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Rifampicin is a first-line anti-tuberculosis drug. However, in August 2020, the presence of
1-methyl-4-nitrosopiperazine (MNP), a nitrosamine impurity, was detected by the United
Stated Food and Drug Administration (US FDA) in rifampicin capsules. Consequently, the
development of efficient methods for the detection of MNP is an important objective. In this
study, the MNP present in rifampicin capsules was detected using LC-MS/MS. A total of
27 batches from nine manufacturers in the Chinese market were tested, with MNP
(0.33–2.36 ppm) being detected in all samples at levels exceeding the maximum
acceptable intake limit of 0.16 ppm initially set by the FDA. However, after considering
the associated benefits and risks, the FDA-approved limit was revised to 5 ppm; hence, all
the samples examined herein exhibited MNP levels well below the required limit.
Furthermore, the results of forced degradation experiments suggest that MNP is
formed by the thermal degradation of rifampicin.
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INTRODUCTION

Genotoxic impurities (GTIs), also referred to as mutagenic impurities, are generally identified using
the Salmonella typhimurium reverse mutation assay (the Ames test). These impurities are often
electrophiles that react with genetic material, resulting in direct or indirect damage to cellular DNA,
including the insertion and modification of covalent bonds during DNA alkylation, chromosome
breakage, DNA recombination, and DNA replication; this leads to gene mutation and even the onset
of cancer (He et al., 2021; Tuesuwan and Vongsutilers, 2021). Compared to pure drugs, the
administration of even very small quantities of drugs that contain genotoxic impurities can
severely harm patients, especially those who require long-term medication. As such, these drugs
must be strictly controlled, with the regulations for genotoxic impurities becoming more
encompassing over the past few years; hence, the requirements of drug-regulatory agencies in
various countries have become more stringent in relation to genotoxic impurities. In the absence of
adequate controls, genotoxic impurities in drugs pose significant clinical risks and compromise
patient safety (Committee for Medicinal Products for Human Use, (CHMP), 2006; Müller et al.,
2006; Reddy et al., 2015).

N-Nitrosodimethylamine (NDMA), a genotoxic impurity, was detected in valsartan in June 2018,
while metformin, sartans, ranitidine, and other drugs were later also found to contain genotoxic
nitrosamine impurities. Drug contamination by nitrosamine impurities has therefore garnered
international attention as a serious drug safety issue (Nowakowska and Pikul, 2012; U.S. Food and
Drug Administration, 2019; The European Medicines Agency (EMA), 2020). The International
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Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICH) M7 guideline clearly
states that aflatoxins, N-nitrosamines, and alkyl-azo
compounds are special highly carcinogenic genotoxic
impurities; hence, they are grouped together as a cohort of
concern (CoC) (ICH, 2020).

Quality control requires impurity trace determination at ppm
levels, which can only be addressed by highly sensitive
analytical methodologies that pose tremendous challenges to
analytical chemists. Liquid chromatography–tandem mass
spectrometry has been widely explored for the analysis of
genotoxic trace impurities, with such techniques including
LC-HRMS and LC-MS/MS (Elder et al., 2008; Nagadeep
et al., 2016). The removal of GTIs from (active
pharmaceutical ingredients) APIs is of particular
importance for the pharmaceutical industry and in the
context of API safety assessment. Several processes have
therefore been assessed to address this problem, including
adequate chemical process design, solid phase extraction,
preparative column chromatography, recrystallization and
phase exchanges, and fractional distillation (Szekely et al.,
2012; Kecili et al., 2013; Schülé et al., 2014).

Rifampicin is a first-line anti-tuberculosis drug, and its
structure is shown in Figure 1 (Sensi, 1983). In August 2020,
the rifampicin manufactured by Sanofi–Aventis was found by the
United Stated Food and Drug Administration (US FDA) to be
contaminated with 1-methyl-4-nitrosopiperazine (MNP,
Figure 1), a genotoxic nitrosamine impurity. Previously, the
FDA had set an acceptable upper limit of 0.16 ppm for the
MNP present in rifampicin. However, after considering the
benefits and risks of rifampicin for tuberculosis patients, the
FDA has temporarily allowed rifampicin containing MNP at
levels <5 ppm to be distributed (U.S. Food and Drug
Administration, 2020).

Although the FDA has previously published an LC-ESI-HRMS
method for the determination of this contaminant, no LC-MS/
MS method has been reported. In addition, this FDA method has
been reported to adopt a one-point calibration approach, and so
led to an overestimation (Wohlfart et al., 2015). Furthermore, we
note that the LC-ESI-HRMS and LC-MS/MS techniques can
complement one another. Thus, to provide an improved
understanding of the contents of relevant products in China
and to provide technical support for future regulatory actions, we

herein report the development of an HPLC-MS/MS-based
method for the detection of MNP in rifampicin capsules, and
subsequently determine the MNP contents of rifampicin capsules
approved for use in China. Furthermore, forced degradation
experiments are employed to determine the source of the
MNP contaminant present in rifampicin.

MATERIALS AND METHODS

Materials and Instruments
Rifampicin capsules (a total of 27 sample batches) were
purchased from nine manufacturers on the Chinese market.
Ammonium formate, formic acid, and LC-MS grade methanol
were purchased from ThermoFisher Scientific Inc.
(United States). An MNP reference sample (96.3%, batch
number: 1119-RB-1010) was purchased from CATO
Research Chemicals Inc. (United States).

The instruments used in the study included a Shimadzu LC-
20AD liquid chromatograph (Japan) fitted with a photo-diode
array (PDA) detector and a LabSolution workstation, an AB
SCIEX 6500 Qtrap mass spectrometer (United States), a
Shimadzu Shiseido Nanospace HPLC system (Japan) with an
Analyst workstation, a Mettler Toledo XP205 electronic balance
(Switzerland), and a ThermoScientific MAXQ 6000 shaker
(United States).

Sample Preparation
Methanol was used as the blank solution. For sample
preparation, MNP (10 mg) was dissolved in MeOH
(100.0 ml) to reach a concentration of 100 μg/ml. An aliquot
(100 µl) of this stock solution was diluted with MeOH to 50.0 ml
in a volumetric flask to obtain a stock standard preparation
(SSP) with a concentration of 200 ng/ml. The working standard
preparation (WSP) with a concentration of 2 ng/ml was
prepared by dilution of the SSP (250 μl) with MeOH to
25.0 ml in a volumetric flask.

The solutions employed to determine the limit of detection
(LOD) and the limit of quantitation (LOQ) were prepared by
dilution of the WSP to give concentrations of 0.1 and 0.2 ng/ml,
respectively.

Seven solutions (0.2, 1, 5, 10, 25, 100, and 200 ng/ml) were
prepared from the SSP and stock solutions to cover the range of

FIGURE 1 | Chemical structures of rifampicin and 1-methyl-4-nitrosopiperazine (MNP).
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MNP concentrations detected in the samples
(i.e., 0.2–200 ng/ml).

The rifampicin capsules were tested by sampling a single capsule
content (~150mg of rifampicin) and placing it in a 50ml centrifuge
tube, to which methanol (10ml) was added, and the mixture was
shaken well for 10min. The supernatant was then collected and
filtered, and the filtrate was saved for subsequent testing.

The SSP was added to the contents of a rifampicin samples to
prepare the recovery test solutions, such that spiking was
achieved to three final concentrations, namely low (5 ng/ml),
medium (10 ng/ml), and high (25 ng/ml) concentrations. Three
replicates were prepared for each concentration, which served as
the recovery test solutions.

The stability of the rifampicin capsule test samples to heat and
a high humidity were examined under storage in constant-
temperature humidity boxes at 25°C (75% RH, ultraviolet
lighting), 25°C (75% RH), 40°C (75% RH), and 60°C (75%
RH), and the MNP contents of these samples stored under the
above conditions for 3, 7, 10, and 30 days were measured.

For other forced degradation studies, the samples were subjected
to stress conditions according to ICH guidelines. For the acidic and
alkaline degradation experiments, a sample of rifampicin (150mg)
was dissolved in a 0.1M HCl or NaOH solution (2.0 ml) and
maintained at room temperature for 3 h. Prior to further dilution
with methanol, these samples were neutralized.

LC-MS Conditions
LC Conditions
An ACE UltraCore Super C18 (4.6 × 50mm, 2.5 μm; Agilent,
United States) chromatography column (stationary phase: octadecyl
silane chemically bonded to silica gel) was used for LC analysis. An
aqueous 1mM ammonium formate solution was used as mobile
phase A and methanol was used as mobile phase B; the gradient
elution conditions listed in Table 1 were applied at a column
temperature of 35°C using an injection volume of 3 μl.

MS Conditions
The samples were analyzed using the abovementioned triple
quadrupole tandem mass spectrometer under positive-mode ESI
conditions with multiple reaction monitoring (MRM). The values of
the various parameters were as follows: curtain gas pressure: 25.0 psi;
collision gas pressure: 8 psi; ion spray (IS) voltage: 4,000 V; TEM
(drying gas temperature): 450°C; ion source gas 1 (spraying gas)
pressure: 65 psi; ion source gas 2 (drying gas) pressure: 45 psi;
polarity: positive; MS monitoring time: 0.5–3.5 min to MS and

3.5–17.0 min to waste. The MRM ion pair values of the
parameters employed are listed in Table 2.

RESULTS AND DISCUSSION

Verifying the Methodology
An aliquot (3 μl) of the blank solvent and the rifampicin capsule
test solution were injected into the LC-MS system and the
corresponding chromatograms were recorded. The results show
that peaks corresponding to the blank solvent, to rifampicin, and to
any other related substances do not interfere with the MNP peak.
Subsequently, aliquots (3 μl) of the LOQ (0.2 ng/ml) and LOD
(0.1 ng/ml) solutions were injected, which revealed signal-to-noise
ratios (S/Ns) of 48.5 for the MNP peak in the LOQ solution and
10.2 for the MNP peak in the LOD solution, which meet the
detection sensitivity requirements.

For evaluation of intra-day precision, six replicate sample
solutions (10 ng/ml) prepared using the reference solution were
analyzed on the same day. For the inter-day precision, two duplicate
sample solutions (10 ng/ml) prepared using the reference solution
were analyzed for three consecutive days. The RSDs of the obtained
peak areas were calculated to be 2.27 and 7.27%, respectively, which
were indicative of a goodmethod repeatability. A standard curve was
generated by plotting the solution concentration (Y) against the peak
area (X) using 3 μl aliquots of the 0.2–200 ng/ml MNP reference
solutions; linear regression analyses revealed a good linearity in the
0.2–200 ng/ml concentration range (r = 0.9999).

The recovery test solution was added to the capsule solution to
give three final spiking concentrations, namely low (5 ng/ml),
medium (10 ng/ml), and high (25 ng/ml) concentrations, with
three replicates prepared at each concentration. The LC-MS
results showed an average recovery rate of 87.05% for all three
concentrations (Table 3).

The above data therefore demonstrate that the developed
method exhibits a high linearity and accuracy, as well as good
LOD and LOQ values, thereby indicating that it can effectively
detect the presence of MNP in rifampicin capsules.

Detecting MNP in Rifampicin Batches
In this study, the retention time of MNP was 1.28 min (Figure 2)
and that of rifampicin was 6.7 min. To prevent a high concentration
rifampicin entering and polluting the MS ion source, it is necessary
to prolong the elution time to completely elute rifampicin from the
column. If this is not carried out, ion inhibition against the trace
MNP content will take place. It has been reported that the LC-
HRMS method published by the FDA adopted a one-point
calibration approach, which led to overestimation of the MNP
content. Thus, our LC-MS/MS method (i.e., triple quadrupole
mass spectrometer, MRM mode) was applied for the quantitative
determination of the trace quantities of MNP present in rifampicin.
The LOD and LOQ values for MNP were determined to be 0.0067
and 0.013 ppm, respectively, which are superior to the values of 0.01
and 0.017 ppm achieved using the FDA method.

As shown in Figure 3, the MNP contents of the 27 batches of
rifampicin capsules sampled in this study were found to be within the
range of 0.33–2.36 ppm; this is 2–15 times higher than the original

TABLE 1 | LC gradient elution conditions.

Time (min) Mobile phase A (%) Mobile phase B (%) Flow rate
(ml/min)

0.0 60 40 0.5
2.0 60 40 0.5
6.0 0 100 0.5
6.1 0 100 0.8
12.0 0 100 0.8
12.1 60 40 0.5
17.0 60 40 0.5

Note: MNP exhibited a retention time of approximately 1.26 min.
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acceptable limit of 0.16 ppm, but below the FDA-revised limit of
5 ppm, which was established after comprehensively considering the
benefits and risks associated with the use of rifampicin for tuberculosis
patients.

A variety of factors can lead to chemical contamination
with trace amounts of genotoxic MNP impurities, the main
sources of which can be traced back to contaminated raw
materials, solvents, and catalysts, which are employed in the

TABLE 2 | MRM ion pair for 1-methyl-4-nitrosopiperazine (MNP).

Parent ion (m/z) Daughter ion (m/z) Declustering potential (DP,
V)

Collision energy (CE,
V)

Polarity

130.1 100.1a 48 12 Positive
58.1 48 22 Positive

aQuantitative ion.

TABLE 3 | Spike recovery rates (%) of the rifampicin capsules (n = 9).

No Low (5 ng/ml) concentration M (%)edium (10 ng/ml)
concentration

H (%)igh (25 ng/ml)
concentration

1 (%) 87.86 84.66 87.44
2 88.53 86.82 86.99
3 82.75 90.05 88.33
Average 86.38 87.18 87.59
RSD (%) 3.66 3.11 0.78
Average spike recovery rate = 87.05%
Average RSD = 2.52%

FIGURE 2 | Typical MRM chromatogram of MNP.
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production processes (Szekely et al., 2015). Forced
degradation experiments conducted under acidic, alkaline,
UV-irradiation, high-humidity, and high-temperature
conditions revealed significantly higher MNP contents in
rifampicin when heated (Figure 4). For example, the MNP
content increased by 25% following storage at 40°C for 30
days, and it more than doubled when stored at 60°C for
30 days. This suggests that MNP is a thermal
degradation product of rifampicin. In contrast, no
significant increase in the MNP content was observed in
rifampicin when exposed to acidic, alkaline, UV irradiation,
and high-humidity conditions. These results further suggest
that MNP is likely produced by the thermal degradation of
rifampicin; therefore, we conclude that the temperatures
used during production and sample storage should be
strictly controlled.

CONCLUSION

We herein reported the development of an LC-MS/MS-based
method for detecting MNP, a genotoxic nitrosamine impurity.
This method was fully validated and presents a good linearity,
specificity, accuracy, and precision. Using this method, the
LOD and LOQ values for MNP were 0.0067 and 0.013 ppm,
respectively. Subsequently, the MNP levels in 27 batches of
rifampicin samples obtained from different manufacturers in
China were determined, and it was found that all samples
exhibited MNP levels within the revised FDA-approved upper
limit of 5 ppm. This study therefore comprehensively reflects
the level of MNP in rifampicin from the Chinese market, and
the results presented indicate that the formation of MNP is
directly related to temperature, and so its levels may be
controlled through careful temperature regulation during

FIGURE 3 | MNP contents of 27 batches of rifampicin capsules (temporarily threshold concentration: 5 ppm).

FIGURE 4 | MNP contents of rifampicin capsules: red: 60°C, 75% RH; blue: 40°C, 75% RH.
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manufacture and storage. Further studies are therefore
required to determine the corresponding degradation
mechanism.
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