72]. These last
observations pointed out that, in addition to cytotoxic and genotoxic effects on various
experimental model systems, glyphosate also interferes with the estrogen pathway in a
manner that remain to be elucidated. Moreover, as summarized in the next paragraph,
GBHs have been reported to induce adverse effects in animal reproduction, including
disruption of key regulatory enzymes in androgen synthesis and alteration of serum levels
of estrogen and testosterone [73].

5. Effects of Glyphosate on Reproduction and Development

The production of high-quality gametes is the first step for successful reproduction
and species conservation. Notably reproduction is under the control of the hypothalamus–
pituitary–gonadal (HPG) axis and finds the main actors in the hypothalamic gonadotropin
releasing hormone (GnRH), pituitary gonadotropins and sex steroids [74]. Many environ-
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mental factors, from nutritional cues, drug abuse, stressors or environmental pollutants,
among others, affect reproduction at multiple levels along the HPG axis, with consequences
for gamete quality, successful reproduction, embryo development and offspring health,
as previously reviewed [75–79]. In this respect, in spite of the relative safety of glyphosate,
in-vivo and in-vitro studies involving different organisms and cell types reported various
adverse effects on reproduction (Figure 4), but several controversies concern chemical
composition (glyphosate alone or in formulation), doses and exposure windows.
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Figure 4. Schematic representation of glyphosate’s and glyphosate-based herbicide’s (GBHs) -induced effects on mammalian
reproduction, fertility and development. ↓: decreased; ↑: increased.

Therefore, Table 1 summarizes the significant outcomes in mammalian reproduction
following in-vivo and in-vitro treatments of glyphosate and GBHs, alone or in combinations.
In general, glyphosate or GBHs exposure during neonatal, (peri)pubertal or adult life
interferes in the physiology of the HPG axis affecting the hormonal milieu critical for
reproduction, sex-steroids production and signaling pathways (details and references in
Table 1).

Table 1. In-vivo and in-vitro administration of glyphosate and glyphosate-based herbicides (GBHs): effects on reproduction
in mammals.

Experiment Species/Cell Types Treatment Effects Reference

In vivo Newborn female rats

Subcutaneous injection:
2 mg/kg/day GBH (66%

glyphosate in potassium salt)
on PND1, 3, 5 and 7

↑Number of resorption sites
on GD19, associated with

altered decidualization
response

Morphological changes at the
implantation site

↓Estrogen and progesterone
receptors (ER and PR)
↓COUP-TFII (Nr2f2) and

Bmp2 mRNA
↑HOXA10 and Ki67

[80]
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Table 1. Cont.

Experiment Species/Cell Types Treatment Effects Reference

In vivo Newborn female rats
Subcutaneous injection:
2 mg/kg/day GBHs on

PND1 to 7

Disturbed uterine signaling
(Wnt5a, β-catenin, Wnt7a,
Dkk1 and sFRP4) during

gestation

[81]

In vivo Newborn female rats
Subcutaneous injection:

2 mg/kg/day GBH on PND1
to 7

↑LE hyperplasia
↑Stromal and myometrial

thickness
↑Proliferation and

endometrial hyperplasia
Altered expression of proteins

involved in uterine
organogenetic differentiation

(i.e., PR and Hoxa10, and
ERα)

[82]

In vivo Female Wistar rats (pups)

Subcutaneous injection:
Endosulfan (600 µg/kg

bw/day), GBHs (2 mg/kg
b.w/day) or a mixture (mix)

from PND1 to 7

GBHs and mix:
↑Incidence of luminal
epithelial hyperplasia

↑PR and Hoxa10 expression
↑Post-implantation losses

during adulthood
Endosulfan:

Modified ERα and Hoxa10
expression.

↑Pre-implantation losses

[83]

In vivo Female weaned piglets
Glyphosate concentrations 10,

20, and 40 mg/kg into the
feed

No significant effect on
vulvar size and reproductive

organs
Altered tissue morphology
and ultrastructure in uterus

and ovary
↑Oxidative stress in uterus

↑LHRH/GnRH
↑Testosterone
↓FSH

[84]

In vivo Prepubertal female ewe
lambs

Oral and subcutaneous
exposure to a GBHs (2

mg/kg/day) from PND1 to
PND14

PND45:
Altered follicular dynamics
↑Proliferation of granulosa

and theca cells
↓FSHR and GDF9 mRNA
↓Proliferation in the uterus

[85]

In vivo Female Friesian ewe lambs

GBHs (2 mg/kg/day)
through subcutaneous.

injections from PND1 to
PND14

PND45 (uterus):
↓Cell proliferation

↑p27
↑Insulin-like growth factor

binding protein 3
↓ERα in the LE and GE and

in the SS
↓PR expression in the LE
↑PR in the GE and SS
↓Gene expression in the

uterus (i.e., Wnt5a in the GE,
Wnt7a in the SS, β-catenin in
the LE and GE, Hoxa10 in the

SS, and Foxa2 in the GE)

[86]

In vivo 8-weeks-old male Kunming
mice

Gavage: Roundup, 60, 180,
540 mg/kg

Impaired spermatogenesis,
↓Sperm motility and

concentration
↑Sperm deformity rate

↑Apoptosis of germ cells with
mechanism involving the

over-expression of the
X-linked inhibitor of

apoptosis-associated factor 1
(XAF1)

[87]

In vivo Prepubertal male Wistar rats

Oral gavage: 5, 50 or 250
mg/kg bw

glyphosate-Roundup
Transorb from PND23 to

PND53

Dose dependent changes in
spermatogenesis progression
↓Seminiferous epithelium

height
↓Serum levels of testosterone

[88]

In vivo 4 weeks-old male
Sprague-Dawley rats

Oral gavage: two weeks
exposure to either glyphosate
(2.5 and 25 mg/kg bw/day)

or herbicide formulation
Glyfonova

Glyfonova:
Slight increase in the

expression of the
steroidogenic genes Cyp11a1

and Cyp17a1

[89]
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Table 1. Cont.

Experiment Species/Cell Types Treatment Effects Reference

In vivo Male Wistar rats (12 weeks
old)

Dietary administration: 375
mg/kg/day glyphosate ± 20

mg/kg/day resveratrol

↓Sperm motility
↓Sperm plasma membrane

integrity
↓Glutathione level

↓Superoxide dismutase
↑Abnormal sperm rate
↑Malondialdehyde level
↑DNA damage

All the effects were reversed
by resveratrol

co-administration

[90]

In vivo Male Sprague Dawley rats Glyphosate 5, 50, 500 mg/kg
by gavage

↓Average daily feed intake at
dose of (50 mg/kg dose)
↓Weight of seminal vesicle

gland and coagulating gland
(500 mg/kg dose).

↓Total sperm count (500
mg/kg dose)

No effects on testosterone,
estradiol, progesterone and
oxidative stress parameters

[91]

In vivo Sexually mature male guinea
pigs

Oral exposure: Willosate 186,
280 and 560 mg/kg daily for

60 days

↓Sperm motility, viability and
concentration

↑Sperm morphological
alterations

[92]

In vitro Mouse Oocytes 500 µM Glyphosate

↓Germinal vesicle breakdown
and first polar body extrusion

Abnormal spindle
morphology and DNA
double-strand breaks
↑Oxydative stress

↑Mitochondria aggregation
↓Mitochondria membrane

potential
↓Expression levels of

autophagy-related genes (lc3,
atg14, mTor) and proteins

(LC3, Atg12)

[93]

In vitro and in vivo Mouse oocytes

In vitro: 0.00001%, 0.00005%,
or 0.00025% GBHs ±

melatonin (10 and 100 µM)
In vivo: GBHs (0.0005%
Roundup solution) daily
administered in drinking

water for 21 days ±
melatonin (0, 0.15, and 1.5

mg/kg bw), once a day
through intragastric

administration

Impaired oocytes meiotic
maturation

↓First polar body extrusion,
disorganized spindle

morphology,
misaligned chromosomes,

and ROS production
↑Apoptosis rate

↓Sperm-binding ability and
disrupted early embryo

cleavage
GBHs effects were reversed

by in vitro/in vivo melatonin
treatment with mechanisms

involving the membrane
GPER

[94]

In vitro Pig oocytes

0, 5, 10, 100, 200 and 360
µg/mL Glyphosate or
Roundup at the same

glyphosate -equivalent doses

Glyphosate:
No effect on nuclear

maturation and embryo
cleavage, impaired oocyte

developmental competence in
terms of blastocyst rate and

cellularity
Roundup:

more toxic than pure
glyphosate, altered

steroidogenesis
↑ROS levels

[95]

In vitro
Rat isolated testicular cells

and co-colture of germ
cells-Sertoli cells

Glyphosate and Roundup:
1–10,000 ppm, from 1 to 48 h

Leydig cells: damaged
(Roundup, 1–48 h)

Sertoli cells: toxic effect
(glyphosate alone)

Germ cells: necrosis (Roundup,
24–48 h) and apoptosis (high

doses)
Co-colture assay: apoptosis of

Sertoli cells and germ cells (at
high doses)

↓Testosterone levels (Roundup
and glyphosate 1 ppm)

[96]
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Table 1. Cont.

Experiment Species/Cell Types Treatment Effects Reference

In vitro Sertoli cells from PND30
(prepubertal) Wistar rats

Acute Roundup exposure at
low doses (36 ppm or 0.036

g/L) for 30 min

Endoplasmic reticulum stress
Depletion of antioxidant

defences
Cell death

[97]

In vitro Immature Sertoli cell line
(TM4)

Commercially availableGBHs:
Genamin T200 (732 g/L

Polyethoxylated tallowamine,
60–80% POE (15) tallowamine

(POE-15));
Glyphogan (360 g/L of

glyphosate);
Roundup Bioforce (360 g/L of

glyphosate)

Mitochondrial dysfunction
Disruption of cell

detoxification systems
Lipid droplet accumulation
Mortality at sub-agricultural

doses
Formulants have more
deleterious effects than

glyphosate

[98]

In vitro MA-10 Leydig cells Roundup (180 g/L
glyphosate)

Inhibition of dibutyryl
[(Bu)(2)]cAMP-stimulated
progesterone production
↓Activity of Aromatase

No effect on the activitiy of
3β-HSD

↓Steroidogenesis by
disrupting StAR protein

expression

[99]

In vitro Pig semen 0–360 µg/mL glyphosate or
Roundup

Glyphosate:
↓Sperm motility, viability,

mitochondrial activity
↓Acrosome integrity

Roundup:
↓Sperm motility (≥5 µg/mL

glyphosate-equivalent
concentration)

↓Mitochondrial activity (25
µg/mL

glyphosate-equivalent
concentration)

↓Sperm viability and
acrosome integrity (≥100

µg/mL
glyphosate-equivalent

concentration)

[100]

In vitro Human sperm
(n = 66 healthy men) 1 mg/L Roundup ↓Sperm motility and

mitochondrial dysfunction [101]

In vitro Human sperm
(n = 30 healthy men) 0.36 mg/L glyphosate ↓Sperm progressive motility

(1 h post-treatment) [102]

In vitro

Human cell lines:
(JEG3 placental cell lines,
HUVEC primary neonate

umbilical cord vein, and 293
embryonic kidney HEK293)

GBHs in Roundup
formulations

Cell death within 24 h in all
cell lines [18]

In vitro
Human cell lines (JEG3
placental cell lines and

HEK293)

Glyphosate alone and in 14 ot
its formulations

Toxic effects
↓Ativity of Aromatase [103]

In vitro Human JEG3 placental cell
lines

0.05–2% glyphosate and
Roundup (360 g/L

glyphosate)

Toxic effects with
concentrations lower than

those found with agricultural
use

↓Aromatase activity

[104]

In vitro Bovine preimplantation
embryos

Roundup 0.01~2% (36~7200
ppm, containing 36~7200

mg/L glyphosate)

0.01~2% Roundup doses are
toxic to bovine embryos [105]

In vitro Bovine preimplantation
embryos

Roundup 0, 0.45, 0.9, and 1.8
ppm

↑Intracellular calcium levels
(2-cells embryo)

↑Oxidative stress (2-cells
embryos)

↑Apoptosis (bovine
blastocysts)

[105]

AR, androgen receptor; bw, body weight; Cyp11a1, cytochrome P450 family 11 subfamily A member1; Cyp17a1, cytochrome P450 family
17 subfamily A aember 1; ER, estrogen receptor, FSH, follicle-stimulating hormone; FSHR, follicle-stimulating hormone receptor; GBHs,
glyphosate based-herbicides; GD, gestation day; GE, glandular epithelium; GnRH, gonadotropin releasing hormone; GPER, G protein-
coupled estrogen receptor 1; 3β-HSD, 3β-hydroxysteroid dehydrogenase; LE, luminal epithelium; PND, post-natal day; PR, progesterone
receptor; ROS, reactive oxygen species; SS, subepithelial stroma; StAR, steroidogenic acute regulatory protein; ↑, statistically significant
increase; ↓, statistically significant decrease (p < 0.05 at least).
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Usually, formulants have more deleterious effects than glyphosate alone because
of possible cumulative effects on endocrine and reproductive endpoints [106]. As sum-
marized in Table 1, in female reproduction, glyphosate and GBHs exposure has conse-
quences for post-natal ovarian and uterine development, puberty onset, oocyte maturation,
sperm-oocyte binding ability and early embryo development, implantation and successful
pregnancy. Consistently, germ-cell loss, impaired spermatogenesis and negative effects on
sperm quality have been reported in males. In addition, toxicity on both nurse Sertoli cells
and steroid-secreting Leydig cells have been observed [98,99]. In this respect, particular
interest is deserved for the direct inhibitory effect of glyphosate and its formulations on the
activity of P450scc Aromatase (in embryonic human cells), placental cell lines and tumor
MA-10 Leydig cells [98,103,104] and the widespread interference in sex-steroid signaling,
are observations that corroborate the hypothesis that glyphosate and GBHs need inclusion
in the list of endocrine-disrupting chemicals (EDCs). Imbalance in the oxidative stress
response is a common feature of glyphosate and GBHs in both sexes, but there is the
need for additional studies to fully elucidate the molecular mechanisms and the possible
adverse effects on human reproduction. Worthy of note, the aforementioned consequences
of glyphosate or GBH exposure on reproduction have been largely analyzed in cell lines
and rodents using different doses and formulations, but data in human and domestic
animals are very limited. Anifandis and coworkers, in 2017 and 2019 [101,102], analyzed
the direct effects of Roundup and glyphosate on sperm motility and DNA fragmentation
in human sperm collected from n = 66 and n = 30 healthy volunteers, respectively; their
studies, for the first time, revealed that the tested herbicides significantly reduced sperm
motility without any effects on DNA integrity [101]. Consistently, in 2020 Nerozzi and
coworkers [100] confirmed these glyphosate and Roundup effects on sperm motility using
fresh commercial pig semen doses, whereas, in the same year Cai and coworkers [105]
reported the deleterious effects of Roundup on bovine preimplantation embryos [105].
Recently the ability of glyphosate and GBHs to induce epigenetic changes emerged in
cell lines and rodents [107], for recent review; but, this point has yet to be unraveled in
gametes. Considering that gamete epimutations may interfere in early embryo develop-
ment and health, once again there is the need of further studies on the reproductive effects
of glyphosate and GBHs in order to elucidate the related molecular mechanisms and to
preserve gamete quality, reproduction health and offspring health.

Glyphosate accumulates in bird eggs [108] and causes developmental and reproduc-
tive alteration in nematodes, fish and amphibians, among others [109–115] and it influences
antioxidant defenses, reproduction and microbioma in avian models [116]. Equally warring
are data concerning the chronic exposure, in utero, regarding lactation and weaning in
mammalian animal models (Table 2).

Table 2. Exposure to glyphosate and glyphosate-based herbicides (GBHs) during pregnancy and lactation: effects on the
development, reproduction and fertility of the offspring.

Species Dams’ Treatment Exposure Route Effects on Dams
and Litter Size

Effects on F1
(Males)

Effects on F1
(Females) Reference

Mouse

0.5% glyphosate-
Roundup from GD4

all over lactation
period

Drinking water

Reduced bw
gain during

gestation
no effects on litter

size

Delayed testicular descent
PND150:

↓SPZ in cauda epididymis
↓Epithelial height within the

seminiferous epithelium
↑LH in plasma

↑Intratesticular testosterone
levels

NA [117]
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Table 2. Cont.

Mouse

0.5, 5 and 50
mg/kg/day

glyphosate or
Roundup 3 Plus

from ED10.5 to 20
PND

Drinking water NA

PND20:
Altered testis morphology

(glyphosate)
PND35:

↓Serum testosterone levels
(glyphosate)

↓SPZ, (0.5 mg/kg/day
Roundup and 5 mg/kg/day

glyphosate)
↓Undifferentiated

spermatogonia (5 mg/kg/day
glyphosate)

8-month-old animals:
↓testosterone (GBHs)

NA [118]

Mice
0.5% glyphosate

from GD1 until 30
days after birth

Drinking water NA

↑Risk of jejunum inflammation
and dysfunction in adulthood

when combined with a high-fat
diet

NA [119]

Wistar
rats

0, 50, 150 or 450
mg/kg glyphosate
during pregnancy

and lactation

Drinking water NA

Puberty:
↓Serum testosterone levels

Adulthood:
↓Sperm number in epididymis

tail
↓Daily sperm production
↑Abnormal sperms

↑Spermatid degeneration

Delay in Vaginal canal-opening [120]

Wistar
rat

2 mg or 200 mg of
glyphosate/kg

bw/day from GD9
until weaning

Food NA NA

F1: No alteration in bw gain or
vaginal opening onset
↓Implantation sites
F2: Delayed growth

↓Foetal weight and length
↑Incidence of small for
gestational age foetuses

↑Placental weight and placental
index

structural
↑Congenital anomalies like

conjoined foetuses and
abnormally developed limbs

[121]

Rats

GBHs (containing
66.2% of glyphosate
potassium salt) or

glyphosate (2
mg/kg/day) from
GD9 until weaning

Orally NA NA

↓Preimplantation
↑17β-oestradiol serum level
↑ERα in the uterus

↓PR mRNA (glyphosate)
↓Uterine implantation-related

genes (i.e., Hoxa10 and Lif )

[122]

Sprague
Dawley

rats

Glyphosate alone
and Roundup Bio
flow, 1.75 mg/kg

bw/day from GD6
up to PND120

Drinking water NA

PND4: ↑AGD (all treatments)
ADULTS:

↑plasma TSH (glyphosate)
↓DHT (Roundup)
↑BDNF (Roundup)

PND4: ↑AGD (all treatments)
ADULTS:

Age at first oestrous
significantly delayed

(Roundup)
↑Serum testosterone (Roundup)

[123]

Rats

350 mg
glyphosate/kg

bw/day from GD9
until weaning

Food NA NA

↑ERα-O mRNA variant in
uterus

Epigenetic changes in the
Esr1-O promoter (i.e., ↓DNA

methylation
↑Histone H4 acetylation
↑Histone H3 lysine 9

trimethylation (H3K9me3)
↓H3K27me3)

[124]

Mouse
GBHs (250 or 500

mg/kg) from GD0
to PND21

Oral gavage
Impaired maternal
behaviour fertility
and reproduction

Global delay in innate reflexes and a deficit in motor development
Hippocampal dysfunctions with behavioural and cognitive

impairment
[125]

Wistar
rats

0.65 or 1.30 g/L of
glyphosate from

GD0, until weaning
(PND21)

Drinking water NA
Neurobehavioral alterations (i.e., early onset of cliff aversion reflex

and early auditory canal opening, decrease in locomotor activity
and in anxiety levels)

[126]

Wistar
rats

0.65 and 1.30 g/L of
pure glyphosate
from GD0, until

weaning (PND21)

Drinking water NA Alterations in brain oxidative stress biomarkers and glutamatergic
and cholinergic systems [127]

Wistar
rats

5 and 50
mg/kg/day

Roundup, (per os)
from GD18 to PND5

Drinking water NA Altered expression of genes associated with oxidant defence,
inflammation and lipid metabolism [128]
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Table 2. Cont.

Wistar
rats

1% GBH (0.36%
glyphosate) from

GD5 until PND15 or
PND60

Drinking water NA

Oxidative stress and depressive-like behaviour at PND60
Impaired cholinergic and glutamatergic neurotransmission at

PND15 and PND60
Altered serum levels of the astrocytic protein S100B at PND15 and

PND60

[54]

Rats

GBH (66.2%
glyphosate in

potassium salt) 3.5
or 350 mg/kg

bw/day GD9 until
weaning

Orally exposed
through the food NA

PND21: No differences in mammary gland development or in
oestradiol and testosterone levels

PND60, GBHs 3.5 mg/kg/day exposed animals:
↑AR protein expression

PND60, GBHs 350 mg/kg/day exposed males:
↓Proliferation index and less developed mammary gland

↑PRL serum levels
Both exposed groups:

↓ESR1 expression by means of hypermethylation of ESR1 promoter

[129]

Rats

GBH (66.2%
glyphosate in

potassium salt) 3.5
or 350 mg/kg

bw/day from GD9
until weaning

Orally exposed
through the food NA

↓Proliferation index in GBHs 3.5-exposed animals
↓mRNA levels of ESR1, Ccnd1, Areg, IGF1, EGFR and IGF1R

↓p-Erk1/2 protein
[130]

Wistar
rats

5 mg/kg/day or 50
mg/kg/day

Roundup from
GD18 to PND5

Oral gavage NA

↓Deiodinases 2 (Dio2) and 3 (Dio3) and TH transporters Slco1c1 and
Slc16a2 mRNA within the hypothalamus

↑Dio2, thyroid hormone receptor genes (Thra1 and Thrb1), and
Slc16a2 within the pituitary.

↑Thra1 and Thrb1 mRNA in the liver
↑Dio2, Mb, Myh6 and Slc2a4 mRNA expression in the heart

[131]

Wistar
rats

1% Roundup (0.38%
glyphosate) from

GD5 and up to
lactation day 15

Drinking water NA Excitotoxicity and oxidative stress in rat hippocampus [31]

Wistar
rats

Pure glyphosate (24
or 35 mg/kg) every
48 h from ED8 until

ED20, every 48 h

Intraperitoneal
injections NA

Dose dependent changes in reflexes development, motor activity
and cognitive function, via inhibition of Wnt5a-CaMKII signalling

pathway.
[132]

AGD, anogenital distance; AR, Androgen Receptor; BDNF, Brain-Derived Neurotrophic Factor; bw, body weight; DHT, Dihydrotestosterone;
ED, embryonic day; EGFR, Epidermal Growth Factor Receptor; ER, Estrogen Receptor; ESR, Estrogen Receptor gene; GBHs, glyphosate
based-herbicides; GD, gestation day; IGF1, Insulin Growth Factor 1; IGF1R, Insulin Growth Factor 1 Receptor; LH, Luteinizing Hormone;
NA, not assayed/no information about; PND, post-natal day; PR, Progesterone Receptor; PRL, Prolactin; SPZ, spermatozoa; TH, Thyroid
Hormone; TSH, Thyroid-Stimulating Hormone; ↑, statistically significant increase; ↓, statistically significant decrease (p < 0.05 at least).

Apart from the effects on maternal brain plasticity, licking behavior and the micro-
biome [133], exposed offspring exhibit several long-term alterations in brain, mammary
gland, inflammation and lipid metabolism, oxidative stress response and reproduction
(details and references in Table 2). Epigenetic changes in DNA methylation status, histone
modifications and the production of non-coding RNA, such as microRNA and circular
RNA, have also been reported in specific brain areas, as recently reviewed [107].

Focusing on the reproductive phenotype of the exposed offspring, glyphosate and
GBHs may program the fetus to induce reproductive damage in adulthood. In fact, impair-
ment of the HPG axis, sex-steroid production and sex-steroid signaling, altered uterine
physiology (possibly associated with implantation failures), decreased spermatogenesis
and sperm quality are the main outcomes in F1 offspring. Interestingly, the modulation
of the epigenetic machinery has been reported in fish [134], and epigenetic mechanisms
involving ESR1, the gene encoding for ERα, have been reported in F1 female offspring
in rats [124]. Contrarily, Milesi 2018 et al. [121] suggested that in mammals the perinatal
exposure to low doses of glyphosate formulation impaired female reproductive perfor-
mance and induced fetal growth retardation and structural congenital anomalies in F2
offspring [121].

As for in-vitro and in-vivo exposure at neonatal and peripubertal phases and in adult
life, the aforementioned effects are stronger in exposure to glyphosate formulations than in
glyphosate alone.

In mammals, glyphosate and GBHs effects seems to be stronger in female reproduction
than males, though androgenic effects have been reported. In this respect, the anogenital
distance (AGD) is considered an early-life biomarker of fetal androgen exposure in several
species, thus representing a reproductive toxicity endpoint to evaluate chemicals in ani-
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mal studies [135]. Furthermore, multiple epidemiological studies have shown that AGD
measurements in infants are sensitive to in-utero exposures to EDCs [136]. Gestational
exposure at doses of glyphosate considered to be “safe” for human health significantly
increased AGD in male and female rat pups, with Roundup treatment capable of delaying
the age of first estrous and a parallel increase in serum testosterone in the adults [123].

Recently, these possible androgenic effects were investigated in humans in a pilot
study enrolling 94 pregnant women. In their 2021 study, Lesseur and coworkers [137]
measured glyphosate and its degradation product, AMPA, in second trimester maternal
urine samples by ultra-high-performance liquid chromatography-tandem mass spectrom-
etry, revealing glyphosate and AMPA presence in 95% and 93% of the samples (median
0.22 ng/mL and 0.14 ng/mL), respectively. Then, urinary glyphosate levels in the mothers
were correlated to the anogenital distance (AGD) in female and male infants (n = 45 and 49,
respectively). While no correlation was observed in male infants, increased AMPA was as-
sociated with longer anofourchette distances in female infants. Although preliminary, data
in humans might suggest the possible sex-specific effects of glyphosate [137], confirming
the androgenic effects of Roundup previously reported in rats [123].

Taking the above together, a possible health risk exists; larger studies should evaluate
the possible developmental and reproductive effects of glyphosate.

6. Conclusions

Exposure to pesticides is known to cause irreversible damage to the environment and
serious consequences for human health. Scientific evidence has shown that exposure to
glyphosate and GBHs can predispose humans to the onset of systemic inflammatory dis-
eases, cancer and neurological disorders. However, the molecular mechanisms responsible
for the observed effects are not fully understood. The similarity between glyphosate and its
metabolite, AMPA, to glycine and glutamate could only explain in part some observed neu-
rotoxic and cytotoxic effects. On the other hand, the recent findings on glyphosate action as
an endocrine disruptor could account for its capacity to induce, among others, hormonal
imbalances with adverse effects on fertility and reproduction (Figure 5). As for in-vitro
and in-vivo exposure at the neonatal peripubertal phases, and in adult life, it appears that
all glyphosate- and GBHs-induced effects are stronger in formulations thereof than from
glyphosate alone. In mammals, glyphosate and GBHs effects seems to be stronger in female
reproduction than males.
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Indeed, from the overall data, a number of criticisms arise: (i) studies carried out
in vivo and in vitro do not give final indications of the acceptable daily intake (ADI); (ii) the
existing data about glyphosate genotoxicity and cytotoxicity are still conflicting, as a result
of different experimental conditions used in the research thereabout; (iii) there are no data
about glyphosate-induced long-term effects on general populations or exposed farmers; (iv)
GBHs seem to exhibit higher toxic effects than glyphosate alone, but studies on this matter
are still few. Therefore, to date, it is not possible to have a univocal opinion on the safety
of glyphosate and it appears that the human health risk associated with glyphosate could
still be underestimated. The IARC has included glyphosate into the group 2A, “probably
carcinogenic to humans”; while the EFSA has conducted a technical assessment, according
to which glyphosate does not constitute a carcinogenic hazard for human health. The
discrepancy between IARC and EFSA classification is ascribable mainly to the diverging
views between the two groups of experts [41]. This is because, on the one hand, the IARC
analyzed both glyphosate and GBHs toxicity studies, while EFSA analyzed only those on
glyphosate. On the other, the number of epidemiological studies included in the IARC
monograph are fewer than those evaluated by EFSA. Moreover, the IARC considered as re-
liable the carcinogenic effects and genotoxicity, oxidative stress and DNA damage obtained
in-vivo from laboratory animals and in vitro, while EFSA, even while recognizing the
importance of these studies, has concluded that there is limited epidemiological evidence
for a correlation between glyphosate exposure and cancer [10,41]. Currently, the approval
period for the use of glyphosate in the EU extends until 15 December 2022. In the meantime,
it would be desirable to investigate the possible role of glyphosate and GBHs exposure on
the onset of neurodegenerative and behavior disorders. Moreover, it could be useful to
perform studies leading to a deeper knowledge of the possible involvement of glyphosate
and its formulations in the pathogenesis and/or development of human cancer. Since
glyphosate has been found in maternal milk, other aspects should be investigated, such as
the pharmacokinetics of the pesticide and its ability to induce epigenetic transgenerational
inheritance, in order to better establish the real exposure limits preserving human health
and especially that of future generations.
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62. Woźniak, E.; Reszka, E.; Jabłońska, E.; Balcerczyk, A.; Broncel, M.; Bukowska, B. Glyphosate Affects Methylation in the Promoter
Regions of Selected Tumor Suppressors as Well as Expression of Major Cell Cycle and Apoptosis Drivers in PBMCs (In Vitro
Study). Toxicol. In Vitro 2020, 63, 104736. [CrossRef]
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