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ABSTRACT

Learning is a familiar process to most people, but it currently lacks a fully developed theoretical position within evolutionary
biology. Learning (memory and forgetting) involves adjustments in behaviour in response to cumulative sequences of prior
experiences or exposures to environmental cues.We therefore suggest that all forms of learning (and some similar biological
phenomena in development, aging, acquired immunity and acclimation) can usefully be viewed as special cases of pheno-
typic plasticity, and formally modelled by expanding the concept of reaction norms to include additional environmental
dimensions quantifying sequences of cumulative experience (learning) and the time delays between events (forgetting).
Memory therefore represents just one of a number of different internal neurological, physiological, hormonal and anatom-
ical ‘states’ that mediate the carry-over effects of cumulative environmental experiences on phenotypes across different time
periods. The mathematical and graphical conceptualisation of learning as plasticity within a reaction norm framework can
easily accommodate a range of different ecological scenarios, closely linking statistical estimates with biological processes.
Learning and non-learning plasticity interact whenever cumulative prior experience causes a modification in the reaction
norm (a) elevation [mean phenotype], (b) slope [responsiveness], (c) environmental estimate error [informational memory]
and/or (d) phenotypic precision [skill acquisition]. Innovation and learning new contingencies in novel (laboratory) environ-
ments can also be accommodated within this approach. A common reaction norm approach should thus encourage pro-
ductive cross-fertilisation of ideas between traditional studies of learning and phenotypic plasticity. As an example, we
model the evolution of plasticity with and without learning under different levels of environmental estimation error to show
how learning works as a specific adaptation promoting phenotypic plasticity in temporally autocorrelated environments.
Our reaction norm framework for learning and analogous biological processes provides a conceptual and mathematical
structure aimed at usefully stimulating future theoretical and empirical investigations into the evolution of plasticity across
a wider range of ecological contexts, while providing new interdisciplinary connections regarding learning mechanisms.
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state-dependence, habituation curves.
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I. INTRODUCTION

Natural systems contain many types of learning andmemory,
all of which appear to have evolved as adaptive responses to
their ecological context and the specific challenges posed by
particular forms of environmental variation (Stephens,
1991). For example, the learning involved in kin recognition
imprinting (Bolhuis, 1991; Holmes & Mateo, 2007) or
conditioned taste aversion to potentially toxic foods
(Gustavson, 1977; Nicolaus & Nellis, 1987) is necessarily
rapid and has potentially long-lasting adaptive effects irre-
spective of subsequent information or lack of it. By contrast,
during classic habituation (see Shettleworth, 2010) or asso-
ciative learning [e.g. when foraging (Hirvonen et al., 1999;
Stephens, Brown & Ydenberg, 2007)], there is a more grad-
ual acquisition of information about often temporary condi-
tions that can then be easily forgotten unless reinforced. A
range of intermediate timeframes for learning and forgetting
are also apparent, such as in the well-studied evolutionary
ecology of spatial memory, food storing, territoriality and
migration (see Healy & Hurly, 2004; Shettleworth, 2010),
and song learning in birds (Catchpole & Slater, 1995). There-
fore, the types of salient environmental cues that animals
attend to, how quickly experience of those cues affects behav-
iour and how long such effects persist, appear to make sense
according to the particular environmental factor of impor-
tance, its predictability and its rate of change relative to the
lifetime of the individual. Such obviously adaptive patterns
of phenotypic change due to learning (and forgetting) in nat-
ural populations argue for the development of an evolution-
ary framework promoting the scientific understanding of
learning in an ecological context.

The biological literature contains an encouraging number
of recent studies on the evolution of learning [see Mery &
Burns, 2010; Fawcett, Hamblin & Giraldeau, 2012 and
accompanying commentaries; Greggor et al., 2019]. Theoret-
ical models of behavioural learning [see Feldman &
Aoki (2014) and other papers in this special issue]
have explored factors affecting the evolution of adaptive learn-
ing rules in specific contexts ranging from foraging

(McNamara, 1985; McNamara & Houston, 1987; Stephens
et al., 2007; Eliassen et al., 2009) to mating strategies (Dukas,
Clark &Abbott, 2006) and other game-theoretical issues involv-
ing frequency-dependent social interactions (Hamblin &
Giraldeau, 2009; Dubois, Morand-Ferron & Giraldeau, 2010;
Katsnelson et al., 2012; Afshar & Giraldeau, 2014; Lee
et al., 2016; Aplin & Morand-Ferron, 2017; McNamara &
Leimar, 2020). However, despite some excellent conceptual
reviews of learning and other cognitive processes within the field
of animal behaviour (e.g. Dukas, 2004, 2013), a more complete
theoretical framework that links a common set of model param-
eters with the biological processes involved in adaptive learning
has yet to be fully developed.
Similarly, there are excellent empirical studies on the evolu-

tion of learning in specific contexts, including elegant selection
experiments on the role of learning in oviposition decisions in
Drosophila by Mery & Kawecki (2002) and Dunlap & Stephens
(2009), which highlight the importance of learning in response
to temporally auto-correlated environments. Some studies have
also attempted to quantify the fitness costs and benefits in
specific cases of learning (e.g. Johnston, 1982; Sullivan, 1988;
Hollis et al., 1997; Mery & Kawecki, 2004; Mahometa &
Domjan, 2005), and provided suggestive evidence for adaptive
differences in learning between populations, sexes or species
(e.g. Simons et al., 1992; Balda, Kamil & Bednekoff, 1996;
Lefebvre, 1996; Jackson & Carter, 2001; Dunlap et al., 2006;
see also Shettleworth, 1984, 2010). The taxonomically wide-
spread diversity of forms of learning and the somewhat discon-
nected nature of most of the theoretical and empirical literature
combine to suggest a need for a conceptual framework for
learning that is fully embedded within evolutionary biology.
Any general framework for the evolution of learning (and

forgetting) would benefit from being incorporated within the
study of phenotypic plasticity. Learning clearly meets the
broad definition of plasticity, which is variation in
the phenotype expressed by a given genotype or individual
due to variation in the environment (Schlichting &
Pigliucci, 1998; Scheiner, 2006). Learning can be defined as
a meaningful change in behaviour with individual experience
(Shettleworth, 1984, 2010; Stephens, 1989; Dukas, 1998;
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Dall et al., 2005; Mery & Burns, 2010; Staddon, 2016). The
relevant experience in almost all cases of learning is the result
of some prior exposure to the environment, broadly defined,
and so is a form of phenotypic plasticity (see also
Dukas, 2004, 2013). Considering learning explicitly as a form
of plasticity has several useful consequences. First and fore-
most, there is considerable evolutionary theory concerning
the evolution of plasticity (see Schlichting & Pigliucci, 1998;
Scheiner, 2006; Botero et al., 2015; Tufto, 2015), which can
usefully be applied to learning. Integrating learning into the
current framework for phenotypic plasticity also helps clarify
similarities and differences between learning as a form of plas-
ticity versus plasticity that does not involve learning. Finally,
prior experience may interact with non-learned responses
to environmental factors. That is, phenotypically plastic
responses to environmental variation might differ depending
upon the degree of learnt experience, but there are few sugges-
tions in the literature about how and when this might occur.
Here we outline a conceptual framework for integrating learn-
ing into evolutionary theory on phenotypic plasticity that is
specifically designed to tackle such issues.

In evolutionary biology, phenotypic plasticity is often repre-
sented in terms of norms of reaction (see Kawecki &
Stearns, 1993; Scheiner, 1993; Schlichting & Pigliucci, 1998;
Nussey et al., 2005; Dingemanse et al., 2010), although some-
times a character-state approach may be preferable (Via
et al., 1995). Reaction norms are functions relating the pheno-
typic values for a single genotype or individual to a given set of
environmental conditions (internal, external, abiotic, biotic or
social). These functions allow us to think explicitly about the
form of plasticity, its variation within and among populations,
the genetic and environmental sources of that variation, and
the selective forces acting upon different components of plas-
ticity in terms of the parameters defining the elevation and
slope (or more complex non-linear shapes) of a reaction norm
(DeWitt, Sih &Wilson, 1998; Ghalambor et al., 2007; Nussey,
Wilson & Brommer, 2007; Lande, 2009; Murren et al., 2015).
Reaction norms can encompass any functional relationship
between an environmental axis and the phenotype. Doing
the same for learning therefore allows us to utilise all of the
analytical and theoretical tools that have been developed
for investigating the evolution of non-learning plasticity (see
Nussey et al., 2007; Stinchcombe & Kirkpatrick, 2012;
Scheiner, 2013; Chevin & Lande, 2015). However, learning
is a form of plasticity with particular properties – it is a change
in behaviour in response to a cumulative sequence of environ-
mental cues. So, rather than a phenotype simply responding
plastically to a particular axis of environmental variation, with
learning the phenotype responds differently to each environ-
mental stimulus depending upon whether it has been experi-
enced before; thus for learning the cues used to adjust the
phenotype consist of a temporally ordered series of exposures
to the environment. Such reaction norm representations of
learning based upon sequences of prior exposures or experi-
ences are well illustrated by habituation curves from learning
psychology (Bills, 1934; Jaber, 2011). The learning rules
(or cognitive mechanisms) thought to govern the shapes of

such learning curves can thus be equated with behavioural
‘rules-of-thumb’ (McNamara & Houston, 1980) or ‘strategy
sets’ (sensu Grafen, 1984) used to produce adaptive beha-
vioural reaction norms. Learning reaction norms can there-
fore capture theoretical expectations from mathematical
models for the evolution of optimum learning rules
(e.g. Lotem & Halpern, 2012; Aoki & Feldman, 2014;
McNamara & Leimar, 2020), because they are simply mathe-
matical functions that define the effects of those learning rules
on the phenotype.

Another useful consequence of integrating learning and
phenotypic plasticity concerns the responses of non-
behavioural traits to cumulative environmental exposures
and prior experiences, often over much longer timescales.
In this regard, learning (and the use of memory) bears a
notable resemblance to cumulative environmental effects
on early-life development and aging during the lifetime of
the organism (West-Eberhard, 2003; van de Pol &
Verhulst, 2006; Nussey et al., 2007; Wolpert et al., 2011;
Stamps & Frankenhuis, 2016), acquired immunity in mam-
mals (Janeway et al., 2005; Flajnik & Kasahara, 2010),
acquired responses of phytophagous insects to plant defences
(Papaj & Prokopy, 1989; Bernays & Chapman, 1994), physio-
logical acclimation (Angilletta, Niewiarowski & Navas, 2002;
Schulte, Healy & Fangue, 2011; Seebacher, White &
Franklin, 2015), and the cumulative hormonal modulation of
behaviour (Hsu, Ryan & Wolf, 2006; Oliveira, 2009). Thus,
in addition to learning and cognition affecting behaviour,
there appears to be a range of physiological and developmen-
tal processes driving phenotypic plasticity based upon the
effects of accumulated environmental exposures over a range
of different biological timescales. Interestingly, for these
responses to be adaptive, some degree of temporal autocorre-
lation in environmental conditions and/or fitness pay-offs is
necessary, where prior experience usefully informs current
expectations. Hence, these processes are characterised by
gradual and cumulative (and often non-linear) changes to
some important aspect or property of the organism, such as
energy reserves, somatic growth or informational memory.
Such properties of the individual can be conceptualised as
internal ‘state’ variables that carry over their values and fitness
consequences from one decision (or time) event to another,
and the optimal strategy across a sequence of events
can then be explored using state-dependent models (see Hous-
ton & McNamara, 1999; Clark & Mangel, 2000; Dall &
Johnstone, 2002; Dunlap & Stephens, 2012). Thus, state-
dependent behavioural plasticity not normally associated with
learning (e.g. mass-dependent foraging in birds) can also
involve cumulative environmental effects. Likewise, in some
cases it might be difficult to distinguish learning (and memory)
from other ongoing cumulative organismal responses to the
environment, such as physiological adjustments or anatomical
development. So, although here we focus upon examples of
behavioural learning involving neurological mechanisms, we
suggest that learning is not entirely unique and can be envi-
sioned more generally as plasticity in response to an ordered
series of environmental exposures. By combining various
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theoretical and statistical approaches to learning, state-
dependence and other analogous biological processes, it is pos-
sible to construct a single overarching conceptual framework
for the evolution of any reaction norm involving cumulative
environmental effects on phenotypic change over the lifetime
of an organism, whether it is learning, developmental plastic-
ity, acquisition and acclimation, as well as diurnal, seasonal
and age effects.

Learning and other analogous biological phenomena
(e.g. development, acclimation, etc.) influence a wide range
of phenotypic traits and their functional importance is hard
to overstate, including their effects on the rates and directions
of phenotypic evolution (West-Eberhard, 2003, 2005;
Brown, 2013; Dukas, 2017; Dayan et al., 2019). In this paper,
we outline a general conceptual framework for such cumula-
tive environmental effects on plasticity, with graphical and
mathematical representations for learning that are fully
embedded within wider evolutionary biology theory. This
reaction norm approach has several useful advantages in that
it allows us to study and understand learning using the evolu-
tionary and statistical tools previously only applied in the
context of non-learning phenotypic plasticity. Importantly,
since prior cumulative exposure to an environment can con-
stitute a reaction norm axis that involves ‘learning’, and this
axis could also influence the nature of the reaction norm in
other non-learning environment dimensions, we focus some
attention on learning in the context of multidimensional plas-
ticity (sensu Westneat et al., 2019) in which the phenotype
responds plastically to two or more environmental variables.
In doing so, we classify the different ways that learning can
alter conventional non-learning reaction norms, explain the
utility of formally defining the duration of ‘time events’
within any study, and demonstrate the importance of tempo-
ral autocorrelations in the environment for the evolution of
learning via an individual-based simulation model. Our over-
arching aim is to facilitate the development of predictive
hypotheses concerning the evolution of learning (and mem-
ory) and the empirical quantification of variation in learning
(and other analogous biological phenomena) at key biologi-
cal levels of interest (within and among individuals, geno-
types and species). The reaction norm approach fully
incorporates the statistical models that provide operational
links to data analysis, and therefore is a means for conceptu-
ally matching statistical estimates to specific biological
hypotheses. Here we focus largely upon the adaptive conse-
quences of any phenotypic adjustments that might result
from learning and other analogous processes (in plants as well
as animals), rather than the specific types of cognitive, physi-
ological or morphological mechanisms by which those phe-
notypic adjustments are achieved. This is not to say that
cognitive mechanisms or evolutionary histories are unimpor-
tant (see Fawcett et al., 2012), but rather that unencumbered
thinking about the ultimate function of phenotypic plasticity
has made it possible to understand more fully the general
principles behind its evolution, and the same is likely to be
true at this initial stage for the evolution of learning and other
cumulative plasticities. Contextualising learning as a specific

aspect of phenotypic plasticity using a reaction norm frame-
work should offer new insights and avenues for research
regarding the evolution of phenotypic plasticity and adaptive
‘learning’ (in the broadest possible sense), as well as the pro-
cesses and mechanisms involved.

II. LEARNING AS A TYPE OF PLASTICITY: A
REACTION NORM PERSPECTIVE

The concept of the reaction norm is well established within
evolutionary biology (see Kawecki & Stearns, 1993;
Scheiner, 1993; Schlichting & Pigliucci, 1998), being used
in both theoretical and empirical investigations of adaptive
phenotypic plasticity, including in the context of beha-
vioural and life-history variation (see Nussey et al., 2007;
Dingemanse et al., 2010; Westneat et al., 2011; Westneat,
Wright & Dingemanse, 2015). Given the parallels (and
sometimes confusion) between plasticity and learning, we
suggest a formal extension in the form of reaction norms
in which phenotypic expression occurs in response to a
sequence of cumulative environmental experiences (see
Section I). However, expanding the reaction norm
approach to include learning (and forgetting) and other
analogous biological phenomena means that we first need
to consider key methodological issues that have already
arisen as part of reaction norm studies of phenotypic
plasticity.
Phenotypic plasticity has been categorised in many ways,

and one dichotomy of interest here is between ‘irreversible’
(or ‘developmental’ or ‘organisational’) plasticity in traits that
are usually expressed only once, such as the determinate
growth of morphological characters or nervous systems, versus
‘reversible’ (or ‘contextual’ or ‘activational’) plasticity in traits
that are expressed repeatedly with various different values
throughout a lifetime, such as behaviour and hormones
(Agrawal, 2001; West-Eberhard, 2003; Nussey et al., 2007;
Dingemanse et al., 2010; Ord, Stamps & Losos, 2010; Snell-
Rood, 2013; Nelson & Kriegsfeld, 2017). In reality, most
instances of phenotypic plasticity fall between these two
extremes in being more or less reversible in response to more
or less long-lasting environmental effects (see Piersma &
Drent, 2003), and this is perhaps particularly true of the vari-
ous timeframes observed in learning and forgetting (see
Section VII) and other analogous biological phenomena (see
Section I). Nevertheless, this dichotomy has been instructive
in highlighting the range of timescales and degrees of revers-
ibility in the expression of phenotypes, and the diverse influ-
ence of environments underlying different forms of plasticity.
Different plasticities tend to operate over different timeframes
within the same lifetime, and these can interact in their effects
on phenotypic expression. For example, developmental plas-
ticity early in life may affect subsequent levels of reversible
plasticity or behavioural responsiveness (Dingemanse
et al., 2010; Stamps & Groothuis, 2010; Dingemanse &
Wolf, 2013), and this itself has been a precept for many studies
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over the years in behavioural endocrinology (Becker
et al., 2002; Nelson & Kriegsfeld, 2017).

As we will show, this interaction between the effects of dif-
ferent environmental axes, or multidimensional plasticity
(sensuWestneat et al., 2019), is particularly relevant for learn-
ing (and forgetting) and other analogous biological phenom-
ena involving cumulative environmental effects, because
learning often interacts with various aspects of the reaction
norms describing plasticity without learning (see Section V).
Therefore, the single environmental (x-axis) dimension used
in many learning and non-learning plasticity reaction norms
is a simplification, mostly for ease of understanding. The dif-
ferent timeframes of multiple environments combining to
affect the same phenotypic trait, plus the obvious complexity
of natural environments, means that most natural reaction
norms are in effect multidimensional as organisms respond
simultaneously to multiple (interacting) environmental
factors (Westneat et al., 2019).

Most reaction norms are also pragmatically presented as
linear in the first instance, if only for simplicity, when we
know that natural cases of phenotypic plasticity can involve
non-linearities (Gavrilets & Scheiner, 1993; Murren
et al., 2014; Beaman, White & Seebacher, 2016; Arnold,
Kruuk & Nicotra, 2019). Indeed, reaction norms involving
cumulative experience are especially likely to be non-linear
[e.g. exponential learning or habituation curves (Bills, 1934;
Shettleworth, 2010; Jaber, 2011)]. This is because of Bayes-
ian and other non-linear functions that can be used to
describe the gradual cognitive and physiological processes
that sequentially change the phenotype or (informational)
state of the organism during the course of cumulative envi-
ronmental exposures or prior experiences, usually in some
curvilinear fashion until an upper maximum or lower min-
imum limit is reached (for parallel arguments concerning
development, see Stamps & Frankenhuis, 2016). Therefore,
greater insight will always be gained if the non-linear func-
tion fitted in the statistical model corresponds to a particular
hypothesis or theoretical expectation regarding the particu-
lar biological mechanism or learning rule involved
(see Lotem & Halpern, 2012; Aoki & Feldman, 2014;
McNamara & Leimar, 2020; Westneat et al., 2020). Over-
simplifying the biology and using linear reaction norms to
represent non-linear processes can lead to inappropriate
conclusions from the application of incorrect statistical
models in empirical studies. Luckily, the complexities of
multidimensional and most forms of non-linear learning
reaction norms can be accommodated into existing statisti-
cal models.

The statistical procedures involved in analysing reaction
norms of repeatedly expressed traits also have the potential
to modify the exact meaning of the reaction norm intercept
and slope (Westneat et al., 2020). For example, some reaction
norms may use a zero value along the environmental axis to
denote a true value of a ratio scale (e.g. a chemical concentra-
tion), but unbalanced data, interval scales or multidimen-
sional reaction norms may make it preferable to mean-
centre the zero of the reaction norm x-axis to represent the

average environment experienced (see van de Pol &
Wright, 2009; Dingemanse et al., 2010). Reaction norms
involving an x-axis of cumulative experience instead would
reasonably always place the zero value and thus intercept at
the first instance of a stimulus, equating to when the individ-
ual has no prior experiences. Whether the reaction norm
describes learning per se or an analogous cumulative phenom-
enon, this ‘left-centring’ captures the sequential and ordered
nature of the organism’s exposures to the environmental axis,
which differs from that of other forms of plasticity in which
the phenotype reacts to any given order and position of expo-
sures along the environmental axis. We focus on applying
the reaction norm approach explicitly to cases of learning,
but we note that many of these ideas could apply to
plasticity involving other sorts of cumulative experience.
We occasionally transition to make this point explicitly.

III. A GRAPHICAL DESCRIPTION OF LEARNING
REACTION NORMS

A conventional reaction norm can be depicted graphically
(Fig. 1A), with the elevation representing the mean pheno-
typic value expressed by the focal individual in its average
mean-centred environmental condition, and the (in this case)
linear slope of the reaction norm representing the individ-
ual’s responsiveness or degree of phenotypic change per unit
of environmental change (Nussey et al., 2007; Dingemanse
et al., 2010). This unidimensional depiction can be expanded
to a multidimensional reaction norm surface (Fig. 1B) by
including more than one environmental x-axis (Westneat
et al., 2019). Figure 1C shows how the curvilinear effects of
learning can be similarly illustrated in an individual reaction
norm plot for simple unidimensional cases, such as habitua-
tion. This is achieved by plotting the timing of the individ-
ual’s cumulative exposures or prior experiences along a
single environmental x-axis. Therefore, learning plasticity
differs from non-learning plasticity in the use of a left-centred
environmental axis depicting the level of prior individual
experience (Fig. 1C), as opposed to independent exposures
to environmental values with no particular order (Fig. 1A).

While unidimensional depictions of learning (Fig. 1C) are
common in laboratory studies of behaviour, most learning
occurs in complex natural environments and multidimen-
sionality is likely a part of most learning reaction norms.
Interactions between the effects of prior exposures and
one or more environmental gradients (Fig. 1D) are likely
common and are central to any understanding of the evolu-
tionary forces shaping learning. For example, social for-
agers on ephemeral clumps of food tend to switch between
searching for new clumps (‘producing’) and joining conspe-
cifics at already discovered clumps (‘scrounging’) in a nega-
tively frequency-dependent way that depends conditionally
upon the current proportion of producers versus scroungers
in the local population (i.e. the social environment repre-
sented on the x-axis of a non-learning reaction norm;
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Barnard & Sibly, 1981). House sparrows (Passer domesticus)
show additional evidence of learning in such scenarios,
based upon prior experience of cues relating to the pay-offs
of producing versus scrounging early in life and/or
during previous foraging sessions (Katsnelson et al., 2008;
Belmaker et al., 2012). Exactly how these different forms of

non-learning and learning plasticity interact and with
what fitness consequences is likely to be a rich area for
further study.
For the purposes of illustration, Fig. 1 shows the

reaction norm for only a single individual. However, with
sufficient data for multiple individuals one can estimate

A B

C D

Fig. 1. Illustrations of a single individual’s unidimensional and multidimensional reaction norms for non-learning phenotypic
plasticity in response to environmental variation (blue reaction norms), and learning plasticity as a result of a cumulative sequence
of prior exposures (red reaction norms). (A) Non-learning unidimensional plasticity as a linear response to the mean-centred
environmental variable, E1 (e.g. foraging effort with increasing prey profitability), with the elevation Y representing the mean
phenotypic value for that individual in its average environmental condition X . (B) Non-learning multidimensional plasticity in
response to two environmental variables, E1 and E2, with an interaction between them producing a warped reaction norm surface
(e.g. predation threat and the need for vigilance moderating the positive effect of prey profitability on foraging effort). (C) Learning
unidimensional plasticity following a particular sequence of evenly spaced prior exposures in which the behaviour decreases non-
linearly – i.e. the effect per exposure declines with increasing prior experience (e.g. exponential effects of habituation to a benign
novel object near a food source). (D) Learning multidimensional plasticity with the effect of cumulative experience from a
sequence of events interacting in response to some additional environmental effect, E (e.g. habituation to a benign novel object
taking longer with an increasing perceived predation threat). The blue and red lines thus represent unidimensional reaction norms
in A and C, and reaction norm surface values at the mean-centred (zero) values of the environmental axes E2 in B and E in
D. The darker shading of the grey reaction norm surfaces represents higher phenotypic values in B and later phenotypic
expressions in D. See main text for more details, but note that the particular cases here were chosen for the purposes of
illustration. In real systems, non-learning plasticity reaction norms A and B can also be non-linear, whilst learning reaction norms
C and D can be linear, and both may involve more than two (x-axis) environmental effects.
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among-individual variation in the elevations and slopes of
both non-learning and learning reaction norms [e.g. in
neophobia, habituation and novel cue learning in foraging
house sparrows (Ensminger & Westneat, 2012; Moldoff &
Westneat, 2017)]. With additional information on
genetic relatedness, we could also use quantitative genetic
approaches to partition this individual variation into the her-
itable versus permanent environmental (developmental)
effects on elevations and plasticity (see Nussey et al., 2007).
This has been done for unidimensional learning reaction
norms involving habituation in the form of decreases in
exploration activity as a result of successive exposures to the
same benign novel environment, thereby showing significant
genetic variation in these learning reaction norm intercepts
and slopes in both three-spined sticklebacks (Gasterosteus acu-
leatus; Dingemanse et al., 2012a) and great tits (Parus major;
Dingemanse et al., 2012b). Log-transformations allow such
exponential effects to be modelled as simple linear functions
(e.g. Dingemanse et al., 2012a; Moldoff & Westneat, 2017),
but more complex learning reaction norm shapes may
require the inclusion of additional non-linear terms in the sta-
tistical model (e.g. Moiron, Mathot &Dingemanse, 2018; see
Section IV). Therefore, as with reaction norms for non-
learning plasticity, ‘learning’ reaction norms can provide
useful statistical descriptions of actual biological processes
in the form of data on adjustments in phenotypic values as
a result of within- and among-individual differences in learn-
ing experiences. If gathered across enough individuals and
with information on genetic relatedness, multidimensional
learning reaction norm analyses (Fig. 1D) could provide a
useful means for estimating genetic and/or permanent envi-
ronmental effects on learning (e.g. Brandes, 1988; Durisko &
Dukas, 2013), including the genetic variance–covariance
matrices required to predict evolutionary change in response
to selection on learning. This application could prove partic-
ularly useful given recent interest in studies of individual
differences in learning, innovation and performance in
problem-solving tasks [see Carere & Locurto, 2011;
Amy, van Oers & Naguib, 2012; Cole & Quinn, 2012;
Mathot et al., 2012; Sih & Del Guidice, 2012; Tebbich,
Stankewitz & Teschke, 2012; Griffin, Guillette &
Healy, 2015; Snell-Rood & Steck, 2019 and other papers in
this special issue]. Learning reaction norms thus provide a
general foundation for theoretical and statistical conceptuali-
sations of optimal learning strategies and adaptive pheno-
typic responses to the cumulative experience of a sequence
of events.

Figure 1 provides a simplified graphical introduction to
the notion of learning reaction norms and their utility, but
any workable multidimensional reaction norm framework
needs to incorporate learning and forgetting as distinct pro-
cesses. This is achieved by statistically separating (i) the
cumulative effect of a sequence of exposure events on learn-
ing from (ii) the effect of time between these exposure events
on forgetting, as represented by two separate x-axes in Fig. 2.
Such an approach is required whenever the rates of learning
and forgetting arise from two distinct processes each with

their own timescale. For instance, in Section I we cite some
classic examples involving contrasting timescales of learning
versus forgetting in different adaptive ecological contexts.
Figure 2 illustrates four of these examples, with Fig. 2A,B
showing the interactive effects of fast learning and slow for-
getting associated with kin discrimination via imprinting
(Bolhuis, 1991; Holmes & Mateo, 2007) and conditioned
taste aversion to potentially toxic foods (Gustavson, 1977;
Nicolaus & Nellis, 1987), respectively. These contrast
with Fig. 2C,D that show the relatively slow learning
and relatively fast forgetting during habituation (see
Shettleworth, 2010) or learning for the purposes of adaptive
foraging on ephemeral food sources (Hirvonen et al., 1999;
Stephens et al., 2007), respectively. More complex scenarios
are obviously possible, but our general point here is that
representing the potentially separate processes of learning
and forgetting in this way facilitates formal comparisons
between theoretical expectations (e.g. of the mechanisms
involved) and empirical findings (both observational and
experimental), and clarifies why ‘learning’ (and ‘forgetting’),
in the broadest sense, can usefully be viewed as a particular
subset of phenotypic plasticity.

IV. A MATHEMATICAL DESCRIPTION OF
LEARNING REACTION NORMS

A powerful advantage of the reaction norm framework is the
mathematical and statistical tools, such as mixed-effect models,
that are available for estimating key parameters from real data
sets. We illustrate this here by modifying such regression
models in the form of the ‘phenotypic equation’ in order to
encompass the biological processes involving ‘learning’ and
similar cumulative plasticity effects, but with two important
caveats: (a) we employ linear equations for convenience by
log-transforming what are assumed to be exponential changes
in the behavioural response variable (y), although this approach
can inmost cases accommodate alternative non-linear relation-
ships and more complex mathematical descriptions of the biol-
ogy (see Section III); and (b) we use notation that differs from
previous presentations of the statistical parameters in reaction
norms (e.g. Nussey et al., 2007) and learning curves from
cognitive psychology (see Shettleworth, 2010).

Consider a behavioural outcome yij , such as the latency to
approach a familiar food source during instance i for
individual j. We describe this latency as follows:

yij =β0+I 0j+ eij , ð1Þ

where β0 represents the mean population (intercept) value of
the behaviour, I 0j is the mean deviation from β0 for individ-
ual j, and eij is the residual unexplained deviation from
β0+ I 0j in the behaviour at instance i for individual j. A sud-
den environmental change (e.g. the introduction of a novel
object) might alter the behavioural response, but if it is
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benign then repeated exposure will often produce habitua-
tion (Fig. 1C). This can be done in much the same way as
with the phenotypic equation for non-learning behavioural
plasticity (see Nussey et al., 2007; Dingemanse et al., 2010;
Westneat et al., 2015), but instead of an environmental gra-
dient (Eij ) we use a temporal sequence of prior exposures to
this new circumstance (Xij ) and assay how subjects on aver-
age change (β1XijÞ their behaviour (i.e. habituate) with each
successive experience. We note here that habituation is
often an exponential non-linear process over the natural
scales of both X and y (see Section II). Thus, phenotypic
expressions yij recorded for each different experience in time
allows Xij to capture the magnitude of the time intervals
between exposures, and hence it is Xij that can be log-

transformed (e.g. Dingemanse et al., 2012b). Alternatively, if
the response (yij ) is something like the time an individual takes
to achieve some behavioural action (i.e. latency to approach
a familiar food source in the presence of a benign novel
object) across an ordered number of exposures, then
researchers often take account of any non-linearity by log
transforming yij (e.g. Moldoff & Westneat, 2017). The equa-
tion then becomes:

log yij

� �
=β0+ I 0j+ β1+I 1j

� �
Xij+ eij : ð2Þ

In addition to capturing the hypothesised exponential
non-linear relationship, Equation 2 also includes many more
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Fig. 2. Illustrations of multidimensional curvilinear learning reaction norms showing different rates of phenotypic plasticity due to
the cumulative experience of (i) a sequence of prior (reinforcing) exposures versus (ii) the length of delays between successive
exposures in: (A) kin discrimination ability (e.g. in affiliation behaviour towards kin versus non-kin) as a result of imprinting
requiring usually only one or two prior exposures with little forgetting and hence no effect of time delays; (B) conditioned taste
aversion requiring only a small number of prior exposures but with less effect if there are longer delays between those events;
(C) habituation to a benign novel object occurring only after a long sequence of similar events and with dishabituation increasing
following longer delays between such events; and (D) foraging success increasing via slow positive reinforcement (or associative)
learning due to experiencing many events in a row with forgetting happening on a similar timescale following increasing delays
between events without reinforcement. The darker shading in these grey learning reaction norm surfaces represents the more
diminished changes in behaviour in later phenotypic expressions. See main text for details, but note that the particular cases here
were chosen for the purposes of illustration. In real systems, these aspects of learning reaction norms can also be linear, and may
involve more than just two environmental (x-axis) effects.
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individually unique parameters – not only the estimated
intercept at the first exposure to the new circumstance I 0j ,
but also Xij the measured number of prior exposures i per
individual j, and the estimated individual slope or change in
behaviour per repeated exposure I 1j representing individ-
ual-specific habituation.

These types of statistical equations usefully reflect
specific hypotheses regarding the underlying biology.
That is, the parameters that emerge are distillations of
underlying biological processes. As mentioned previously,
the linear versus non-linear nature of habituation is cap-
tured by the slope term, and that term should in some
way be linked to the cognitive mechanisms of information
gathering and storage. Furthermore, the estimated
parameters resulting from fitting these equations are
expected to fit neatly into theoretical evolutionary pro-
cesses. For example, the mean rate of habituation to the
new context for the population β1 will evolve if there is
selection acting upon among-individual (and presumably
among-genotype) variation in this slope. This leads to ques-
tions rarely asked about learning: how large is the among-
individual variation in habituation in natural populations,
how does it arise, and how might selection act on different
levels of habituation? While the possibility that there is
genetic variation in habituation has been investigated (see
Dingemanse et al., 2012a,b), few of the other questions have
been tackled, especially in natural systems. Other non-
genetic sources of individual variation should also exist, such
as the environmental conditions earlier in the organism’s life
(e.g. exposure to predation threats during development in
stickleback fry; Dingemanse et al., 2012a).

Accordingly, we can now assume that our individual subjects
j vary in how often they encountered predators during some
period preceding our study of habituation (e.g. during early
development). We can call this variable X 2j and our former
variable of number of prior exposures to the benign novel
object now becomes X 1ij . If we had measured or manipu-
lated X 2j , a new equation describes our subjects’ responses:

log yij

� �
=β0+I 0j+ β1+I1j

� �
X 1ij +β2X 2j+β12X 1ijX 2j+ eij :

ð3Þ

This expanded equation captures the types of ‘learning’
reaction norm surfaces depicted in Fig. 1D or Fig. 2, plus
any individual phenotypic variation around those planar
shapes, and it can provide a number of insights into the ques-
tion of how learning might evolve. For instance, if variation
in exposure to predators has influenced the responses of our
subjects at the population level, then β2 might explain some
of the variance in individual intercepts. In addition, β12, the
population-level interaction effect between repeated expo-
sures to X 1 and early-life predator exposure, could explain
some of the variance in individual rates of habituation,
depending of course upon individual variation in the values
of X 1 and X 2 experienced.

This latter term (β12X 1ijX 2j ) in Equation 3 is particularly
interesting, given that learning is a form of plasticity, because
it describes nonadditive multidimensional plasticity
(Westneat et al., 2019). It is this interaction between learning
and non-learning x-axes that causes a warped reaction norm
surface (e.g. Figs 1D and 2D), and because in this case early-
life exposure to predators occurred before the study of habit-
uation, this illustrates a case of a developmental effect on the
rate of habituation (see Dingemanse et al., 2010; Stamps &
Groothuis, 2010). For simplicity, we assume a similar
population-wide effect of predator encounters on all individ-
uals, but there could also be individual variation in the
response to X 2. We will skip the full expansion of Equation 3
to include individual (i.e. random) slopes for both X 1 and X 2,
plus their interaction, but for more detail on this see Box 2 in
Westneat et al. (2019). To fit such a model, one would have to
measure the effects of exposure to predators (X 2j ) multiple
times per subject (e.g. during development), quantify
among-individual variation in these responses (I 2j ), and con-
ceivably also measure individual variation in the way prior
exposure to predators affects habituation (I 12j ). Such a model
would thus make it possible to identify specific parameters
relating to individual identity that could be modulating the
developmental effects of perceived predation threat on
habituation.

With sufficient data and additional information on genetic
relatedness, and perhaps also on other traits of interest, exist-
ing quantitative genetics approaches could be used to assess
underlying genetic variation and covariation in all these reac-
tion norm parameters, and perhaps the selection gradients
acting on each of them using multivariate or errors-in-
variables models (see Nussey et al., 2007; Dingemanse,
Araya-Ajoy & Westneat, 2021). In this way, it is possible to
reveal the ecological basis for natural selection acting on
the intercepts and the slopes of learning and non-learning
reaction norms, and the potential for evolutionary change.
We note that recent advances in the statistics of selection
allow empirical assessments (i.e. of optimality models of
learning) by assessing stabilising selection on reaction norm
slopes (see Ponzi et al., 2018; Dingemanse et al., 2021;
Martin & Jaeggi, 2022), which opens up additional possibili-
ties for understanding the ecology of selection on learning.

V. CLASSIFYING DIFFERENT FORMS OF
LEARNING USING REACTION NORMS

The integration of learning into phenotypic plasticity using
the reaction norm framework generates new ideas on the
interplay between learning per se and conventional non-
learning plasticity. For example, learning and other types of
plasticity in response to cumulative experience may lead to
several types of adjustments within conventional non-learning
plasticity reaction norms. Figure 3 shows six different non-
mutually exclusive ways in which ‘learning’ can affect plastic
phenotypic responses with potential adaptive consequences.
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Note that for reasons of graphical clarity Fig. 3 uses two-
dimensional illustrations of how learning might affect linear
non-learning reaction norms, when in reality these would
constitute multidimensional reaction norms with possible
non-linear effects (see Sections II–IV and Equation 3).

(1) Elevation

One impact of learning involves changes to the individual
mean phenotype (i.e. Figure 1C) or, in the case of a plastic phe-
notype, changes to the elevation of the reaction norm in an
additive fashion with no effect on the slope (Fig. 3A). Learning
that changes the reaction norm elevationmight arise via cumu-
lative experience from prior events sufficiently closely spaced
in time (see Fig. 2), because with sufficient environmental tem-
poral autocorrelation those prior experiences provide useful
information regarding an appropriate phenotypic value that
adaptivelymatches the current environment (see SectionVIII).
It is this learning effect on individual mean trait values that has
been explicitly modelled in much of the theoretical literature
on learning [see Feldman & Aoki, 2014 and other papers in
this special issue; McNamara & Leimar, 2020], but in natural
systems wemight expect such learning effects onmean individ-
ual trait values alongside non-learning plasticity. For example,
in passerine birds nestlings beg with greater intensity in
response to increasing levels of food deprivation, but within
broods the smallest nestlings always beg more than the largest
irrespective of food intake rate, and this seems to be due to
their learned experience of having to compete more for
food within the brood rather than any differences in digestive
development, etc. (seeWright et al., 2010a; Wetzel et al., 2020).

(2) Slope

Learning could also involve changes in the slope of non-
learning reaction norms (Fig. 3B), perhaps due to learned
experience of improved pay-offs from modifications in indi-
vidual responsiveness to variation in the environment. This
is the interaction effect between two types of plasticity shown
as a warped reaction norm surface in Fig. 1D. For example,
individuals might be expected to respond less aggressively
when they meet more socially dominant individuals and,
because subordinates tend to meet many more dominant
individuals, subordinates will benefit more from increased
social responsiveness (i.e. by making greater adjustments in
their level of aggression based upon the behaviour of their
opponents), as compared to dominants that can afford to
be more unconditionally aggressive. Accordingly, smaller
and/or more subordinate individuals learn with increasing
social experience that they need to be more socially respon-
sive (e.g. Koolhaas et al., 1999), and this is represented in
Fig. 3B as a non-learning (social) reaction norm that increases
in slope with the cumulative effects of learning based upon
prior experience. In the more complex case of non-linear
reaction norms, then the slope would involve more than just
a single (linear) component, and any additional curvilinear
components might also be modified separately or in concert

by learning, thereby allowing learning to refine not only the
slope but also the ‘shape’ of the reaction norm.
Many organisms might well exhibit a combination of

learned effects on both their reaction norm intercepts and slopes
at the same time, if only because of the natural covariances that
seem to arise between reaction norm elevations and slopes. For
example, young stickleback with contrasting early-life experi-
ences regarding the presence of predators tend to show habitu-
ation reaction norms to a novel environment that ‘fan out’
(a positive elevation–slope covariance; Dingemanse
et al., 2012a). The effect of learning about an increased threat
of predation seems both to increase average levels of activity
(greater elevation) and to reduce rates of habituation to novel
environments (flattening out the negative slope). Therefore,
Fig. 3A,B represent relatively simple scenarios for ease of
understanding, but mathematical and statistical methods exist
to cope with the additional and potentially interesting complex-
ity of most real biological situations (see Section IV).

(3) Environmental estimate error

Thememory of prior environmental experiences could affect
a non-learning reaction norm by reducing the organism’s
uncertainty about current environmental conditions, or indi-
cate more clearly where exactly the organism is on the envi-
ronmental x-axis. This has been the topic of extensive
theoretical and empirical study, mostly concerning adaptive
memory window lengths in the use of past (learnt) informa-
tion when tracking patch qualities in optimal foraging behav-
iour and evolutionarily stable learning rules to assess better
the phenotypes of competitors or potential social partners,
etc. (see Stephens, 1987; Mangel, 1990; Dall, McNamara &
Cuthill, 1999; Eliassen et al., 2007; Stephens et al., 2007;
Westneat et al., 2015; McNamara & Leimar, 2020). If assess-
ment is not too costly, learning in this context can potentially
improve the benefits of plasticity by increasing its precision
(i.e. by reducing the ‘phenotype–environment mismatch’;
Auld, Agrawal & Relyea, 2010), thereby improving the con-
ditions required for the evolution of non-learning plasticity
(see Section VIII). This is represented in Fig. 3C as a progres-
sive reduction in environmental error as a result of learning,
shown as improvements in the match between estimates of
the perceived current environment with the true environment
on the x-axis (i.e. reduced residual variation in the x-axis
dimension around what is assumed to be the optimal reaction
norm). One can imagine a three-dimensional plot of this
effect, akin to Fig. 1D, where an absence of learning leads
to imprecise assessments of the environment and a cloud of
inaccurate phenotypic values surrounding the non-learning
reaction norm where the graph indicates zero prior
exposures; and where with increasing numbers of prior expo-
sures there is a gradual reduction in the size of this cloud
allowing it to resolve into an increasingly precise set of phe-
notypic expressions that cluster more closely around the
reaction norm due to learning. Essentially, information gath-
ered from being repeatedly exposed to a set of cues about the
same environmental conditions can be usefully integrated
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into a more precise single estimate of the current
environmental conditions via some averaging or Bayesian
updating procedure within the evolved learning rule

(e.g. McNamara & Houston, 1987). We explore this topic
in more detail in Section VIII with a model concerning the
evolution of learning, because the accumulation of
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Fig. 3. Conceptual representations of different ways that ‘learning’ can affect phenotypic values in the context of non-learning
reaction norms. For the purposes of illustration, potentially multidimensional reaction norms have been simplified here into two-
dimensional representations of linear non-learning reaction norms (in blue), with dots (in red) denoting instances of phenotypic
expression. The spacing of the reaction norms and dots indicate the expected non-linear changes over time due to learning from
successive prior exposures to the environment allowing the individual to arrive gradually and asymptotically at a new pattern of
phenotypic expression, with both reaction norms and dots becoming progressively darker during this process of learning. Learning
can affect non-learning reaction norm (A) elevations (mean phenotype) and/or (B) slopes (responsiveness). It can also usefully
reduce the degree of error (or residual variation) in instances of phenotypic expression away from optimal reaction norms
(illustrated here with just two sets of orange arrows) in either (C) the x-dimension, as informational memory from experiencing past
environments is used progressively to improve the match between the perceived environmental value on the x-axis and the true value
(see Section VIII), and/or (D) the y-dimension, as skills learnt from prior experiences increase the accuracy or precision of the
appropriate phenotypic expression given the environment. In addition, we can simplistically represent (E) innovation as an
extension of the reaction norm (dashed blue line) in response to novel environmental conditions (in purple) followed by
reinforcement learning (based on pay-offs) to refine the expression of a new optimum phenotypic value, and (F) the use of similar
innovative learning as a first step in a specific example of reinforcement learning of a novel experimentally imposed optimal
reaction norm (grey line or purple dichotomous choice) requiring a series of appropriate learnt behavioural responses via training
to a particular novel contingency (green versus yellow options). See text for further explanation.

Biological Reviews 97 (2022) 1999–2021 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

Learning as a type of plasticity 2009



informational memory providing more accurate estimates
regarding the environment is the other most common type
of learning within the theoretical literature on this topic
[see Lotem & Halpern, 2012; Feldman & Aoki, 2014 and
other papers in this special issue].

(4) Phenotypic precision

Similarly, the reaction norm framework also captures processes
that reduce phenotypic error through skills learning
(or ‘expertise’; see Dukas, 2019), or any other prior experience
that improves environmental canalisation or behavioural stabil-
ity (seeWestneat et al., 2015). In this case, learningmight reduce
the fitness consequences of developmental instability, which has
been considered a cost of plasticity (DeWitt et al., 1998; Auld
et al., 2010) but is arguably better conceived of as an incomplete
benefit from imprecise developmental plasticity (see also
Haaland, Wright & Ratikainen, 2020). In Fig. 3D, such learn-
ing effects are represented as successive improvements in phe-
notypic precision towards the individual reaction norm
(i.e. reducing residual error variation in the y-axis dimension
around what is assumed to be an optimal reaction norm). For
example, in cooperatively breeding birds helpers-at-the-nest of
all ages appear to adjust their level of care in the same
way according to current brood demand [i.e. similar reaction
norm slopes in what is non-learning reversible plasticity
(Wright, 1998;Wright et al., 2010b)], but older helpersmay ben-
efit from the cumulative experience of prior helping, increasing
their skill in finding and gathering appropriate prey items and
more correctly matching their levels of help to the
needs of young in the nest [i.e. learning (Rowley, 1977;
Brown, 1987)]. This too can be visualised as a three-
dimensional plot (as in Fig. 1D) with brood demand as the
non-learning environmental x-axis and level of provisioning
experience as the learning prior exposures x-axis. We
might expect a cloud of imprecise phenotypic expressions
(i.e. deviations around the reaction norm line) in the section of
the plot indicating no prior provisioning experience, which
resolves into a tighter cluster of points closer to the reaction
norm surface with better precision in provisioning effort accord-
ing to brood demand whenever there has been enough prior
experience to allow the acquisition of a sufficient level of skill.

The processes depicted in Fig. 3C,D therefore both reduce
the size of any residual deviations in phenotypic values (i.e. eij
in Equations 1–3; Section IV), but they do so via distinct
mechanisms. Hence, they both contribute to reductions in
maladaptive biological error in terms of instances of pheno-
typic expression that deviate from the optimum reaction
norm (Westneat et al., 2015, 2019). This assumes that such
a reaction norm can be correctly and accurately charac-
terised at the population level, and that any such systematic
changes in the residual variation (eij ) can be quantified appro-
priately in the statistical model (see Westneat et al., 2017).
Both processes may also involve feedback from reinforce-
ment learning based upon improved pay-offs from pheno-
types more closely approaching optimum reaction norm
values, or some other more specific mechanism to improve

accuracy of environmental estimates and/or precision
of phenotypic expression. Although all four processes in
Fig. 3A–D are unlikely to be mutually exclusive in most bio-
logical scenarios (e.g. increases in precision may be accompa-
nied by a directional bias in phenotypic values as well), it is
functionally and operationally useful to define separately
and quantify statistically each of them. This separation allows
us to test properly where and when learning provides adap-
tive improvements in the position and/or shape of individual
multidimensional reaction norms (Fig. 3A,B) and/or in the
progressive reduction of residual error in phenotypic expres-
sion (Fig. 3C,D).

(5) Innovation

The reaction norm framework we advocate here can also
accommodate the many examples of learning in novel
and artificial laboratory environments that comprise
much of learning research in experimental psychology (see
Shettleworth, 2010). These are perhaps best understood initially
in the context of innovation learning, which is defined as the
adaptive use of new behaviours or phenotypic values in novel
contexts (see Reader & Laland, 2003). One of the earliest classic
descriptions of innovation was in wild Japanese macaques
(Macaca fuscata) washing sweet potatoes and floating rice in water
to remove the sand mixed in with these novel supplemented
food types (Kwai, 1965; for a discussion of this and many other
examples, see Reader & Laland, 2003). Innovation trial-and-
error learning (Fig. 3E) can be thought of as initially involving
the expression of some novel or new level of behaviour based
upon applying or extending an existing reaction norm in
response to the same or similar cues present in the novel envi-
ronmental (see Sih, 2013). Innovation success thus depends
upon how easily generalised the original environmental cues
and experiences are in order to be used effectively by the organ-
ism when it finds itself in a particular novel environment with
similar or somewhat modified cues (Shettleworth, 2010; Greg-
gor et al., 2019). This process might also often involve multidi-
mensional reaction norms and a combination of different
environmental elements (e.g. the stickiness of the sand plus the
distance to a water source to wash it off), but for the purposes
of illustration here we are restricting our argument to only
one environmental x-axis. Any extension of existing reaction
norm responses for the purposes of innovationmight well be fol-
lowed by a certain amount of skill-type learning (sensuFig. 3D) to
improve the precision of the phenotype and thus perhaps also
the phenotypic value of the new action (Fig. 3E). Innovation
thus also depends upon how easily animals learn and are able
to produce the appropriate phenotype once they are faced with
a novel environment (see Dukas, 2013), possibly also including
reversal learning (see Greggor et al., 2019) when a completely
differently shaped adaptive reaction norm is required (see
Section V.6 and Fig. 3F). This process usually begins as a result
of such learning based upon cumulative experience by one
innovating individual, but if successful then it may well spread
via social learning and the cultural transmission of appropriate

Biological Reviews 97 (2022) 1999–2021 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

2010 Jonathan Wright and others



behaviours to other individuals in the social group (see
Reader & Laland, 2003).

The process of extending a reaction norm into novel envi-
ronmental space to produce new phenotypes (Fig. 3E) has
been suggested to be a by-product benefit of phenotypic plas-
ticity in general, because it occasionally allows organisms to
produce an appropriate phenotype and cope with environ-
mental conditions outside of the normal range for the species
(Stephens, 1991; Getty, 1996; West-Eberhard, 2003; Gha-
lambor et al., 2007; Dayan et al., 2019). Interestingly, rates
of innovation correlate positively with relative brain size
across species (see Reader & Laland, 2003; Sol et al., 2005;
Morand-Ferron, Sol & Lefebvre, 2007), and the ability to
innovate effectively by quickly disregarding unsuccessful
behavioural options, perhaps without even trying them out,
provides an operational description of what many might gen-
erally consider ‘intelligence’ in human and non-human ani-
mals (see Ghirlanda, Enquist & Lind, 2014). More
anthropomorphic conceptualisations of learning thus focus
almost exclusively on trial-and-error reinforcement learning
as a general process in isolation, analogous to machine learn-
ing and even to natural selection (Watson &
Szathm�ary, 2016; Watson & Thies, 2019). However, ‘learn-
ing’ in biological organisms will involve a much wider array
of processes and effects, and will almost always occur in the
context of non-learning plasticity reaction norms (Fig. 3),
which then provide the ‘prior’ phenotype upon which any
innovative trial-and-error reinforcement learning must be
based.

For empiricists observing attempts at innovation using
trial-and-error assessments of different phenotypes, either
by simply extending different reaction norms (Fig. 3E)
and/or adaptively increasing phenotypic error (i.e. the oppo-
site of the process in Fig. 3D), this can appear as randomly
expressed behavioural responses, especially in novel scenar-
ios with no apparent solution. This results in what have been
termed ‘superstitions’ by experimental psychologists, which
are idiosyncratic behaviours that individuals acquire for a
period of time, such as consistently head bobbing or turning
anticlockwise during each repeated attempt to obtain food in
an experimental set-up (Skinner, 1948). The maintenance of
superstitions over a certain period of time (i.e. in order for the
individual to evaluate them thoroughly) can represent an
adaptive last resort guess if it involves small costs relative to
the potentially large benefits of luckily finding the right
answer. This is because, in a stochastic world with no reliable
cues to indicate the correct behavioural response such super-
stitions are better than simply not changing one’s phenotype
at all or trying completely different phenotypes every time
(Foster & Kokko, 2009; Abbott & Sherratt, 2011).

(6) Learning novel contingencies

The same processes involved in innovation learning are likely
to be incorporated into the initial phases of learning novel
(artificial) contingencies, such as in the experimental proto-
cols used in many studies of learning psychology. Figure 3F

illustrates just one example of how in laboratory learning
experiments animals might first need to be encouraged to
use innovation learning to reproduce suitable (levels of)
behaviours based upon some pre-existing reaction norm
response, such as by pecking at coloured keys instead of sim-
ilarly coloured food items when hungry. In this example, the
environmental x-axis in Fig. 3F could be the key colour (i.e. a
spectrum of red to blue) and the y-axis indicates the beha-
vioural phenotype of peck rate. In a novel operant set-up,
naïve subjects might sometimes obtain food by innovatively
pecking a green-coloured key at a high rate whenever pre-
sent, effectively extending their (blue dashed line) natural
reaction norm of pecking more rapidly for seeds in green
grass compared to low pecking rates on brown-coloured sand
where such food items are fewer and more easily gathered.
Over time, skills learning reinforces the response of fewer
pecks, since fewer are required to gain food rewards when-
ever the animal is presented with a coloured-key contingency
in the operant set-up (red dots in Fig. 3F). Further reinforce-
ment training could then establish the green/yellow distinc-
tion in Fig. 3F – the new (dichotomous purple or linear
grey) experimentally imposed reaction norm – by rewarding
a slightly higher peck rate when a green-coloured key is pre-
sent compared to a yellow-coloured key. Only after achieving
all this can the specific experiment be carried out to assess
individual learning performances on a particular task.

Breaking down the elements of an artificial learning exper-
iment using a reaction norm framework (e.g. Figure 3F) can
thus clarify the number of different stages of training needed,
depending upon the similarities between the task and the nat-
ural environment (and/or previous captive laboratory expe-
riences). It also allows us to appreciate the different processes
involved in learning contingencies in artificial contexts, and
how they relate to the first four effects of learning we describe
in this section (Fig. 3A–D). Identifying these processes may be
crucial because artificial learning experiments are used to
provide much of the information we have concerning learn-
ing mechanisms (see Shettleworth, 2010), and so the various
intended or unintended products of any one of the steps
involved in the learning of artificial contingencies could affect
any conclusions drawn concerning specific learning mecha-
nisms and how they apply to a particular instance of adaptive
learning in a natural ecological context.

VI. STATE-DEPENDENT EFFECTS OF
ACCUMULATED EXPERIENCEONPHENOTYPES

A key element of our framework concerns the carryover of
cumulative effects from one environmental exposure event
to the next within a sequence of individual experiences.
The precise mechanisms of this carryover and what mediates
and maintains any phenotypic change across episodes of
learning (and forgetting) is critical for the expression of learn-
ing reaction norms. Here we can utilise the concept of ‘state’
variables that describe the cumulative (and often non-linear)
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increases or decreases in some adaptively important aspect or
property of an organism, such as informational state, energy
reserves or somatic growth (see Section I). This allows the
adaptive nature of carryover effects resulting from accumu-
lated environmental exposures or prior experiences over
time to be understood using stochastic dynamic state-
dependent models (see Houston & McNamara, 1992, 1999;
Clark & Mangel, 2000). Accordingly, these same state-
dependent modelling approaches have been used to under-
stand the utility of informational states (e.g. the individual’s
current estimate or informational memory regarding a forag-
ing environment, Fig. 3C) by applying the same types of
Bayesian updating routines as in other mechanistic models
of behavioural learning (see Houston & McNamara, 1999;
Clark & Mangel, 2000; Dall & Johnstone, 2002; Dunlap &
Stephens, 2012). Memory therefore represents just one of a
number of different internal neurological, physiological, hor-
monal and anatomical states that mediate the carryover
effects of cumulative environmental experiences and drive
‘learning’ plasticity (as described above) across different
adaptive decision events or time periods in the organism’s
lifetime (see Section VII).

Learning reaction norms describe changes in phenotypic
expression in response to a sequence of cumulative experi-
ences, but part of this process will be captured mid-way
through in the phenotypic value of the individual’s internal
state variable. Therefore, when data are available regarding
state variable value(s), this provides a convenient way to split
the process of flexible phenotypic expression into two sepa-
rate steps to facilitate more detailed investigations into the
mechanisms behind behavioural and physiological plasticity.
The first multidimensional ‘learning’ reaction norm would
plot all of the positive (learning) and negative (forgetting)
cumulative environmental effects on the reversibly plastic
state variable, as in Fig. 2, but with the internal ‘state’ vari-
able on the y-axis as an intermediate phenotypic trait. This
first learning reaction norm thus summarises any cognitive,
physiological or developmental processes affecting the state
variable. A second non-learning reaction norm could then
subsequently place the state variable itself on the x-axis as
an internal environmental variable predicting the phenotypic
trait of interest on the y-axis. This second reaction norm
would therefore capture any state-dependent phenotypic
plasticity in the trait with more direct fitness consequences,
rather like a standard (conditional strategy) reaction norm,
and without all of the complex multidimensional axes and
cumulative environmental effects of the processes involved
in Fig. 2.

Separating the processes by which environments affect the
state variable from those that translate state into trait expres-
sions has conceptual benefits. For example, the various types
and costs of plasticity (DeWitt et al., 1998; Auld et al., 2010)
may differ between these two steps, since reliability of infor-
mational cues and sampling costs will affect the first step
more, but other production costs of plasticity (i.e. those
involved in changing the absolute value of expressed trait in
that time period and context) may to a greater extent affect

the second step. This decomposition of phenotypic expres-
sion into two successive steps is typically more feasible for
plasticities involving physiological and morphological states,
which can be directly measured in a range of organisms.
Assessments of informational states in cognitive studies are
likely to be limited mostly to humans, where the reporting
of memories or knowledge is somewhat easier. Either way,
there are useful parallels here between an individual’s accu-
mulated informational state in the cognitive processes behind
learning and forgetting (sensu Dall & Johnstone, 2002;
Dunlap & Stephens, 2012) and the array of additional phys-
iological and anatomical states that can reflect the cumula-
tive phenotypic effects of development, acclimation and
acquisition on the individual as a result of successive environ-
mental experiences. Exploiting these similarities should allow
the same theoretical state-dependent modelling techniques
and detailed empirical explorations of the processes and
quantitative genetics to be used to understand variation
within and among individuals in learning plasticity and other
analogous biological phenomena.

VII. STUDYING LEARNING VERSUS NON-
LEARNING PLASTICITY

Given the arguments above, it would seem crucial that
researchers are able to decide whether they are studying
learning (or other analogous biological phenomena, such as
in ‘developmental’ or ‘organisational’ plasticity in endocri-
nology; Nelson & Kriegsfeld, 2017) versus other types of
non-learning phenotypic plasticity (i.e. ‘reversible’, ‘contex-
tual’ or ‘activational’ plasticity – see Section II). Two practi-
cal issues make this important. First, as noted above
(Sections II–IV), learning reaction norms would necessarily
have an axis capturing the cumulative sequence of prior envi-
ronmental exposures with the intercept at first exposure,
whereas non-learning reaction norms are normally usefully
centred on the mean environmental value (or some other
suitable metric of centrality) given the assumption that these
environmental experiences have independent effects with no
obvious temporal ordering. Second, learning versus non-
learning reaction norms are likely to have distinctly different
underlying processes that may suggest different forms of non-
linearity, such as the exponential function often expected in
‘learning’ reaction norms as a result of Bayesian updating
and similar learning rules (see Sections II and IV). A key issue
in any theoretical or empirical study of phenotypic plasticity
is therefore how to decide, either implicitly or explicitly,
exactly what to place on the environmental x-axes of any
reaction norm, and whether and how to centre x-axes. This
will not only define the number and type of explanatory vari-
ables in the statistical model, but also the type and duration of
the separate phenotypic expressions for each experience or
exposure to the environment.
There is an extensive literature on phenotypic plasticity

concerned with the types of environmental variables used in
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reaction norms, given what we are able to measure empiri-
cally or, more interestingly, the environmental cues that
organisms themselves are able to perceive either externally
or internally, and their different scales and levels of precision
(see Moran, 1992; Getty, 1996; Botero et al., 2015; Chevin &
Lande, 2015). Adaptive phenotypic plasticity in both
learning and non-learning contexts necessarily involves selec-
tion for the successful use of perceptual cues that correlate
reliably with the environmental variable(s) of importance
(Levins, 1963; Lively, 1986; McNamara & Houston, 2009;
Fawcett et al., 2012). For example, birds use a variety of cues
from day length to temperature and food availability to
assess when in the year to start breeding (Brommer,
Rattiste & Wilson, 2008; Dawson, 2008; Simmonds,
Cole & Sheldon, 2019). Errors made by the organism in such
difficult environmental assessments (see Fig. 3C), or imper-
fect correlations between the cues used and the actual envi-
ronmental conditions, are important sources of maladaptive
residual phenotypic variation from optimum reaction norm
values, both within and between individuals (see Westneat
et al., 2015, 2017).

By contrast, there has been less explicit discussion about
the timescales over which such environmental cues are per-
ceived and utilised in phenotypic plasticity, for example
regarding more or less permanent environmental effects
and the adaptive nature of memory. Crucially, these time-
scales are at the heart of an important operational distinction
we wish to make here between non-learning phenotypic plas-
ticity in response to current environmental conditions versus
learning plasticity in response, at least in part, to past infor-
mation gathered during prior experiences and stored in some
internal ‘state’ variable. From an empirical perspective, it is
clear that all phenotypic plasticity takes some sort of mini-
mum duration per ‘event’. This is the time that is required
for the perception of the informational cue, the cognitive/
physiological processing of that information, and its applica-
tion in the decision to change the level or type of phenotypic
expression. Indeed, theoretical treatments of adaptive time-
scales of phenotypic plasticity necessarily divide time up into
discrete decision ‘events’, which allows us to distinguish
between environments perceived and phenotypes expressed
in the current ‘time event’ versus in past (and future) time
events (see Botero et al., 2015; Tufto, 2015). Logically, in
any study the chosen duration of each time event should be
determined by the number of identifiably separate decisions
involving the type of plasticity of interest that the organism
makes relative to its lifespan or some easily defined subset
of its lifespan (e.g. a breeding season or life stage). In order
to explore the adaptive nature of learning (and forgetting)
and other analogous biological phenomena, we need to dis-
tinguish between non-learning phenotypic plasticity occur-
ring within the current time event (of a particular length)
versus learning plasticity that includes the additional cumula-
tive effects of past events on the phenotypic value expressed.

Many studies fail to make a clear distinction regarding the
separation of different decision events in time, and this has
resulted in some confusion between the terms ‘plasticity’

and ‘learning’, with them often being used almost inter-
changeably in the behavioural flexibility literature. The evo-
lution of learning then tends to be conflated with the adaptive
advantage of the plasticity itself, and so we rarely see specific
theoretical or empirical comparisons of the adaptive value of
learning (and the additional cognitive costs involved, etc.)
over and above normal non-learning plasticity. A good
example of this is in game-theoretical modelling of producer
versus scrounger behaviour in social foraging, described above
(see Section III) as a possible empirical example of a pheno-
type with both learning and non-learning reaction norm x-
axes (as illustrated by Fig. 1D). In an otherwise quite sophis-
ticated theoretical exploration of the possible frequency-
dependent co-existence of fixed versus conditional
(i.e. plastic) strategies, it is not yet clear under what conditions
producer–scrounger conditional strategies should evolve
learning plasticity or non-learning plasticity, or both (see
Hamblin & Giraldeau, 2009; Dubois et al., 2010; Katsnelson
et al., 2012; Afshar & Giraldeau, 2014; Lee et al., 2016;
Aplin & Morand-Ferron, 2017). The modelling approach
we take in Section VIII might therefore suggest an avenue
for future research on this issue.

It is therefore an important decision on the part of the
researcher whether they want to explore phenotypic plastic-
ity in response to just the current environmental conditions,
or if a more detailed investigative framework is warranted
involving plasticity based upon prior exposures and cumula-
tive experiences from past time events (as illustrated in
Figs 1–3). This decision involves deciding the most relevant
length of a notional ‘time event’, given the particular study
system and research question(s) involved. The example given
above of birds using various cues to adjust timing of breeding
occurs over a time period encompassing many changing
environmental conditions, and so likely involves the use of
many possible cumulative experiences, such as changes
in day length and phenological changes in food availability
(Brommer et al., 2008; Dawson, 2008; Simmonds et al.,
2019). Most studies in this area take the expedient short cut
of considering each breeding season as a single ‘time event’
and all cues that occur within it as ‘current’ to the phenotypic
expression of laying date, thereby allowing them to use sim-
pler non-learning reaction norms. We suggest there may be
benefits to a more detailed analysis concerning exactly how
a particular series of cumulative physical (and social) environ-
mental effects experienced by each individual since arriving
on the breeding grounds combine (via some Bayesian updat-
ing or progressive learning rule) to influence individual laying
dates in that season. This would require a more complex phe-
notypic equation involving an x-axis of ordered prior experi-
ences, with multidimensional reaction norms involving
‘learning’ (see Sections III and IV). Similarly, second-to-
second foraging decisions often involve some form of individ-
ual (or socially obtained) estimate of prey availability in the
current ‘time event’, such as the expected proportion of suc-
cessful prey captures within a visit to a foraging patch, and
thus optimal foraging studies of sampling effort do not need
to include explicit learning processes (see Stephens
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et al., 2007; Eliassen et al., 2009; Dall, 2010). However, we
could divide the current patch visit into further discrete time
divisions and consider each peck or attempted prey capture
as a ‘time event’. Individual estimates of prey availability
would thus be treated as the outcome of an accumulation
of remembered experiences from a particular series of suc-
cesses and (the delays between them as) failures, again sum-
marised by fitting an appropriate Bayesian updating or
similar learning rule mechanism (see Fig. 2D). In each case,
a more detailed ‘learning’ plasticity approach has the poten-
tial to reveal more complex reaction norms than previously
considered, which may or may not be important for our
understanding. The question is always: what timescale of dis-
crete ‘events’ is most effective in capturing the research
issue(s) of interest in any study of phenotypic plasticity, and
given the appropriate timescale then are there any environ-
mental effects on the phenotype that accumulate across time
events, thereby necessitating a ‘learning’ reaction norm
approach as detailed here?

VIII. MODELLING THE EVOLUTION OF
LEARNING VERSUSNON-LEARNING PLASTICITY

We now present an example to illustrate how one might
study the adaptive value of non-learning plasticity versus plas-
ticity that incorporates learning and memory. We use the
case of a non-learning reaction norm in a varying environ-
ment where cues concerning current environmental condi-
tions are not fully reliable (as shown in Fig. 3C). When
current cues are only weakly correlated with the fitness-
affecting aspect of the environment, phenotypes produced
by plastic genotypes may be mismatched to the environment,
reducing the benefits of plasticity. Two alternative strategies
for improving the effectiveness and thus fitness benefits of
plasticity are possible. Primarily, the organism could invest
in (i) ‘sampling’ effort, defined here as information gathering
to improve the accuracy of any cue or estimate of environ-
mental conditions only during the current ‘time event’ (sensu
Stephens, 1987; DeWitt et al., 1998; Dall et al., 1999; Ste-
phens et al., 2007; Eliassen et al., 2007, 2009; Dall, 2010).
Alternatively, the organism could also invest in (ii) retention
and use of an informational memory factor (sensu
Harley, 1981) regarding environmental cues gathered during
past time events. Therefore, ‘sampling’ is the label we use in
this instance (as others have done) for all the effort in informa-
tion gathering during the current time event (e.g. a visit to a
foraging patch), as opposed to ‘learning’ and use of ‘mem-
ory’ for information retained from sampling during previous
time events (e.g. previous visits to the same patch).

Diminishing fitness returns from the accuracy achieved
from any information gathering effort (see Hansen, Carter &
Pélabon, 2006) means that whenever it is employed then (i)
sampling will always result in somewhat imperfect informa-
tion. We are therefore interested in knowing when it might
be worth also employing some degree of (ii) learning and

informational memory from prior experiences to improve
upon such accuracy adaptively, and how this might then in
turn also affect the optimal degree of sampling effort and
plasticity. Organisms can thus invest more or less time, atten-
tion, effort and/or resources into either one of these two
options of sampling (i.e. gathering more detailed current
information) and learning (i.e. greater use of a memory factor
of previously sampled information). However, both come at
the cost of such cognitive investment (perception and infor-
mation processing; Shettleworth, 2010) and/or of other
fitness-enhancing activities (i.e. lost opportunity costs; Ste-
phens et al., 2007). So, our model asks the question: when
does it pay to evolve learning (and memory) across decision
events, as opposed to improving sampling information for
plasticity within the current decision event?
Full details of the model are given as online supporting

information in Appendix S1, the R code for the model in
Appendix S2 and a flow chart of the procedure in Fig. 4,
but briefly this individual-based simulation model tracks a
population of haploid, asexual individuals in a variable envi-
ronment. Over many generations, we examine the joint evo-
lution of three unlinked genes coding for (a) plasticity (the
reaction norm slope), (b) a learning memory factor (the
weight placed on stored information, using a Rescorla–
Wagner rule with exponentially diminishing importance
given to more distant past events; see Staddon, 2016), and
(c) sampling effort (perceptual accuracy invested in the cur-
rent environmental cue), each with a small mutation proba-
bility per generation. The simulations vary in the level of
(1) environmental temporal autocorrelation and (2) the reli-
ability of the environmental cue. At each time step or deci-
sion event, individuals adjust their phenotype to match the
current environment, depending upon their genes for plastic-
ity, the memory factor and sampling effort (see Fig. 4 for a
simplified diagram). We assume diminishing returns on sam-
pling (Fig. S1), and for simplicity linearly increasing costs of
greater sampling, memory and reaction norm slopes
(although qualitatively similar results were obtained using
curvilinear costs). Individual fitness (relative lifetime repro-
ductive success) here relates to how well, on average, the indi-
vidual’s phenotype matched the environmental conditions
across time steps during their lifetime. In Fig. 5 we describe
the conditions promoting the evolution of learning when
using exponentially less memory information from each suc-
cessive step back in time, as illustrated in the left-centred
learning reaction norm ‘number of prior exposures’ x-axes
in Figs 1 and 2.
As Fig. 5 shows, plasticity only evolves (i.e. reaction norm

slope gp >0, Fig. 5A) if the environmental cues are sufficiently
reliable (see Botero et al., 2015; Tufto, 2015). Sampling effort
gs (Fig. 5C) closely tracks the pattern in reaction norm slopes
(Fig. 5A), because sampling provides the informational cues
necessary for plasticity [i.e. it adaptively reduces the estima-
tion error in the x-axis dimension of the reaction norm suffi-
ciently to allow adaptive plasticity to evolve (see Hansen
et al., 2006; Westneat et al., 2019)]. As with other costs of plas-
ticity, this effectively means that it is the costs of sampling
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(DeWitt et al., 1998) that limit the adaptive upper limit of
reaction norm slopes in most cases to less than their maximal
value of 1 (compare the upper versus lower panels, low versus

high sampling costs, in Fig. 5A). However, unlike the reaction
norm slopes, sampling effort drops away again at higher
values of environmental cue reliability (upper panel
Fig. 5C), because less investment in sampling is needed to
achieve the same levels of informational accuracy concerning
current environmental conditions.

As might be expected, learning and use of the memory fac-
tor gm only evolves when there are high levels of environmen-
tal temporal autocorrelation (Fig. 5B). Notably, the highest
values of the memory factor evolve at lower levels of environ-
mental cue reliability, as compared with the peak in
evolution of sampling effort. At intermediate cue reliabilities
(e.g. β = 0.5), plasticity can only evolve when the
temporal autocorrelation in environments is sufficiently high
(i.e. β > 0.5), because it is this that allows learning to evolve

and provide the reliable information needed for plasticity to
evolve (Fig. 5A). This suggests that memory of prior environ-
mental conditions allows greater levels of plasticity
(i.e. steeper reaction norms slopes) to be adaptive when cues
concerning current environmental conditions are less reliable
and sampling itself is too costly (compare upper versus lower
panels Fig. 5A,B). An example of this might be birds that face
increasingly unpredictable weather as winter approaches
only being able to make adaptive daily adjustments in their
fat stores by using memories of weather conditions the day
before as a guide because this provides the only sufficiently
accurate predictor of current daily temperature variation
(Ratikainen & Wright, 2013).

A more complete example of such phenomena is provided
by the effects of temporal autocorrelations in brood demand
on parental provisioning effort in birds. Parents often use
information going back in time up to two previous nest visits
in order to adjust their level of nestling care more accurately

Fig. 4. Flowchart of the individual-based simulation model procedure for phenotypic plasticity. The individual’s current perception
of its environment xt (grey thought-bubble) depends upon both its memory of past cues (left path) and the information it sampled
during the current time step Cuet (right path), and their relative weight (gm and 1–gm respectively). The phenotype yt is then
plastically adjusted towards a match with the current perceived environment. See Appendix S1 for more details. Haploid bird
illustration: Wikimedia commons.
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(Westneat et al., 2017), presumably because more accurate
lengthy (sampling) assessments of brood demand during just
one extended visit are too costly for both parents and nes-
tlings. Interestingly, provisioning by additional helpers-at-
the-nest in cooperative groups decreases the temporal auto-
correlations in brood demand experienced by individuals
over successive visits to the nest, resulting in only begging
experienced during the very last visit being used to adjust
provisioning effort in these systems (Wright et al., 2010b). This
lack of temporal autocorrelation in brood need in coopera-
tive breeders and the lower reliability of remembered infor-
mation concerning prior begging events also causes a
greater number of last-minute adjustments to current brood
begging upon arrival back at the nest in terms of the amount
of food in the bill that is actually then fed to the nestlings
(Wright, 1997; McDonald, Kazem & Wright, 2007).

The model presented here provides a general example of
the value of explicit definitions regarding ‘time steps’ and
‘decision events’ when distinguishing non-learning plasticity
(the use of sampling) from learning plasticity (the additional
use of a memory factor) – see Section VII. More importantly,

it shows how temporal autocorrelations in the environment
are a key requirement for the adaptive evolution of any
type of learning effect within phenotypic plasticity. This
requirement for environmental temporal autocorrelation
in order for learning to evolve, along with recent models
showing the evolution of plasticity only in the context of
variable and predictable-enough environments (see
Botero et al., 2015; Tufto, 2015), would appear to resolve
earlier debates concerning whether more or less variable
environmental regimes promote the evolution of learning
(see Stephens, 1991, 1993; Papaj, 1994; Kerr &
Feldman, 2003). This is supported in an elegant series of
selection experiments on oviposition decisions in Drosophila

(Dunlap & Stephens, 2009), which demonstrate that evolu-
tion of learning depends upon reliable-enough cues in a
sufficiently temporally autocorrelated environment, simi-
lar to our results in Fig. 5. Together, environmental
predictability via reliable cues and sufficient temporal auto-
correlation in environmental variation are therefore
expected to determine the conditions for the adaptive evo-
lution of learning and analogous biological phenomena.
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Fig. 5. Individual-based simulation model results, showing evolved genetic values for: (A) plasticity or the slope of the reaction norm
gp (gp = 1 maximises phenotype–environment matching); (B) investment in learning in terms of a memory factor gm for the use of
knowledge regarding environmental conditions during previous decision events; and (C) sampling effort during the current
decision or time event, gs. Results are given according to variation in the reliability of environmental cues β (i.e. how correlated
they are with the fitness-impacting environmental factor), and how temporally autocorrelated the environmental factor itself is
from one decision event to the next, α. Simulations involved a population of 200 individuals with 50 decision events or time steps
per lifetime. Results are shown after 1000 generations averaged across 20 replicates per grid square. In the top panel in each case,
the cost of plasticity = 0.05 per unit of reaction norm slope; cost of memory = 0.05 times the proportional use of the memory
factor; and cost of sampling = 0.05 per unit sampling effort. In the bottom panel, the costs of plasticity and memory are the same,
but with an increased cost of sampling = 0.2. See main text for explanation and Appendix S1 for more details on the model.
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The evolution of ‘learning’ could also be usefully modelled
in the context of the other types of modifications to non-
learning plasticity reaction norms, as described in Section V.
So, although in this model we only explore the adaptive value
of a multidimensional reaction norm that includes prior
experience versus a unidimensional norm that includes only
sampling of the environmental x-axis (i.e. Figure 3C), the
technical approach taken should be illustrative of the ways
that other such models could be generated (and even empir-
ical assessments made) for learning adjustments of reaction
norm elevations, slopes and phenotypic precision in plasticity
(Fig. 3A–D). It is also important to remember that any inter-
action between learning and non-learning reaction norms
has the potential to work in both directions. Hence, non-
learning plasticity can equally affect the elevations, slopes,
accuracies and precisions involved in learning reaction
norms. For example, following the discussion in Section IV,
plastic responses in stickleback fry to variation in the threat
of predation influences individual rates of habituation
(Dingemanse et al., 2012a). More complex extensions to these
models could also explicitly explore the evolution of multidi-
mensional learning reaction norms by including more than
one temporally ordered x-axis, allowing the evolution of var-
ious combinations of positive ‘learning’ effects due to cumu-
lative recent experiences versus negative ‘forgetting’ effects
due to time delays between those experiences, as illustrated
in Fig. 2. The advantage of such models over previous studies
comparing the relative performance of specifically chosen
learning rules is that, given sufficiently flexible mathematical
representations, the optimum reaction norm in each case
would be allowed to evolve freely to a set of genuine evolu-
tionarily stable values (for a useful discussion of this point,
see Fawcett et al., 2012). In this way, it becomes possible to
explore systematically exactly why different adaptive con-
texts result in contrasting shapes of learning reaction norms
(as in Fig. 2), and whether these can all be described by simple
changes in key parameter values in a general learning rule or
whether specifically different learning rule equations are
needed for very different biological contexts. Indeed, as with
the model results presented here (Fig. 5), one major goal of
such theoretical explorations would be to identify the condi-
tions under which no learning evolves.

Additional modelling approaches can also help
researchers explore the full range of effects of environmen-
tal cue predictability and temporal autocorrelation on the
evolution of learning (and other analogous biological phe-
nomena) across successive decision events within a lifetime.
As argued above (Section VI), state-dependent stochastic
dynamic programming would appear to be the most appro-
priate method, since it has already been used in the context
of sampling and learning in foraging (Houston &
McNamara, 1999; Clark & Mangel, 2000; Dall &
Johnstone, 2002; Dunlap & Stephens, 2012). Such models
can usefully integrate optimal learning rules with plasticity
evolving under more or less temporally autocorrelated and
stochastic or uncertain environmental conditions, thereby
testing the full range of adaptive possibilities for learning

and non-learning reaction norms, as well as their perfor-
mance under different levels of environmental predictabil-
ity versus stochasticity. We therefore already appear to have
the theoretical tools available to assess critically and under-
stand learning and memory and other analogous biological
phenomena in phenotypic plasticity from a reaction norm
perspective. This approach could also be used to assess for-
mally the role of plasticity and especially learning in ensur-
ing population viability in changing environments due to
rapid anthropogenic change (see Greggor et al., 2019).

IX. CONCLUSIONS

(1) Learning (and forgetting) are forms of phenotypic plastic-
ity that involve the influences of cumulative prior
experience(s) of an environmental cue on the value of a trait.
By utilising reaction norms with an environmental axis that
captures the sequence of environmental exposures (and pos-
sibly their timing), learning along with other similar biologi-
cal phenomena (e.g. development, acquisition, acclimation)
can thus be suitably accommodated within existing theoreti-
cal and empirical approaches to phenotypic plasticity, with
implications for our understanding of the evolutionary ecol-
ogy of learning and of phenotypic plasticity more generally.
(2) A reaction norm approach provides direct links with sta-
tistical methods that suitably capture the structure of data
collected on labile phenotypes, and the parameters that feed
into evolutionary analyses, and thus with biological hypothe-
ses regarding phenotypic plasticity. In the case of learning
(and analogous biological phenomena), the reaction norm
approach is modified by defining environmental x-axes that
represent an individual’s cumulative sequence of environ-
mental exposures or experiences. Doing so clarifies ongoing
methodological issues within wider studies of phenotypic
plasticity, such as non-linear and multidimensional reaction
norms, and the consequences of locating intercepts along
such environmental x-axes. Moreover, integrating learning
within the broader framework of phenotypic plasticity pro-
vides a robust theoretical and conceptual framework for
understanding the diversity of forms of learning and how
learning per se may interact with conventional types of non-
learning plasticity.
(3) Learning reaction norms based upon cumulative prior
experience are conceptually familiar as habituation and learn-
ing curves in psychology, and as the outcome of learning rules
in evolutionary models of learning. However, a reaction norm
framework allows us to generate new hypotheses about how
cumulative experience interacts with conventional plasticity.
Prior experience can alter (a) the mean phenotype [elevation]
and (b) responsiveness [slope] to another environmental factor,
or could reduce error in either (c) environmental estimates [via
informational memory] or (d) consistency in phenotypic preci-
sion [via skill acquisition]. Our approach can also encompass
(e) innovation and (f ) learning of novel contingencies in artifi-
cial (laboratory) settings, generating new insights into studies
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of learning mechanisms in captivity and how they might relate
to adaptive phenotypic plasticity in an ecological context.
(4) An important research question is whether or not learning
or analogous biological processes are involved in a particular
example of phenotypic plasticity. Answering this requires the
use of a suitable definition for separate time (or decision)
‘events’ in any particular example of phenotypic plasticity
under study, as well as the potential for state variables that
allow organisms to track variation in temporally autocorre-
lated environments.
(5) Our individual-based simulation model demonstrates
that memory state concerning previous environmental con-
ditions may be more effective at promoting the evolution
of plasticity than additional investment in sampling informa-
tion about the current environment, favouring the evolution
of multidimensional plasticity involving past experience and
current environmental conditions. Many natural environ-
ments are temporally autocorrelated, and so ‘learning’
(in its most general sense) may often represent an overlooked
component of phenotypic plasticity in many cases where
studies failed to distinguish between learning versus non-
learning reaction norms.
(6) Opportunities exist to apply this reaction norm approach
to the evolution of ‘learning’ across a wide array of fields and
natural ecological contexts, and to connect these with
laboratory studies concerning learning mechanisms and
cognition. This would also allow us to test formally the beha-
vioural gambit (the assumption that psychological mecha-
nisms do not constrain the expression of adaptive
behaviour; Fawcett et al., 2012) as it pertains to learning as
plasticity, because it has been suggested that there are con-
straints on the evolution of different learning mechanisms
due to their utilisation in common cognitive functions
(Lotem, 2013). Such constraints would then need to be fac-
tored into any reaction norm approach to learning.
Therefore, our understanding of the evolution of some of
the more complex and interesting forms of plasticity may
be advanced more rapidly and effectively by applying a
learning reaction norm approach.
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Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. (2010). Behavioural
reaction norms: animal personality meets individual plasticity. Trends in Ecology and
Evolution 25, 81–89.

Dingemanse, N. J.&Wolf,M. (2013). Between-individual differences in behavioural
plasticity: causes and consequences. Animal Behaviour 85, 1031–1039.

Dubois, F., Morand-Ferron, J. & Giraldeau, L.-A. (2010). Learning in a game
context: strategy choice by some keeps learning from evolving in others. Proceedings
of the Royal Society London B 277, 3609–3616.

Dukas, R. (1998). Evolutionary ecology of learning. In Cognitive Ecology (ed. R. DUKAS),
pp. 129–174. University of Chicago Press, Chicago.

Dukas, R. (2004). Evolutionary biology of animal cognition. Annual Review of Ecology,

Evolution, and Systematics 35, 347–374.
Dukas, R. (2013). Effects of learning on evolution: robustness, innovation and

speciation. Animal Behaviour 85, 1023–1030.
Dukas, R. (2017). Cognitive innovations and the evolutionary biology of expertise.

Philosophical Transactions of the Royal Society London B 372, 20160427.
Dukas, R. (2019). Animal expertise: mechanisms, ecology and evolution. Animal

Behaviour 147, 199–210.
Dukas, R., Clark, C. W. & Abbott, K. (2006). Courtship strategies of male insects:

when is learning advantageous? Animal Behaviour 72, 1395–1404.
Dunlap, A. S., Chen, B. B., Bednekoff, P. A., Greene, T. G. & Balda, R. P.

(2006). A state-dependent sex difference in spatial memory in pinyon jays,
Gynorhinus cyanocephalus: mated females forget as predicted by natural history. Animal
Behaviour 72, 401–411.

Dunlap, A. S. & Stephens, D. W. (2009). Components of change in the evolution of
learning and unlearned preferences. Proceedings of the Royal Society London B 267, 3201–
3208.

Dunlap, A. S.& Stephens, D. W. (2012). Tracking a changing environment: optimal
sampling, adaptive memory and overnight effects. Behavioural Processes 89, 86–94.

Durisko, Z.&Dukas, R. (2013). Effects of early-life experiences on learning ability in
fruit flies. Ethology 119, 1067–1076.

Eliassen, S., Jorgensen, C., Mangel, M. & Giske, J. (2007). Exploration or
exploitation: life expectancy changes the value of learning in foraging strategies.
Oikos 116, 513–523.

Eliassen, S., Jørgensen, C., Mangel, M. & Giske, J. (2009). Quantifying the
adaptive value of learning in foraging behaviour. American Naturalist 174, 478–489.

Ensminger, A. L. & Westneat, D. F. (2012). Individual and sex differences in
habituation and neophobia in house sparrows (Passer domesticus). Ethology 118,
1085–1095.

Fawcett, T. W.,Hamblin, S. &Giraldeau, L.-A. (2012). Exposing the behavioral
gambit: the evolution of learning and decision rules. Behavioral Ecology 24, 2–11.

Feldman, M. W. & Aoki, K. (2014). Preface to the theoretical population biology
special issue on learning. Theoretical Population Biology 91, 1–2.

Flajnik, M. F.&Kasahara,M. (2010). Origin and evolution of the adaptive immune
system: genetic events and selective pressures. Nature Reviews Genetics 11, 47–59.

Foster, K. R. & Kokko, H. (2009). The evolution of superstitious and superstitious-
like behaviour. Proceedings of the Royal Society London B 276, 31–37.

Gavrilets, S. & Scheiner, S. M. (1993). The genetics of phenotypic plasticity.
V. Evolution of reaction norm shape. Journal of Evolutionary Biology 6, 31–48.

Getty, T. (1996). The maintenance of phenotypic plasticity as a signal detection
problem. American Naturalist 148, 378–385.

Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. (2007).
Adaptive versus non-adaptive phenotypic plasticity and the potential for
contemporary adaptation in new environments. Functional Ecology 21, 394–407.

Ghirlanda, S., Enquist, M. & Lind, J. (2014). Coevolution of intelligence,
behavioral repertoire, and lifespan. Theoretical Population Biology 91, 44–49.

Grafen, A. (1984). Natural selection, kin selection and group selection. In Behavioural

Ecology: An Evolutionary Approach, Second Edition (eds J. R. KREBS and N. B.
DAVIES), pp. 62–84. Blackwell Scientific, Oxford.

Greggor, A. L., Trimmer, P. C., Barrett, B. J. & Sih, A. (2019). Challenges of
learning to escape evolutionary traps. Frontiers in Ecology and Evolution 7, 408.

Griffin, A. S.,Guillette, L. M. &Healy, S. D. (2015). Cognition and personality:
an analysis of an emerging field. Trends in Ecology and Evolution 30, 207–214.

Gustavson, C. R. (1977). Comparative and field aspects of learned food aversions. In
Learning Mechanisms in Food Selection (eds L. M. BARKER, M. R. BEST and M. DOMJAN).
Baylor University Press, Waco.

Haaland, T. R.,Wright, J.&Ratikainen, I. I. (2020). Generalists versus specialists
in fluctuating environments: a bet-hedging perspective. Oikos 129, 879–890.

Hamblin, S. & Giraldeau, L.-A. (2009). Finding the evolutionarily stable learning
rule for frequency-dependent foraging. Animal Behaviour 78, 1343–1350.
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