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Abstract. 3-Hydroxy-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase, a key regulatory enzyme in- 
volved in cholesterol biosynthesis, has recently been 
reported to be present in rat liver peroxisomes (Keller, 
G. A., M. C. Barton, D. J. Shapiro, and S. J. Singer, 
1985, Proc. Natl. Acad. Sci. USA, 82:770-774). Im- 
munoelectron labeling of ultrathin frozen sections of 
normal liver, using two monoclonal antibodies to 
purified rat liver microsomal HMG-CoA reductase, in- 
dicated that the enzyme is present in the matrix of 
peroxisomes. This study is a quantitative biochemical 
and immunoelectron microscopical analysis of HMG- 
CoA reductase in rat liver peroxisomes and micro- 
somes of normal and cholestyramine-treated animals. 
Cholestyramine treatment produced a six- to sevenfold 

increase in the specific activity of peroxisomal HMG- 
CoA reductase, whereas the microsomal HMG-CoA 
reductase specific activity increased by about twofold. 
Using a computer program that calculates optimal lin- 
ear combinations of marker enzymes, it was deter- 
mined that between 20 and 30% of the total reductase 
activity was located in the peroxisomes of cholestyr- 
amine-treated animals. Less than 5 % of the reductase 
activity was present in peroxisomes under control con- 
ditions. Quantitation of the immunoelectron micro- 
scopical data was in excellent agreement with the bio- 
chemical results. After cholestymmine treatment there 
was an eightfold increase in the density of gold parti- 
cles per peroxisome, and we estimate about a threefold 
increase in the labeling of the ER. 

T 
HE key regulatory enzyme of cholesterol, dolichol, 
and isopentenyl adenosine biosynthesis, 3-hydroxy-3- 
methylglutaryl coenzyme A (HMG-CoA) 1 reductase, 

is a 97-kD transmembrane glycoprotein that was believed un- 
til recently to reside exclusively in the endoplasmic reticu- 
lum (ER) of mammalian cells (7, 8, 27, 28). However, a re- 
cent publication showed that the enzyme in liver cells is 
present not only in the ER but also within peroxisomes (18). 
Immunoelectron labeling of ultrathin frozen sections of nor- 
mal liver, using two monoclonal antibodies to purified rat 
liver microsomal HMG-CoA reductase, indicated that the 
enzyme is concentrated in the matrix of peroxisomes. 

This study was designed to determine what percentage of 
the total liver HMG-CoA reductase activity is attributable to 
the peroxisomal enzyme and to determine if the peroxisomal 
and the ER enzymes are dependently or independently regu- 
lated. Normal rat livers and livers obtained from animals in 
which the total HMG-CoA reductase activity was increased 

1. Abbreviations used in this paper: ER, endoplasmic reticulum; HMG- 
CoA, 3-hydroxy-3-methylglutaryl coenzyme A. 

by cholestyramine treatment were fractionated by differential 
and density gradient centrifugation. 

Two completely independent analyses of the fractions 
were performed: (a) immunoelectron microscopy with quan- 
titation of the antigenic sites of HMG-CoA reductase; and (b) 
quantitative enzyme activity measurements of the subcellu- 
lar fractions with computer-assisted analyses. 

Materials and Methods  

Animals 

Mate Sprague-Dawley rats (180-240 g) were used in this study. The animals 
were acclimatized to a 12-h light-dark cycle for at least 2 wk before each 
experiment. Standard lab chow was given ad libitum and in some cases sup- 
plemented with 5 % cholestyramine for 4 d before they were killed. Rats 
were fasted for 6 h and killed 6 h into their dark cycle by a guillotine. 

Cell Fractionation 

Liver homogenates were fractionated into u, ~,, and ~ fractions as described 
by Leighton et al. (26) except that preinjection of rats with Triton WR-1339 
was omitted and the ~, fraction was washed only once. The u fraction con- 
rains the nuclei and most of the mitochondria, the L fraction is enriched in 
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peroxisomes and lysosomes (similar to the L fraction of deDuve et al. [11]), 
and the ~ fraction contains the majority of microsomes and soluble compo- 
nents. The X fraction was then further fractionated by centrifugation on a 
steep linear metrizamide gradient (20-50%, wt/wt) (4, 16). Routinely, 6 ml 
of the fraction prepared from six rat livers were loaded on top of a 27-ml 
linear metrizamide gradient containing a 0.5 ml 50% wt/wt metfizamide 
cushion. The gradient was centrifuged in a Sorvall OTD 75B centrifuge 
(DuPont Co., Sorvall Instruments Div., Newton, CT) using a TV 850 ultra- 
vertical rotor at 40,000 rpm for 60 rain at 8"C. A total of 25-30 fractions 
were collected from the bottom of the centrifuge tube with a two-way needle. 

Rat liver microsomes were prepared by separating the ¥ fraction into a 
microsomal and soluble fraction by centrifugation at 100,000 g for 60 min. 

Fixation of Samples for Immunoelectron Microscopy 
Small blocks of liver from three control and three cholestyramine-fed 
animals were chopped in 4% formaldehyde, 0.2% glutaraldehyde in 0.1 M 
phosphate buffer (pH 7.2), and immersed in the same fixative for 1 h. After 
washing in 0.1 M phosphate buffer (pH 7.2), the blocks were infused with 
2.3 M sucrose and ultrathin sections were obtained as described below. 

Samples of the ~, fraction (peroxisomal-enriched fraction), the microso- 
mal fraction, and the pure peroxisomal fraction were centrifuged in a Beck- 
man microcentrifuge (Beckman Instruments, Inc., Palo Alto, CA) and 
washed in 0.2 M phosphate buffer (pH 7.2). The pellet was resnspended in 
4 % formaldehyde, 0.2 % glutaraldehyde in 0.2 M phosphate buffer (pH 7.2). 
After washing, the pellet was transferred to 10% gelatin in phosphate buffer 
at 37°C. After solidification at O°C, the blocks of gelatin-embedded frac- 
tions were infused with 2.3 M sucrose, mounted on a copper stub, and fro- 
zen in liquid nitrogen. 

Cryoultramicrotomy 
Ultrathin frozen sections were cut with a glass knife at -88"C, according 
to the method of Tokuyasu (38) in a DuPont-Sorvall ultramicrotome MT-2 
equipped with the LTC-2 cryoattachment. Ultrathin sections were trans- 
ferred onto formvar-coated copper grids and immunolabeled. 

Immunolabeling 
The characterization of the monoclonal antibody to electrophnretically ho- 
mogenous HMG-CoA reductase (9) and the immunolabeling procedure 
used in this study are described elsewhere (19). As reported in this previous 
paper, the density of immunolabeling in peroxisomes was much higher 
using the monoclonal antibody A than monoclonal antibody B as the pri- 
mary reagent (18). Consequently, to obtain maximum immunolabeling den- 
sity, the monocional antibody A was exclusively used for immunolabeling 
experiments of both rat liver sections and cell fractions. Briefly, for im- 
munolabeling experiments, the primary reagent was the monoclonal anti- 
body A to rat liver ER HMG-CoA reductase used at a concentration of 
18 gg/ml, and the secondary reagent was colloidal gold adducts of affinity- 
purified rabbit antibodies to mouse IgG. Colloidal gold particles of 6-8-nm 
diam and the adduct were prepared as previously described (19). After im- 
munolabeling, sections mounted on grids were treated with 2% osmium 
tetroxide, poststained in uranyl acetate, and infused with white acrylic resin 
(London Resin Co. Ltd., London) (19). After polymerization, the grids 
were examined without poststaining in a Philips model 300 transmission 
electron microscope at 80 kV equipped with an ll-lam diam aperture. 

Control Experiments 
Liver and cell fraction sections were immunolabeled as described above ex- 
cept that the unrelated control monoclonal antibody JG-9 was used instead 
of the primary monoclonal to HMG-CoA reductase. A micrograph of liver 
section immunolabeled with the control antibody was published (18). 

Morphometrical Analysis 
Morphometrical analysis was performed essentially as described by Weibel 
et al. (39). Thin frozen sections (1,000 ]k) from three control and three 
cholestyramine-treated livers were photographed at a magnification of 3,700 
and printed at 12,500. Five prints per liver were analyzed and point counting 
was used to estimate the relative volume of peroxisomes. Morphometrical 
measurements on the diameter of the organelle were performed on 50 perox- 
isomes from control rats and 87 peroxisomes from cholestyramine-treated 
rats. 

Quantitation of lmmunolabeling in Peroxisomes 
The evaluation was performed on frozen sections of liver from three normal 
and three cholestyramine-treated animals. 90 micrographs (15 per animal) 
were taken at a primary magnification of 32,000 and printed at a final 
magnification of 80,(100. The sectional area of each peroxisome was mea- 
stared using a PAD DT-II A digitizer from Houston Instrument (Austin, TX) 
connected to an Apple II Plus computer (Apple Computer Inc., Cupertino, 
CA). The number of gold particles was counted and the density of im- 
munolabeling was calculated by dividing the number of particles by the 
peroxisomal surface area. 20 micrographs each of thin sections of the Z. frac- 
tion and of the purified peroxisome fraction from cholestyramine-treated 
animals were similarly processed. 

Assay of Marker Enzymes 
Catalase and cytochrome oxidase activities were measured according to 
Leighton et al. (26) and Lazarow and de Duve (24), except that a molar ab- 
sorptivity of 19 m i  -1 cm -1 for cytochrome c was used (40). Esterase was 
measured according to Beaufay et al. (2). Acid phosphatase was measured 
according to Bergmeyer et al. (3). Enzyme units are in micromoles per min- 
ute except for catalase, which is expressed in the units used by Leighton et 
al. (26). Protein was determined by the method of Lowry (28a) using bovine 
serum albumin (BSA) as a standard. Since metrizamide interferes with the 
determination of protein, aliquots of the gradient samples were first precipi- 
tated in 10% TeA. 

Assay of HMG-CoA Reductase 
HMG-CoA reductase was measured according to Shapiro et al. (35). En- 
zyme samples were diluted in 50 mM potassium phosphate buffer, pH 7.4, 
containing 30 mM EDTA, 200 mM NaCI, and 10 mM dithiothreitol. A 
range of 20-120 Ixg of protein was used. The samples were preincubated for 
30 min at 37°C before the addition of substrate. Control samples lacking 
either NADP or enzyme (or enzyme added after termination of the reaction) 
were routinely included. Only freshly isolated fractions were assayed. 
Using a microsomal pellet (prepared in 0.25 M sucrose) as a source of 
HMG-CoA reductase, it was found that high concentrations of metrizamide 
were inhibitory. To minimize this inhibition, the gradient fractions were as- 
sayed in a triple reaction volume, and HMG-CoA reductase activity was 
corrected for metrizamide inhibition. 

Assay of Cleavage Activity 
To rule out the possibility of cleavage enzymes being present and interfering 
with the HMG-CoA reductase assay by causing substrate depletion and/or 
inhibition of HMG-CoA reductase activity by cleavage products, the sam- 
ples were incubated as indicated above under conditions that inactivate the 
HMG-CoA lyase activity present in fractions containing mitochondria (41), 
and were chromatographed as described by Young and Berger (42). We did 
not observe any appreciable cleavage activity or substrate depletion in any 
of the differential centrifugation..£ractions, the microsomal fraction, or the 
peroxisomal samples from the gh~lient. To confirm that the product pro- 
duced was mevalonic acid and not a cO-migrating cleavage product, the area 
corresponding to the mevalonlc acid region on the thin layer chromato- 
graphic plate from microsomal and peroxisomal samples was scraped, 
eluted, and treated as described by Young ct al (43). The profile of the 
all-labeled products on thin layer chromatography corresponded closely 
with that of the ~C-labeled standard as the lactone, the acid, and the 
amide. 

Computer Calculations 
The distribution of HMG-CoA reductase activity in the various organdie 
fractions was evaluated quantitatively by a computer program that calculates 
optimal linear combinations of marker enzymes using a least squares 
criterion (20). 

Materials 

(RS)-[2-14Cl-Mevalonolactone and coenzyme A VL-[methyl-3H]-3-hydroxy - 
3-methylghitaryl were purchased from New England Nuclear (Boston, 
MA). Other chemicals were from Sigma Chemical Co. (St. Louis, MO). 
Monoclonai antibodies to rat HMG-CoA reductase were a generous gift 
from Dr. David Shapiro (University of Illinois, Urbana, IL). 

The Journal of Cell Biology, Volume 103, 1986 876 



R e s u l t s  

Blocks of  hepatic tissue were prepared for immunoelectron 
microscopy from the same livers that were subsequently 
fractionated by differential and density gradient centrifuga- 
tion. An average of  six grids carrying the ultrathin frozen 
sections of  livers from normal and cholestyramine-treated 
rats and of  the different cell fractions were submitted to the 
same protocol for immunolabeling. Immunolabeling for a 

particular experiment was carried out on all the sections at 
the same time and with the same immunoreagents. 

Immunolabeling of  Liver Sections 

Indirect gold immunolabeling for HMG-CoA reductase in 
control (A) and cholestyramine-treated animals (B) gave 
results represented in Fig. 1. In control liver samples, the 
gold particles were nearly all restricted to the peroxisomes 

Figure 1. Representative micrographs of liver cells from normal (A) and cholestyramine-treated rats (B) that were immunolabeled with 
a monoclonal antibody against HMG-CoA reductase followed by a colloidal gold adduct of rabbit antibodies to mouse IgG. In the hepato- 
cytes of normal rat (A), gold labels are seen in the matrices of the peroxisomes (P). Clusters of particles (arrows) are only occasionally 
detected over the elements of the ER. The cisternae of the Golgi apparatus (Go) are free of labeling. The low level of nonspecific labeling 
can be appreciated by observing the matrices of the mitochondria (m) that are almost totally devoid of gold particles. The peroxisomes 
from cholestyramine-treated animals (B) contain about eight times as many gold particles as those from normal rats as determined by 
quantitative evaluation. Furthermore, clusters of gold labels are associated in numerous instances with the cisternae of the ER (arrows). 
gly, glycogen fields. Bar, 0.1 lain. 
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(P),  mostly to the matrix, excluding the crystalloid core. Oc- 
casionally, a small number of  clustered gold particles were 
detected in the lamellae of  the ER (Fig. 1, arrowhead). The 
other organelles, in particular the nucleus, the lysosomes, 
and the cisternae of  the Golgi apparatus, showed no labeling. 
Mitochondria occasionally contained two to four gold par- 
ticles. 

In the liver cells from cholestyramine-treated animals, the 

pattern of  immunolabeling was the same except that the den- 
sity of gold particles per peroxisome and on the ER cisternae 
was much higher (B). The large increase in immunolabeling 
density induced by cholestyramine feeding can be appreci- 
ated by examination of  Fig 1, A and B. In B, the higher en- 
zyme concentration in peroxisomes is obvious. The number 
of  gold particles bound per square micrometer of  peroxisome 
surface from cholestyramine-treated rats and from normal 

Figure 2. Frozen sections of the L and 
the pure peroxisome fractions from 
cholestyramine-treated rats were im- 
munolabeled for the demonstration of 
HMG-CoA reductase sites. In the ~. 
fraction (A), a well-preserved peroxi- 
some contains gold labels. Above and to 
the right of the peroxisome, vesiculated 
and elongated elements of presumably 
endoplasmic origin are also labeled. 
The swollen mitochondria (m) visible 
in the field is not labeled. The im- 
munolabeling of the pure peroxisome 
fraction (B) shows that almost all perox- 
isomes contain gold particles even when 
the matrices appear extracted. The 
majority of the immunolabeling is visi- 
ble within the matrix of the organelles. 
The few gold particles that are not as- 
sociated with recognizable structures 
(arrows) may be labeling material 
leaked from damaged peroxisomes or 
the minor ER contamination. The fine 
structure of the peroxisomal core is visi- 
ble in the organelle at the center of the 
field. The loss of the HMG-CoA reduc- 
tase molecules during the fractionation 
procedure is indicated by the decreasing 
density of the immunolabeling from the 
intact liver section (Fig. 1 B) to the pure 
peroxisome fraction (Fig. 2 B). Bar, 
0.1 lun. 
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Figure 3. SubceUular distribution of marker enzyme activities and 
HMG-CoA reductase activity after differential centrifugation of 
liver extracts from cholestyramine-treated rats. Fractions o, k, and 
¥ are represented from left to right in the order of their isolation 

rats was 269 + 9 and 33 + 4, respectively, indicating that 
peroxisomes from cholestyramine-fed rats contain about 
eight times more HMG-CoA reductase molecules than those 
from normal rats. 

Gold labeling was negligible when control monoclonal an- 
tibody JG-9 was used. 

ImmunolabeUng of CeU Fractions 
A micrograph of the lambda fraction from a cholestyramine- 
treated animal that was immunolabeled for HMG-CoA re- 
ductase is shown in Fig 2 A. As observed in intact liver sec- 
tions, the immunolabeling was restricted within the matrix 
of the organelles. The labeling was also occasionally ob- 
served within elongated ER cisternae and vesicles presum- 
ably of the same origin. The other recognizable organdies, 
mitochondria and lysosomes, were devoid of specific label- 
ing. Quantitation of the immunolabeling demonstrated that 
the peroxisomes in the lambda fraction contained •50% of 
the gold particles present in the peroxisomes in situ, 112 + 
13 vs. 269 + 9 per Ixm 2, respectively. 

Electron microscopical examination of the pure perox- 
isomal fraction revealed a nearly homogeneous population 
of organdies (Fig. 2 B). The peroxisomal membane ap- 
peared in most instances intact. The matrix showed a fibrillar 
or amorphous material after purification as if the organelles 
had lost their contents during purification. The number 
of gold particles per peroxisome in the purified fraction was 
59 ± 8 per I~m 2, which represents ,x,20% of the im- 
munolabeling density detected in peroxisomes in situ. Mor- 
phometrical measurements showed that the relative volume 
of peroxisomes remained unchanged after 4 d of cholestyr- 
amine treatment; control values were 0.0148 cm3/cm 3, as 
compared with experimental values of 0.0151 cm3/cm 3 per 
hepatocyte cytoplasm. Peroxisomal size also remained un- 
changed; 0.29 I~m ± 0.005 for control vs. 0.30 l~m + 0.006 
for experimental. 

Differential Centrifugation 
Liver homogenates were first fractionated by differential 
centrifugation into three fractions, v, k. and W, as described 
above. All of the fractions were assayed for cytochrome 
oxidase activity (a mitochondrial marker), catalase activity 
(a peroxisomal marker), esterase activity (a microsomal 
marker), and for HMG-CoA reductase activity. Fig. 3 shows 
the subcellular distribution of the marker enzymes and 
HMG-CoA reductase activity after differential centrifuga- 
tion of liver homogenate from cholestyramine-treated rats. 
Three experiments were performed, each one consisting of 
livers from six rats. The mean relative specific activities of 
the enzymes are plotted vs. cumulative protein as described 
by de Duve et al. (11). Table I gives absolute enzyme activi- 
ties in whole homogenates, the distribution of these activities 
in the various fractions, and the recoveries for the experi- 
ments illustrated in Fig. 3. The distribution and absolute ac- 
tivities of the marker enzymes after cholestyramine treat- 
ment are similar to those of normal rat liver (see Table II), 
and are in agreement with previous results for normal liver 

and plotted according to de Duve et al. (11). (A) Cytochrome oxi- 
dase; (B) esterase; (C) catalase; (D) HMG-CoA reductase; and (E) 
HMG-CoA reductase treated with acid phosphatase. 

Keller et al. HMCr-CoA Reductase Localization in Peroxisoraes 879 



Table L Total Activity and Recovery of Marker Enzymes and HMG-CoA Reductase Activity after Differential 
Centrifugation of the Homogenates Represented in Fig. 3 

Absolute 
activities*¢ % Distribution 

No. of U/g liver 
Enzyme experiments (o + e)§ u k 

Recovery 
(% of o + ~) 

Protein 3 216.6 + 24.1 57.4 + 7.1 3.2 5: .97 
Cytochrome oxidase 3 15.82 5 : 3 . 7 6  88.6 5: 1.6 3.5 5: .85 
Esterase 3 249.0 5- 17.8 34.8 5 : 1 3 . 0  4.2 5 : 1 . 5  
Catalase 3 98.2 5: 7.0 39.6 5: 3.0 9.8 5 : 3 . 2  
HMG-CoA reductase 3 205.0 + 39.0 38.1 5 : 1 1 . 4  0.90 5 :0 .35  
HMG-CoA reductasell 1 182.7 28.8 6.3 

39.3 5- 6.4 95.5 5- 8.1 
7.6 5- 2.3 96.8 5- 3.18 

61.0 + 13.4 93.0 + 8.5 
50.4 + 2.3 95.1 -l- 10.3 
60.7 + 11.0 85.6 + 7.4 
64.9 81.0 

* Calculations are expressed as the mean + SD. 
¢ HMG-CoA reductase activity is expressed in mU/g. 
§ e equals the postnuclear supernatant. 
II Treated with acid phosphatase. 

(15, 26, 29) except that we find more soluble catalase than 
reported for normal rat liver. 

The distribution pattern of HMG-CoA reductase activity 
illustrated in Fig. 3 D closely coincides with the distribution 
pattern of esterase, a marker enzyme for ER. These results 
are in agreement with previous studies (6, 33) and imply that 
the HMG-CoA reductase activity is located primarily in the 
ER. However, the activity of HMG-CoA reductase in the L 
fraction is less than would be predicted based on the activity 
of esterase in this fraction. 

In normal hepatic tissue •15 % of the HMG-CoA reduc- 
tase is present in the active form (dephosphorylated) and 
85 % exists in the inactive state (phosphorylated) (5). During 
cell fractionation and subsequent handling of the homoge- 
nate, the inactive form of the reductase becomes activated by 
endogenous phosphatases (34). If phosphatase is primarily 
in the cytosol, as in rat liver, then reductase sedimenting dur- 
ing the first (low speed) centrifugation will be separated from 
phosphatase earlier and may be activated less completely 
than the reductase sedimenting with the microsomes during 
the high speed centrifugation (42). 

To verify that all of the reductase was in the active form 
after the differential centrifugation of the samples, each frac- 
tion was incubated with potato acid phosphatase for 2 h at 
37°C as described (31). After the incubation, the HMG-CoA 
reductase activity was then measured as previously indi- 
cated. Fig. 3 E illustrates the results. After acid phosphatase 
activation (dephosphorylation) the HMG-CoA reductase ac- 
tivity in the L fraction is clearly increased. The o and W frac- 
tions were not significantly affected, indicating the presence 
of HMG-CoA reductase in its active form in these fractions. 

The addition of KF to the L fraction in conjunction with acid 
phosphatase abolished the observed increase in HMG-CoA 
reductase activity. The presence of KF has been shown to 
prevent in vitro dephosphorylation of HMG-CoA reductase 
(5). In addition, boiling the acid phosphatase before use also 
abolished the observed increase. Treatment with acid phos- 
phatase did not change the absolute activity in the whole ho- 
mogenate. The absolute activity of HMG-CoA reductase in 
the whole homogenate after cholestyramine treatment is in- 
creased over control values (Table I compared with Table II). 

Equilibrium Density Centrifugation 

The L fraction prepared by differential centrifugation from 
cholestyramine-treated rats was subjected to isopycnic cen- 
trifugation in a steep linear metrizamide gradient to separate 
the organelles on the basis of their different densities. Fig. 
4 illustrates one of three typical gradients with recoveries 
noted. The mitochondria (B) and microsomes (C) are lo- 
cated to the left of the gradient and are responsible for the 
major peak of protein. The peroxisomes (D) are well sepa- 
rated from the microsomes and mitochondria and are located 
at greater densities (to the right in Fig. 4). A large portion 
of the catalase activity is solubilized and sediments at the 
light end of the gradient. Lysosomes sediment at the far left 
of the gradient in this system and are well separated from the 
peroxisomes (data not shown) (16). 

The distribution pattern of HMG-CoA reductase activity 
(Fig. 4 E) shows two peaks, a large peak coincident with 
microsomes and soluble catalase activity, and a small peak 
coincident with peroxisomes. These results indicate that 

Table II. Total Activity and Recovery of Marker Enzymes and HMG-CoA Reductase Activity after Differential 
Centrifugation of Normal Rat Liver Homogenates 

Absolute activities*~ % Distribution 
No. of U/g liver Recovery 

Enzyme experiments (u + ~)§ u k ¥ (% of o + ~) 

Protein 3 230 + 5.5 60.9 + 2.8 3.6 5 : 0 . 5  35.4 + 2.3 87 + 8.0 
Cytochrome oxidase 3 15.6 + 2.4 87.7 + 1.6 4 .6  + 0.5 6 .8  + 1.7 95.5 + 1.5 
Esterase 3 227.5 + 12.5 32.4 -t- 6.45 5.7 + 0.2 61.9 + 6.3 84.0 + 11.0 
Catalase 3 111.5 + 2.5 40.7 + 7.0 12.3 + 1.2 46.8 + 5.8 96.0 5- 1.0 
HMG-CoA reductase 2 89.2 + 0.8 36.0 5- 16.5 0.65 5- 0.15 63.5 + 12.1 89.5 + 1.5 

* Calculations are expressed as the mean ± SD. 
HMG-CoA reductase activity is expressed in mU/g. 
~ equals the postnuclear supernatant. 
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Figure 4. Separation of pemxisomes from other cell organelles. 
Isopycnic centrifugation in a metrizamide gradient (1.11 g/ml to 
1.25 g/ml) of a light mitochondrial (lambda) fraction (see Table 13 
from cholestyramine-treated animals. The ordinate, relative con- 
centration, is derived by dividing the actual concentration of the en- 
zyme in a particular fraction by the concentration of the enzyme 
that would be observed if the enzyme would be homogenously dis- 
tributed throughout the gradient. The abscissa is normalized cumu- 
lative volume (the total volume was 32 ml); the area of each graph 
is thus 1. The density of the gradient increases from left to right. 
(A) Protein; (B) cytochrome oxidase; (C) esterase; (D) catalase; 
(E) HMG-CoA reductase; and (F) HMG-CoA reductase treated 
with acid phosphatase. 

part of HMG-CoA reductase activity from cholestyramine- 
treated rats is located in the peroxisomes. Fig. 4 F shows the 
distribution pattern of HMG-CoA reductase activity after 
treatment of each gradient fraction with acid phosphatase. 
The HMG-CoA reductase activity of the purified perox- 
isomal fractions (dense end of the gradient) was unchanged 
as a result of acid phosphatase treatment. However, at the 
light end of the gradient the HMG-CoA reductase activity 
was increased after incubation with acid phosphatase. This 
increase in activity was equivalent to that observed in the Z 
fraction. Again, as in the ;L fraction this activation was abol- 
ished by the addition of KF or by boiling the acid phospha- 
tase before use. 

Compu te r  Calculat ions  

To interpret the gradient distribution data quantitatively, the 
amount of HMG-CoA reductase activity in each organelle 
was determined from the above data by applying the princi- 
ple of calculating the linear combinations of marker enzyme 
distributions that would best fit the measured HMG-CoA 
reductase distributions. This method has been described in 
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Figure 5. Construction of linear combinations for the HMG-CoA 
reductase distribution of Fig. 4 E The marker enzyme distributions 
of Fig. 4 are multiplied by the generated coefficients obtained from 
calculating optimal linear combinations of marker enzymes using 
a least squares criterion. These calculations were based on the lin- 
ear combinations of esterase and particulate catalase. Individual 
contributions of HMG-CoA reductase activity by ER (,4), peroxi- 
somes (B), and the sum of the individual contributions (C) are 
shown. 

detail (20). Fig. 5 illustrates the resulting construction of lin- 
ear combinations for the HMG-CoA reductase activity dis- 
tribution of Fig. 4 E The results show that 86 % of the total 
activity on the gradient of HMG-CoA reductase is localized 
in the ER and 14% is localized in the peroxisomes. Correct- 
ing for the amounts of the two organelles loaded on the 
gradient, we calculate that 7 % of HMG-CoA reductase ac- 
tivity is localized in the peroxisomes with the remaining 
93 % in the ER. These calculations were based on the linear 
combinations of esterase and particulate catalase (i.e., the 
solubilized catalase activity was deleted). If  peroxisomal 
13-oxidation activity is used as a marker for peroxisomes 
instead of catalase, the same results are obtained. Perox- 
isoma113-oxidation activity does not display a soluble com- 
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ponent (data not shown) (25). However, we cannot rule out 
the possibility of soluble peroxisomal HMG-CoA reductase 
activity contributing to some of the HMG-CoA reductase ac- 
tivity in the microsome area. This could be possible since 
HMG-CoA reductase is located in the matrix of the peroxi- 
somes and could leak out to the soluble portion of the gra- 
dient after peroxisome breakage. 

Fig. 6 illustrates the construction of linear combinations 

for the HMG-CoA reductase activity distribution of Fig. 4 
F based on the entire catalase distribution. The results show 
that 50 % of the total activity on the gradient of HMG-CoA 
reductase is localized in the ER and 50% is now attributed 
to the peroxisomes. Again, correcting for the amounts of the 
two organelles loaded on the gradient, we now calculate that 
30% of total HMG-CoA reductase activity is localized in the 
peroxisomes. 

To verify if indeed some of the HMG-CoA reductase activ- 
ity co-migrating with the microsomal fraction on the light 
end of the gradient was due to solubilized peroxisomal 
HMG-CoA reductase the following experiment was per- 
formed. The fractions from the light end of the gradient 
(containing the microsomal fraction and solubilized per- 
oxisomal enzymes) were combined and then separated by 
differential centrifugation into two fractions; a pellet con- 
raining the microsomal fraction and a soluble fraction. The 
samples were treated with acid phosphatase and assayed for 
HMG-CoA reductase activity. For comparison, pure perox- 
isomal fractions and microsomal fractions were similarly 
separated by differential centrifugation into a pellet and solu- 
ble fraction. The results are shown in Table HI. The results 
indicate that 40 % of the total HMG-CoA reductase activity 
from the light end of the gradient was in the soluble fraction. 
This activity clearly is not due to the solubilization of HMG- 
CoA reductase from microsomes, since <2 % of the HMG- 
CoA reductase activity from the purified microsomal frac- 
tion is found in the soluble fraction after similar treatment. 
However, the amount of HMG-CoA reductase activity solu- 
bilized from the peroxisomal fraction (62 %) is very similar 
to that of catalase released (53 %). These data indicate that 
about half of HMG-CoA reductase activity co-migrating 
with the microsomal fraction on the gradient is due to solubi- 
lized HMG-CoA reductase activity released from damaged 
peroxisomes. Therefore, the linear combination of Fig. 6 
based on the entire catalase distribution gives the most ac- 
curate calculation of peroxisomal HMG-CoA reductase ac- 
tivity. 

Since HMG-CoA reductase in the peroxisomes is located 
in the matrix, we wanted to confirm that we were measuring 
all of the HMG-CoA reductase activity of the organelle. Pure 
peroxisomal samples were assayed for HMG-CoA reductase 
activity in the presence and absence of varying concentra- 
tions of Triton X-100. No difference in activity was observed. 
This indicates that the peroxisomal enzyme is not latent and 
that total activity is being measured on the gradient. 

Calculations based on the entire catalase distribution, per- 
formed on three separate gradients from cholestyramine- 
treated rats, gave similar values. Based on these results, we 
conclude that at least 20 % but not >30 % of total HMG-CoA 
reductase activity is localized in peroxisomes after chole- 
styramine treatment. 

The HMG-CoA reductase activity distribution obtained 
after density gradient centrifugation of normal liver had very 
little activity in the peroxisome area (Fig. 7). We calculate 
that <5 % of total HMG-CoA reductase activity is localized 
in the peroxisomes under normal conditions. The acid phos- 
phatase studies were not performed on the normal gradient. 

Specific Activity of HMG-CoA Reductase 
The specific activity of HMG-CoA reductase was calculated 
for the most highly purified fractions obtained for each or- 
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Table IlL Distribution of HMG-CoA Reductase Activity and Marker Enzymes after Differential Centrifugation 

Gradient samples* Peroxisomal fraction* Microsomal fraction§ 

Soluble Pellet (Re*.) Soluble Pellet (Roe.) Soluble Pellet (Roe.) 

% of total activity 

H M G - C o A  reduc tase  40  60  97  62  38 95 1.5 98 .5  81 

Es t e r a se  5 95 98  - --  - 1 99  106 
Ca ta la se  95 5 116 53 47 90 - - - 

* Pooled samples from cholestyramine-treated animals after metrizamide density gradient separation, corresponding to the microsomal peak areas and soluble cata- 
lase. The combined fractions were centrifuged at 100,000 g for 60 min. 
* The purity of the peroxisomal fraction, obtained from the dense end of the gradient, is 95%. 
§ The purity of the microsomal fraction is 92%. The microsomal fraction was prepared as described in Materials and Methods. 

ganelle. The purity of peroxisomes was calculated to be be- 
tween 92 and 95 % based on the measurement of specific 
marker enzymes (12). The activities of cytochrome oxidase 
(a mitochondrial marker) and acid phosphatase (a lysosomal 
marker) in the purified peroxisome fractions were below the 
level of detection. The major contaminant (5-8%) was the 
ER. The microsome fraction (prepared by differential cen- 
trifugation) was calculated to be 90-95% pure. Table IV 
shows the specific activities of HMG-CoA reductase mea- 
sured in purified peroxisomes and microsomes from liver 
obtained from normal and cholestyramine-treated animals. 
The peroxisomal HMG-CoA reductase specific activity in- 
creases about sevenfold after cholestyramine treatment. 
However, the microsomal HMG-CoA reductase specific ac- 
tivity increases about twofold, which is consistent with 
reported literature values (13). 

Discussion 

The data from the cell fractionation studies demonstrate that 
the majority of the HMG-CoA reductase activity is as- 
sociated with the microsomal fraction both from normal and 
cholestyramine-treated rats. How can we then explain the 
low immunolabeling of the ER? The efficiency of immuno- 
labeling on frozen sections depends on the primary fixation 
which may alter the antigenicity of the protein, on the char- 
acteristics of the immunoreagents, and on the conformation 
of the antigen, and also on the accessibility of immunore- 
agents to the antigen (32, 36). The HMG-CoA reductase 
molecules localized in the peroxisomal matrix thus could be 
more accessible to the immunoreagents, which may explain 
the higher density of labeling in the peroxisomes, and the im- 
pression based on the immunolabeling that in normal liver 
cells HMG-CoA reductase is exclusively contained in perox- 
isomes (Fig. 1 A). The monoclonal antibody used was raised 
against the 55-kD portion of the microsomal HMG-CoA re- 
ductase (9); consequently, it recognizes also the portion of the 
protein that projects into the cytoplasm (9, 27). The few gold 
particles that can be observed within the lumen of the ER are 
assumed to have reacted with this cytoplasmic portion of the 
enzyme. Quantitation of the immunoelectron microscopal 
data indicated an eightfold increase in the immunolabeling 
per peroxisome after cholestyramine treatment. And, we es- 
timate about a threefold increase in the immunolabeling of 
the ER cisternae after cholestyramine treatment. 

The biochemical results were in excellent agreement with 
the quantitative immunoelectron microscopical data. The 
specific activity of microsomal HMG-CoA reductase in- 

creased about twofold after cholestyramine treatment (con- 
sistent with literature values [31]), whereas the specific activ- 
ity of peroxisomal HMG-CoA reductase increased six- to 
sevenfold. Cholestyramine can cause an increase in ER 
HMG-CoA reductase activity by several different mecha- 
nisms. Clarke et al. (10) reported a fourfold increase in rat 
liver HMG-CoA reductase mRNA upon cholestyramine treat- 
ment. The increase in activity after cholestyramine feeding 
has also been attributed in part to a threefold activation of 
the enzyme (37). Finally, cholestyramine treatment could al- 
ter the microsomal membrane in regards to cholesterol con- 
tent and this change can influence the activity of HMG-CoA 
reductase (30). Whether different mechanisms are involved 
in the activation of the peroxisomal enzyme is not known at 
this point. Our results from the immunoelectron study sup- 
port the observation of Clarke et al. (10), indicating in- 
creased enzyme synthesis. 

The peroxisomal HMG-CoA reductase specific activity 
was calculated from the most purified peroxisomal fractions 
obtained from the metrizamide gradients. We may be un- 
derestimating this activity for the following reasons: (a) 
metrizamide interferes with the measurement of the HMG- 
CoA reductase activity on the gradient and the correction for 
metrizamide concentration in the purified peroxisomal frac- 
tions was based on measurement of inhibition of microsomal 
HMG-CoA reductase (prepared in 0.25 M sucrose) and most 
importantly, (b) the immunoelectron microscopical data in- 
dicate a progressive decrease in the density of immunolabel- 
ing per peroxisome during purification of these organelles 
from control and cholestyramine-treated animals. We calcu- 
late that peroxisomes in the purified peroxisomal fraction 
contain only 20% of the gold labeling of peroxisomes in situ. 
This indicates that the enzyme is soluble within the perox- 
isomal matrix and, like peroxisomal thiolase and catalase, 
can be lost due to leakage (1). 

Because of the different conditions of organelle prepara- 
tion and enzyme measurements it may be misleading to 
directly compare the specific activity of ER HMG-CoA 
reductase with peroxisomal HMG-CoA reductase. However, 
the comparison of the relative increase in HMG-CoA reduc- 
tase activity between control and cholestyramine-treated 
animals within each organelle is warranted. 

In the present study the construction of linear combina- 
tions for the HMG-CoA reductase activity distribution after 
cholestyramine treatment was obtained by two different 
means: (a) using only particulate catalase or peroxisomal 
13-oxidation enzymes as markers for peroxisomal HMG-CoA 
reductase activity and (b) using the entire catalase distri- 
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Table IV. Specific Activity of  HMG-CoA Reductase* 

Normal Cholestyramine 

nmol/min per mg 

Peroxisomes (2)$ 0.30 + 0.18 (6) 2.0 + 0.4 
Microsomes (2) 2.3 + 0.1 (5) 3.8 + 1.1 

* All values given as mean and S D .  

$ The numbers in parentheses refer to number of samples analyzed. 

bution (soluble and particulate activity) to determine the 
percentage of activity of HMG-CoA reductase localized in 
peroxisomes. We calculate that in drug-treated rats 7 % of 
HMG-CoA reductase is present in peroxisomes based on the 
particulate catalase distribution and as high as 30% of the en- 
zyme is localized in peroxisomes if the entire catalase distri- 
bution is used. We also have shown that part of the HMG- 
CoA reductase activity on the gradient in the microsome area 
is a result of soluble peroxisomal HMG-CoA reductase ac- 
tivity (Table 11I). Thus, the calculations obtained using the 
entire catalase distribution provide a more accurate percent- 
age and also produce a better fit to the experimental data. Ta- 
ble V shows a summary of the measured and calculated ac- 
tivities of HMG-CoA reductase in rat liver peroxisomes and 
microsomes from control and cholestyramine-treated ani- 
mals. The measured values of total HMG-CoA reductase ac- 
tivity in the whole liver compare quite well to the calculated 
total activity based on specific activity values in both control 
and cholestyramine groups (first two columns, Table V). 

The calculations based on the linear combinations of 
marker enzymes yield a greater contribution of peroxisomal 
HMG-CoA reductase activity. Some of this discrepancy in 
the calculated values may be attributable to the loss of perox- 
isomal activity during purification. It is interesting to note 
that if a correction of fivefold is made in the specific activity 
of peroxisomal HMG-CoA reductase (based on the immuno- 
labeling microscopical data) then the percentage of activity 
calculated in peroxisomes (last two columns, Table V) would 
be in excellent agreement. 

These calculations were obtained using the HMG-CoA 
reductase activity distribution after treatment with acid phos- 
phatase. If the nontreated activity distribution is used, the 
percentage of activity of HMG-CoA reductase localiTed in 
peroxisomes increases by 10%. This is due to the activation 
of the enzyme at the light end of the gradient, resulting in 
a decrease in relative concentration of activity in the peroxi- 
some area, and a corresponding increase in the microsome 
and soluble HMG-CoA reductase area (Fig. 4 E compared 
with Fig. 4 F). 

The exact mechanism of this effect is not clear. It appears 
that a majority of the enzyme in the L fraction is in the inac- 
tive form (phosphorylated) and treatment with acid phospha- 
tase results in dephosphorylation. However, on the gradient, 
activation is only observed at the light end of the gradient. 
This implies that the components responsible for phosphory- 

Figure 7. Separation of peroxisomes from other cell organelles. 
Isopycnic centrifugation in a metrizamide gradient (1.11 g/ml to 
1.25 f/w.1) of a light mitochondrial (lambda) fraction (see Table II) 
from normal rat liver. The density of the gradient increases from 
left to right. 
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Table V. Measured and Calculated Activity of HMG-CoA Reductase in Rat Liver Peroxisomes and Microsomes 
from Control and Cholestyramine-treated Animals 

Percentage of activity Percentage of activity 
nmol/min per g* nmol/min per g¢ in each organdie§ in each organelleU 

Control 88 1.9 Peroxisomes 1.6 Peroxisomes 0 -5  Peroxisomes 
115.9 Microsomes 98.4 Microsomes  95-100  Microsomes  

117.8 

Cholestyramine 205 12.5 Peroxisomes 6.2 Peroxisomes 20 -30  Peroxisomes 
190.0 Microsomes  93.8 Microsomes 70-80  Microsomes  

202.5 

* Measured values of HMG-CoA reductase in whole liver (o + e fraction from Table I and Table ID. 
Calculated values of HMG-CoA reductase in whole liver, assuming that there are 6.25 nag of peroxisomal protein and 50 nag of microsomal protein/g of liver, 

wet weight. Calculations based on HMG-CoA reductase measured per milligram peroxisomal protein or per milligram microsomal protein. 
§ Percentage of activity in each organdie, calculated from second column. 
U Percentage of activity in each organdie, calculated from linear combinations of marker enzymes using the entire catalase distribution. The range is based on 
calculations from three separate gradients. 

lation (for instance HMG-CoA reductase kinase and/or an 
endogenous pool of ATP and Mg) have been separated on the 
gradient and do not sediment with the intact peroxisomes. 

The biological significance of the localization of the en- 
zyme in two different compartments of the cell remains to be 
elucidated. There are several conceivable explanations for 
the presence of the enzyme in peroxisomes as discussed by 
Keller et al. (18). It appears from this study that the HMG- 
CoA reductase found in the peroxisomes is not due to the in- 
corporation of a proteolytic fragment of the 97-kD glycopro- 
tein of the ER that is enzymatically active. If it simply were 
a degradation product, one would expect to see similar in- 
creases in enzyme concentration and activity in the two or- 
ganelles as a result of cholestyramine treatment. Clearly, the 
data do not show this. Also, we have preliminary data which 
indicate that peroxisomes contain both a 97-kD polypeptide 
as well as a 55-kD fragment (21). Thus, there may be two 
different reductase proteins catalyzing the same reaction in 
the two organelles. This is the case for other enzymatic 
"duplications" such as the 13-oxidation enzymes (14). 

The presence of HMG-CoA reductase in peroxisomes 
raises intriguing questions about the specific role of these or- 
ganelles in cellular metabolism. It is now well known that 
rat liver peroxisomes contain enzymes that catalyze the 
13-oxidation of fatty acids, a major pathway of lipid metabo- 
lism previously thought to operate only in mitochondria (23, 
25). Furthermore, it has been demonstrated that the key en- 
zymes of the biosynthetic pathway of glycero-lipids are 
highly concentrated in liver peroxisomes as well as in micro- 
peroxisomes of rat brain (16). In addition, recent results indi- 
cate that liver peroxisomes play a role in the biosynthesis of 
bile acids. Kase et al. (17) found that rat hepatic peroxi- 
somes have the ability to oxidize 3a,7o,12a-trihydroxy-5-13- 
cholestanoic acid (an intermediate of bile acid synthesis) to 
cholic acid. Hagey and Krisans (15) reported that the side 
chain of cholesterol is cleaved by rat peroxisomal fractions. 
And finally, Krisans et al. (22) showed that highly purified 
rat liver peroxisomes can oxidize 26-hydroxy-cholesterol to 
3-~-hydroxy-5-cholenoic acid (a mono-hydroxy bile acid). 
These data as well as the present study suggest that peroxi- 
somes may play an important role in regulation of cholesterol 
metabolism, but the nature of this role is not yet clear. 
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