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Abstract
Fatty acids (FA) play a crucial role in glycaemia regulation in healthy and metabolic disorders conditions through various 
mechanisms. FA oxidation is one of the processes involved in lipid metabolism and can be modulated by exercise. Nowadays, 
physical activity is known to be an effective strategy for the prevention and treatment of Type 2 Diabetes. Moreover, its 
intensity, its duration, the sex-gender, the prandial state, exerkines… are as many parameters that can influence glycaemic 
control. However, the widely debated question is to determine the best type of exercise for patients with metabolic disor-
ders. In this review, we will discuss the impact of exercise intensity, especially moderate activity, on glycaemic control by 
focussing on FA oxidation in pancreatic β-cells and skeletal muscle. Finally, thanks to all the recent data, we will determine 
whether moderate physical activity is a good therapeutic strategy and if FA oxidation represents a target of interest to treat 
diabetic, obese and insulin-resistant patients.
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Introduction

Type 2 Diabetes (T2D)-associated lipotoxicity, due to an 
increase of circulating fatty acids (FAs), induce skeletal 
muscles insulin resistance and pancreatic β-cell dysfunction 
[1–4] However, it is well documented that FAs are essential 
for several cellular functions (i.e. vesicle exocytosis) and 
particularly have critical roles on the regulation of glycae-
mia homeostasis by acting on pancreatic β-cells and skeletal 
muscle [5–9].

FAs are metabolized to provide regulatory metabolic cou-
pling factors (R-MCFs) and effectory MCFs (E-MCFs). The 
R-MCFs, like citrate, NADH/NAD+, malonyl-CoA, GTP, 
long-chain Acyl-CoA compounds [FA-CoA], glutamate 
and adenine nucleotides, promote the synthesis of E-MCFs 
which are ATP, cAMP, monoacylglycerol, NADPH, ROS, 
inositol 1,4,5-trisphosphate and short-chain Acyl-CoA 
compounds. E-MCFs are known to have a direct impact on 
insulin secretion in pancreatic β-cells [7, 10] and on glucose 

uptake in skeletal muscle [11]. These, physiological effects 
of FAs are mediated by three interdependent processes, the 
FA oxidation, the Triglyceride (TG)/FA cycle and the activa-
tion of Gq-coupled FA receptors [6].

Furthermore, FAs represent an important source of 
energy during exercise [12]. More precisely, the nature of 
the energy source varies in function of the exercise inten-
sity. At a moderate intensity  (VO2max < 40%), lipids are 
predominantly the fuel supplier, whereas carbohydrates 
are preferentially used in a more intensive physical practice 
[13]. Nowadays, physical activity is known to be an effective 
strategy for the prevention and treatment of Type 2 Diabetes 
[14]. However, the remaining question is to determine what 
type of exercise is recommended in case of metabolic disor-
ders (Obesity, T2D).

Thus, in this review, we will discuss the impact of exer-
cise intensity, with a focus on moderate activity, on FA oxi-
dation in pancreatic β-cells and skeletal muscle.

Biochemistry of FA oxidation

In mammals, FA β-oxidation occurs in two different cell 
compartments: in mitochondria with the production of ATP 
and in peroxisomes, in which no ATP is produced [15, 16].
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Mitochondrial β‑oxidation

Mitochondrial β-oxidation (Fig. 1) contains several steps 
which are all regulated by several mechanisms. First, FAs 
are either provided by nutrients, lipid droplets or as a 
result of the endogenous triglycerides lipolysis [6, 8]. Par-
ticularly, FAs used during exercise can originate from the 
circulation, packed in triacylglycerol-rich particles pro-
vided by the liver or as non-esterified FAs (NEFAs) from 
adipose tissue lipolysis. However, another source of FA 
used during exercise is the intramyocellular lipid (IMCL) 

stored in the skeletal muscle in triacylglycerol-rich lipid 
droplets [12, 17]. Then, FAs enter the cell through specific 
transporters, such as the tissue-specific fatty acid trans-
porter protein CD36/FAT and fatty acid binding protein 
(FABP), which are located at the cell membrane [8, 18, 
19]. However, prior to entering the mitochondrial matrix 
to undergo oxidation, FAs are rapidly activated into their 
corresponding CoA esters form (FA-AcylCoenzyme A, 
FA-AcylCoA) by Acyl-CoA synthetases (ACSs) identi-
fied at the plasma membrane, in mitochondria and in lipid 
droplets [7, 20, 21]. Interestingly, the evolution into the 
β-oxidation pathway is dependent of the isoform of ACSL 
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Fig. 1  Mechanisms of Fatty acids and glucose mitochondrial 
β-oxidation. ATP and  CO2 are produced by cell from glucose and 
FA pathways. Focussing on lipid metabolism, FAs enter the cell via 
specific transporters (CD36/FAT, FABP) or are provided from TAG 
present in the cytosol. Before entering inside mitochondria, FAs are 
activated in FA-Acyl CoA form by ACS enzyme. After that, CPT1/2 
convert FA-Acyl CoA in Acyl-CoA and β-oxidation is also performed 
to produce Acetyl-CoA. Finally, this latter is used by the TCA cycle 
to produce ATP and  CO2 necessary for cell physiology. Malonyl-CoA 
is a key regulator of this mechanism inhibiting CPT1 and conse-

quently the transfer of FA-AcylCoA into the mitochondria. Malonyl-
CoA is produced by ACC and catabolized by MCD. ATP Adenosine 
Triphosphate, CO2 Dioxide carbon, FA Fatty acid, CD36 Cluster of 
differentiation 36, FAT Fatty acid transporter protein, FABP Fatty 
acid binding protein, FA-Acyl CoA Fatty acid-Acyl Coenzyme A, 
TAG  triacylglycerol, ACS Acyl-CoA synthetases, CPT1/2 Carnitine 
palmitoyl transferase 1 and 2, TCA  Tricarboxylic acid, Malonyl-CoA 
Malonyl-Coenzyme A, ACC  Acetyl-Coenzyme A carboxylase, MCD 
Malonyl coenzyme A decarboxylase
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(long-chain Acyl-CoA synthetases). In particular, ACSL1 
is involved in skeletal muscle FA β-oxidation [20] while 
ACSL3 and ACSL4 are found in pancreatic β-cells [22]. 
Then, FA-AcylCoAs are converted to FA carnitines by 
carnitine palmitoyl transferase 1 (CPT1) and are trans-
ported from the cytosol across the outer mitochondrial 
membrane. The exact role of this regulator is to reduce 
the Long Chain Fatty Acid (LCFA) oxidation and/or its 
reesterification into triglycerides. Moreover, it has been 
shown in nonlipogenic tissues, that Malonyl-CoA con-
trols the intracellular energy balance by inhibiting CPT1. 
Malonyl-CoA is produced by AMPK substrate Acetyl-CoA 
carboxylase (ACC) and catabolized by Malonyl coenzyme 
A (CoA) decarboxylase (MCD) [23]. Thus, AMPK play a 
crucial role in FAs β-oxidation modulating the concentra-
tion of Malonyl-CoA by the phosphorylation and the inhi-
bition of ACC. In human, 2 ACCs isoforms exist, ACC1, 
cytosolic and ACC2, which is anchored to the outer mito-
chondrial membrane and controls fatty acid β-oxidation 
[24]. Abu-Elheiga et al. showed a significant decrease of 
Malonyl-CoA levels, an elevation of lipid oxidation and 
a reduction of lipid storage in a mice model lacking the 
ACC2 [25]. Then, at the inner mitochondrial membrane, 
CPT2 converts fatty acyl carnitine back to fatty acyl-CoA, 
which enters b-oxidation, and to free carnitine, which 
returns to the inner mitochondrial space or cytosol [8].

In the mitochondria, FA-AcylCoA is converted into acetyl 
coenzyme A (acetyl CoA) by the β-oxidation chemical reac-
tion which is repeated 4 times. After each β-oxidation, two-
carbon fragments are removed in the form of acetyl CoA 
[21, 26]. The latter is then oxidized within the tricarboxylic 
acid (TCA) cycle and ATP is then generated and represents 
an essential energetic source for several key cellular func-
tions [20]. This pathway is particularly active in liver, heart 
and skeletal muscle [21]. Each electron removed from these 
fuel molecules during the two hydrogenation steps are trans-
ferred to the oxidized forms of nicotinamide adenine dinu-
cleotide (NAD +) and flavin adenine dinucleotide (FAD2 +). 
It results respectively NADH and FADH2 which are used 
by the mitochondrial electron transport chain for generating 
energy through their oxidative phosphorylation [21, 27].

Peroxisomal oxidation

In mammals, peroxisomes are essential organelles for the 
α-oxidation of branched-chain fatty acids and for β-oxidation 
of long-chain FA (LCFA) [28, 29]. They are the exclusive 
organelles for the oxidation of very-long-chain fatty acids 
(VLCFA; > 22 carbons) [30]. Interestingly, peroxisomal and 
mitochondrial FA β-oxidation are different. In mitochon-
dria, FADH2 produced during the first dehydrogenation step 
is reoxidized for energy output whereas in peroxisomes, it 
reacts with O2 to produce H2O2. By the end to reduce the 

excess of H2O2, the latter is degraded by peroxisomal cata-
lase into H2O and O2 thus decreasing cells oxidative stress 
[29].

Impact of FA β‑oxidation alteration 
in pancreatic β cells and skeletal muscle 
in metabolic diseases

Impact of FA β‑oxidation on beta‑cell dysfunction?

Since insulin secretion process requires a significant amount 
of energy, the well-described canonical signaling pathway 
[7, 15–18] is also amplified by FA oxidation in physiological 
conditions [6, 19].

Three fuel-driven metabolic cycles generate meta-
bolic coupling factors in the β-cell which stimulate insu-
lin secretion: the Krebs cycle, the Pyruvate cycle and the 
Glycerolipid (GL)/FA cycle [7]. The GL/FA cycle and 
mitochondrial FA β-oxidation are also closely linked to 
amplify insulin secretion in β-cells. Actually, GL/FA cycle 
is proposed as a pathway of insulin secretion amplification 
through the production of lipolytic metabolites by lipogene-
sis and lipolysis. Hence, that’s going to fuel β-oxidation pro-
cess and the generation of E-MCFs which activate late effec-
tor components of the insulin granules exocytosis machinery 
like  K+

ATP channel/SUR1/  Ca2+, SNAREs, Munc13-1 and 
cytoskeletal proteins [7, 20–22].

It has been described that the slightest disturbance of FA 
oxidation balance can have a positive or negative influence 
on insulin secretion. Indeed, it was found in obese an over-
expression of CD36/FAT leading to decrease insulin secre-
tion, impairing exocytosis and reducing granule docking 
[23]. Furthermore, dysregulation in the lysine acetylation 
and deacetylation balance of many respiratory chain pro-
teins results in mitochondrial dysfunction and impair insu-
lin secretion [24–27]. Interestingly, overnutrition (major 
risk factor of type 2 diabetes), oxidative stress or inhibition 
of SIRT3 (Class III histone deacetylases protein) lead to 
lysine hyperacetylation, mitochondrial dysfunction [25] and 
to impair the insulin secretion process [28]. Indeed, it has 
been found in INS-1E SIRT3 KO beta cell line, a hypera-
cetylation of the inhibitory factor 1 (IF1), a major regulator 
of the ATP synthase [29], thus resulting in decreasing the 
ATP supply, and consequently a defect of insulin secretion 
[28]. While, during fasting, SIRT3 expression is increased, 
which promotes FA β-oxidation and insulin secretion [24]. 
In addition, elevated glucose inhibits CPT1 and β-cell FA 
oxidation decreasing insulin secretion [30, 31]. All of these 
data showed that FA oxidation plays a crucial role in blood 
glucose homeostasis and its alteration contributes to impair 
the secretion of insulin in metabolic diseases. Indeed, dys-
regulation of lipolysis (provider of FA for β-oxidation) 
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occurring with over nutrition or T2D may contribute to lipid 
droplets (LD) accumulation in pancreatic islets resulting in 
β-cell dysfunction [22]. However, it has been recently dem-
onstrated that, despite FA β-oxidation is suppressed by Sir-
tuins deacetylation of FoxO1, the glucose-stimulated insulin 
secretion (GSIS) is sustained in Diabetes [9, 32]. Thus, FA 
β-oxidation alteration does not seem to be the direct cause 
of β-cell dysfunction in metabolic disorders. However, since 
prolonged exposure to high FA amount has negative actions 
including reduced glucose metabolism, decreased insulin 
release and a pro-apoptotic effect on β-cells, lipid metab-
olism has a crucial role on insulin secretion impairment 
through different pathways. Indeed, FA also regulate β-cell 
function through the activation of cell surface G-coupled FA 
receptors (GPCRs) [6, 33–36]. For example, GPR40/FFAR1 
and GPR43/FFAR2 [37] Gq subunit activation potentiates 
GSIS [33, 38–40]. Unlikely, GPR41/FFAR3 activation 
inhibits GSIS [33, 41].

Impact of FA β‑oxidation on glucose homeostasis 
in skeletal muscle

Lipid metabolism plays a critical role in regulating glucose 
homeostasis in skeletal muscle. Indeed, it was widely shown 
that elevated plasma FA significantly correlates with reduced 
insulin-stimulated glucose disposal in skeletal muscle in a 
dose-dependent manner [42–45]. Contrariwise, a plasmatic 
FA decrease in insulin resistant and/or T2D patients is asso-
ciated with an increase in insulin sensitivity in the skeletal 
muscle [46, 47]. More specifically, several studies men-
tioned that mitochondrial β-oxidation is an important regu-
lator of the glucose homeostasis in the skeletal muscle with 
the demonstration of the existence of a straight relationship 
between FA oxidation and insulin resistance. Indeed, it was 
demonstrated for years that oxidative phosphorylation and 
lipid oxidation are both decreased in T2D mellitus which 
indicates that mitochondrial dysfunction can lead to insulin 
resistance [48, 49]. Moreover, it was shown in in vivo and 
ex vivo studies, performed on skeletal muscle of insulin-
resistant and T2D subjects that mitochondrial function is 
impaired [50–53].

For years, whether the FA oxidation alteration (mitochon-
drial dysfunction) is the trigger or not of insulin signaling 
impairment inducing insulin resistance onset was the sub-
ject of extensive discussions [50, 52, 54, 55]. Recent studies 
seem to indicate that mitochondrial function impairment is 
more likely the cause of metabolic disorders. Indeed, Dan-
iele et al., showed that the improvement in insulin sensitivity 
was closely correlated with the decrease of plasmatic FA, 
the increases of mitochondrial ATP synthesis > 50% and of 
insulin-mediated glucose disposal in obese normal glucose 
tolerant and T2D subjects [50]. Moreover, Toledo et al. 
showed that skeletal muscle mitochondria are significantly 

resilient to nutrient overload. More precisely, the authors 
demonstrated from a cohort of healthy volunteers who 
underwent 2 month high-fat overfeeding that lower skeletal 
muscle mitochondrial oxidative capacity observed in obese 
patients is likely to be caused by reasons other than nutrient 
overload [54].

These new data indicate that the alteration of FA oxida-
tion is the cause of metabolic disorders-related insulin resist-
ance in skeletal muscle unlike what is described for insulin 
secretion by pancreatic β-cells. Thus, it would suggest that 
additional factors may be involved in β-cell dysfunction and 
in metabolic diseases onset such as myokines secreted by 
skeletal muscles.

Impact of myokines on pancreatic β‑cell 
and FA metabolism

Skeletal muscle has been found to secrete several hor-
mones, called myokines, able to impact β cell function and 
FA metabolism. Indeed, the notion that a muscle-pancreas 
crosstalk exists has been widely accepted [56–58]. This 
communication between skeletal muscle and β-cells involves 
a different panel of myokines expressed and released by 
myotubes. Moreover, each panel exerts differential effects 
on β-cells that is modulated by insulin resistance. Thus, it 
could contribute as well as to normal β-cell functional mass 
in healthy subjects, as its decrease in type 2 diabetes [59]. 
Indeed, Bouzakri et al. [59] detected increased GSIS in pri-
mary human and rat beta cells incubated with conditioned 
media from human myotubes which contain several factors 
(myokines, metabolites, exosomes…) [58]. Interestingly, it 
has been shown that human skeletal muscle cells secrete 
different myokines depending on their insulin sensitivity 
and that have a bimodal impact on β-cell insulin secretion, 
proliferation and survival [59, 60]. For example, Rutti S 
et al.found that CX3CL1 (fractalkine) is a myokine which 
protects β-cells from the negative impact of TNFα [60]. 
Furthermore, Chaweewannakorn C et al. showed that frac-
talkine, triggered by muscle contractile activity, is required 
for achieving proper GLUT4 translocation and glucose 
uptake in skeletal muscle [61]. Thus, myokines can impact 
β-cell function and glucose homeostasis in skeletal muscle.

In recent years, it was proposed that serum FA levels 
would have an impact on myokines secretion and conse-
quently, on β-cell function and glucose homeostasis. Indeed, 
Xu X et  al., [62] demonstrated that FSTL-1, an adipo-
myokine [63], plays a role in glucose and lipid metabo-
lisms whose circulating concentration is decreased when 
serum FA level is high. In addition, their results indicate 
that increase in FSTL-1 secretion is associated with insulin 
resistance [62]. Similarly, Ordelheide AM et al. [64] identi-
fied another FA-induced myokine, named angiopoietin-like 
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protein 4 (ANGPTL4), which has lipolytic properties 
in humans in vivo [64, 65]. Thus, all these data indicate 
the existence of an interaction between FA metabolism, 
myokines and glycaemic control.

At last, physical activity is well known to prevent meta-
bolic diseases [66] and to increase myokine secretion [67]. 
Indeed, in 2004, the American Diabetes Association recom-
mended for T2D patients a weekly 150 min of moderate to 
vigorous intensity exercise [128] since physical inactivity 
is an important risk factor linked to diabetes onset [129]. 
Moreover, exercise status, its intensity and its duration can 
positively or negatively modulate the lipid oxidation pro-
cess [68] and consequently could impact glycaemic control 
and metabolic diseases onset. Nowadays, the question raised 
is whether moderate intensity is sufficient to prevent or to 
cure metabolic disorders. Thus, we will discuss afterwhile 
whether moderate physical activity intensity is enough to 
improve metabolic control with a focus on its effect on FA 
oxidation in β-cell and skeletal muscle.

Effect of moderate exercise on β‑cell 
function and glucose homeostasis in skeletal 
muscle: focus on FA oxidation

Physiology of moderate exercise impact on FA 
oxidation

Almost a century ago it was already observed that FA oxida-
tion increased 5–tenfold above resting levels during mild to 
moderate exercise [69, 70]. Conversely, FA oxidation pro-
gressively decreased as the intensity of the exercise increases 
[70]. Afterward, maximal FA oxidation (MFO) occurs dur-
ing submaximal exercise intensities ranging from 45 to 65% 
 VO2max while at higher exercise intensity exceeding MFO, 
FA oxidation decreases [68]. This process is described as 
the crossover concept [71, 72]. Interestingly, it was demon-
strated that the MFO kinetic is also dependent on the train-
ing status, ranging from 23 to 89%  VO2max [73]. Indeed, it 
was largely mentioned that trained subjects possess a greater 
ability to oxidize fat at higher exercise intensities [74, 75]. 
Additionally, recently it was mentioned that a prolonged 
exercise for several hours from a low to moderate intensity 
enhances FA utilization at the expense of glucose as fuel. 
This is associated with a decrease in glucose availability 
[76]. Thus, a correlation between respiratory capacity and 
MFO exists. In this way, Purdom T et al. have suggested that 
increased cellular respiration capacity with training could 
enhance FA oxidation at higher exercise intensities [68]. 
This is emphasized by Cui X et al. who showed that endur-
ance exercise training can promote mitochondrial biogenesis 
in skeletal muscle and enhance muscle oxidative capacity 
[49].

To sum up, FA oxidation level is modulated as regards of 
the physical activity intensity.

Impact of moderate exercise on β‑cell function 
and FA oxidation

For years, studies reported that exercise impacts insulin 
secretion and glucose homeostasis regulation [77–80]. 
Moreover, exercises interventions have been shown to 
prevent pancreatic β-cell failure in T2D patients [77, 81]. 
However, the effect of physical activity on β-cell function 
is dependent on its intensity. Currently, this is well estab-
lished that moderate-intensity exercise training improves 
insulin secretion and its action [82]. On one hand, short-
term training improves β cell function and efficiently reduces 
ectopic fat within the pancreas in prediabetic or T2D patients 
[83]. In addition, studies performed on T2D suggest that 
long duration-higher intensive exercise are less beneficial 
than moderate duration and intensive exercises [82]. On the 
other hand, it is advised that a linear relationship between 
exercise dose and β-cell function exists in a healthy popula-
tion [84]. High-intensity training has negative effects on the 
pancreatic islet in comparison to a moderate intensity one 
with a reduction in β-cells percentage per pancreatic islet 
[85]. Finally, this is suggesting that the impact of exercise 
on β-cell function is dependent on the physiological state of 
the individuals. Indeed, Dela F et al. observed a significant 
increase in β-cell responses in hyperglycaemic condition 
in trained T2D patients, only in the situation in which the 
remaining secretory capacity is moderate, unlike if the latter 
is low [86]. Consequently, by considering all these data, it 
appears essential that exercise intensity have to be adapted 
in function of the patient health status and that moderate 
physical practice suits more to improve β-cell function in 
diabetic patients.

Remarkably, as the principal fuel supplier during mod-
erate exercise intensity are lipids [13], its metabolism and 
especially FA oxidation would be involved in improving 
β-cell function in T2D individuals.

For quite a long time, it has been proposed that exer-
cise did not cause any change in the islets lipid metabolism 
such as FA oxidation. Nevertheless, it significantly reduced 
pancreatic islets exposure to circulating lipids known to be 
toxic at high level [72]. Indeed, the authors showed that 
moderate training on female healthy rats decreased the 
plasmatic amount of glycerol, FA, and triglycerides. This 
resulted in the reduction of lipolysis from adipose tissue 
without alterations of FA oxidation and expressions of key 
lipid metabolism transcription factors and enzymes (FFAR1, 
CD36, CPT-1, MCD…) in pancreatic islets. In parallel, it 
was demonstrated that the training did not alter the glucose-
induced insulin secretion or the FA amplification process. 
More recently and in accordance with these observations, 
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Delghingaro-Augusto V et al. have emphasized that the 
alteration of β-cell FA metabolism in an in vivo study using 
Zucker Diabetic Fatty rat, is responsible for the β-cells func-
tion failure. Then, the authors showed that a defect in FA 
oxidation, GL/FA cycling, and β-cell gene expression are 
still observed in ZDF pancreatic islets despite a voluntary 
running exercise for 6 weeks as previously observed in inac-
tive ZDF rats. However, islet insulin mRNA and insulin 
stores were preserved upon exercise in ZDF rats [73].

Thus, these data suggest a potential mechanism by which 
exercise could prevent the loss of β cells function that leads 
to T2D [72]. Indeed, Ellingsgaard et al. [87] showed that 
β-cell function was improved by the increase of the myokine 
IL-6 following exercise which acts on intestinal L cells and 
pancreatic α-cells to stimulate GLP-1 release, inducing 
insulin secretion afterwhile. Additionally, it was shown that 
exercise protect β-cell viability through IL6 direct action on 
β-cells [88–91].

In conclusion, all these results indicate that exercise does 
impact β-cell function through plasmatic content modifica-
tion (FA, myokines levels…) and not by altering FA oxida-
tion (Fig. 2).

Impact of moderate exercise on glucose 
homeostasis in skeletal muscle and FA oxidation

Nowadays physical activity is strongly considered as an 
effective strategy in both preventing and treating T2D [92, 

93]. Indeed, exercise has been largely demonstrated to 
improve the peripheral insulin sensitivity in T2D patients 
and to have a beneficial effect on insulin resistance [14, 
77–79]. In addition, exercise increases the expression of 
GLUT 4 in skeletal muscles and thus enhances insulin- and 
muscle contraction-stimulated glucose uptake into the mus-
cle cells [76, 94]. Furthermore, it was recently reviewed that 
intramyocellular lipids (IMCL) content in skeletal muscle is 
increased and fat oxidative capacity decreased in obese peo-
ple and T2D [12]. This increase of IMCL is also observed 
in training athletes and this is qualified as the “athlete’s 
paradox” [95]. However, these use largely more IMCL as 
an energy source during exercise as compared to obese or 
T2D who utilized preferentially FA from the blood circula-
tion [96, 97]. Interestingly, this impairment of mitochon-
drial function observed in insulin-resistant skeletal muscle 
and T2D is reversible thanks to physical activity. Indeed, it 
was largely demonstrated that endurance exercise improved 
mitochondrial respiratory capacity and FA oxidation in T2D 
and obese people [98, 99]. In addition, Lipid droplet–mito-
chondria tethering is increased in the muscle of training ath-
letes upon a single bout of exercise and also upon endurance 
training in obese participants. Moreover, low-volume high-
intensity interval training can rapidly improve glucose con-
trol and it was suggested that it could be partly mediated by 
improving the skeletal muscle mitochondrial function [100, 
101]. To complete this data, it was recently demonstrated 
that mitochondrial dynamics and quality control in skeletal 
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Fig. 2  Impact of moderate exercise on pancreatic β-cell in patients 
with metabolic disorders: focus on FA oxidation, β-cell function 
and survival. In β-cells, FA oxidation is decreased in people with 
metabolic disorders. Moreover, physical activity can improve their 
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muscle seems to be linked to oxidative capacity in humans 
and this could be involved in the maintenance of insulin 
sensitivity [102]. In particular, the mitochondrial dynamic 
proteins OPA1 (responsible for mitochondrial membranes 
fusion) and FIS1 (involved in mitochondrial fission) are pos-
itively correlated with peripheral insulin sensitivity. These 
expressions are increased in endurance-trained athletes 
while these are downregulated in T2D individuals [102]. 
Thus, mitochondrial dysfunction is involved in metabolic 
disorders and can be reversed by exercise.

Therefore, as moderate exercise increases mitochondrial 
FA oxidation it has been suggested that it could be beneficial 
for the glucose metabolism regulation in diabetic patients. 
However, Chavanelle V et al. [14] have recently demon-
strated in a diabetic mice db/db model exposed to 2 kind 
of intensity exercises, that high-intensity physical activity 
presents a lowered fasting glycaemia and HbA1c level as 
compared to resting and moderate activity conditions. Con-
sequently, it seems that moderate exercise has no positive 
effect on glycaemic control in diabetic conditions despite 
an enhancement of FA oxidation as previously described. 
Moreover, no matter which exercise intensity is performed, 
no effect was observed in the mitochondrial function mark-
ers assessed (TFAM, PPAR-α…). So, these data indicate 
that there are no functional adaptations of mitochondria fol-
lowing chronic exercise and others mechanisms should be 
involved to explain the beneficial effect of high intensity 
training on glycaemic control. Furthermore, a significant 
increase of muscle Glut4 content and higher insulin-stim-
ulated Akt phosphorylation ratios was only obtained in dia-
betic mice under high intensity physical activity [14]. Thus, 
it is suggested that in T2D, stimulating insulin signalling and 
Glut4 content in muscle is an important strategy to improve 
glycaemic control and that high intensity exercise would 
be the solution rather than moderate activity. Nevertheless, 
according to authors [14] it seems important to confirm such 
data in a more physiological relevant animal model of obe-
sity and T2D, as in db/db mice in which the leptin receptor 
gene is mutated [103].

To conclude, by considering all these data, the benefi-
cial effect of exercise (only at high intensity) on metabolic 
control in skeletal muscle is not related to its impact on 
FA oxidation but could rather be dependent to the plasma 
content (Myokines, FA levels…) and/or to the activation of 

specific GPCR, as previously described for β-cells. Indeed, 
action of myokines expressed and secreted during exer-
cise has been shown to improve insulin sensitivity in T2D 
patients [59, 104]. Furthermore, it is well established that 
skeletal muscle GPCRs are involved in glucose uptake and 
whole-body glucose homeostasis [105–107]. Interestingly, 
Bone DBJ et al. found in skeletal muscle that Gq-GPCRs 
activation promotes glucose uptake and improves glucose 
homeostasis in obese, glucose-intolerant mice through the 
activity of AMPK (which increases with exercise). Similarly, 
Gq-GPCR activation stimulates glucose uptake in primary 
human skeletal muscle cells [105] (Fig. 3).

Conclusion

In this review, we gathered recent data which permit to 
determine the real impact of moderate exercise on pancreatic 
β-cells function and glucose homeostasis in skeletal muscle 
by focusing on FA oxidation. Recent studies seem to dem-
onstrate that FA oxidation alteration may not be the direct 
cause of β-cell dysfunction in metabolic disorders. Con-
versely, alteration of FA oxidation is the cause of metabolic 
disorders-related insulin resistance in skeletal muscle. Then, 
in comparison to high intensity, moderate exercise increases 
FA oxidation in skeletal muscle. Despite this increase, a bet-
ter impact on insulin sensitivity is observed with a more 
intensive activity. Moreover, it appeared that exercise posi-
tively impacts glycaemic control (β-cell function and glu-
cose homeostasis in skeletal muscle) at high intensity by 
altering FA oxidation but through plasmatic content modi-
fication (Myokines, FA levels…) and/or Gq-GPCRs activa-
tion. Nevertheless, the intensity is not the only parameter to 
influence physical activity efficiency in metabolic control. 
Duration, sex-gender, prandial state, exercise metabolites 
called “exerkines” (hormones, myokines…) can also impact 
glycaemic regulation. At last, further studies are necessary 
to understand precisely the mechanisms involved, as these 
parameters represent a great interest in the development of 
future strategies for the treatment and patients’ medical care 
for metabolic diseases.
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