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Abstract

Because of the high dimensionality of neuroimaging data, identifying a statistical test

that is both valid and maximally sensitive is an important challenge. Here, we present

a combination of two approaches for functional magnetic resonance imaging (fMRI)

data analysis that together result in substantial improvements of the sensitivity of

cluster-based statistics. The first approach is to create novel cluster definitions that

optimize sensitivity to plausible effect patterns. The second is to adopt a new

approach to combine test statistics with different sensitivity profiles, which we call

the min(p) method. These innovations are made possible by using the randomization

inference framework. In this article, we report on a set of simulations and analyses of

real task fMRI data that demonstrate (a) that the proposed methods control the

false-alarm rate, (b) that the sensitivity profiles of cluster-based test statistics vary

depending on the cluster defining thresholds and cluster definitions, and (c) that the

min(p) method for combining these test statistics results in a drastic increase of sensi-

tivity (up to fivefold), compared to existing fMRI analysis methods. This increase in

sensitivity is not at the expense of the spatial specificity of the inference.
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) is widely used for clini-

cal and basic neuroscience. The statistical analysis of fMRI data is

mostly performed in a parametric framework and using cluster-based

statistics (Lindquist & Mejia, 2015). Initially, there was a preference

for low cluster-defining thresholds (CDTs), which correspond to large

voxel-level p-values (p > .01), because of their larger sensitivity for

detecting small but widespread effects (Woo, Krishnan, &

Wager, 2014). However, in recent years, scientists have argued for

increasing CDTs (Eklund, Nichols, & Knutsson, 2016; Woo

et al., 2014). Two arguments in favor of high CDTs were put forward,

one pertaining to the test's voxel-level false alarm (FA; false positive)

rate and the other to its brain-level FA rate (the probability of

detecting a significant cluster under the null hypothesis for all voxels):

(a) Woo et al. (2014) demonstrated that a low CDT resulted in a merg-

ing of nearby effect clusters, indicating an inflated voxel-level FA rate

and thus a poor spatial specificity, and (b) Eklund et al. (2016) showed

that the brain-level FA rate was not controlled at low CDTs, neither

for parametric nor for permutation-based inference. For parametric

cluster-based inference, the absence of brain-level FA rate control

with low CDTs is not very surprising because the parametric reference

distribution for the maximum cluster size is only asymptotically valid;

it holds for an increasing CDT under a Gaussian random field (GRF;
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Friston, Worsley, Frackowiak, Mazziotta, & Evans, 1994). For

permutation-based inference, this is more revealing because it dem-

onstrates a violation of the assumption of independent and symmetric

errors (Winkler, Ridgway, Webster, Smith, & Nichols, 2014). These

observations have reinforced the use of high CDTs. The downside of

this practice is a substantial reduction in sensitivity, especially for

detecting widespread but weak effects, and this has recently been

demonstrated by Noble, Scheinost, and Constable (2020).

The failure to detect true activations due to lack of statistical

power leads to low reproducibility of the results. In the current sci-

entific climate, this may be an even more pressing problem than

poor FA rate control (Bansal & Peterson, 2018; Button et al., 2013;

Cremers, Wager, & Yarkoni, 2017; Lohmann et al., 2018; Szucs &

Ioannidis, 2017). One way to improve statistical power is by increas-

ing the study sample sizes, ideally motivated by a formal power

analysis. However, despite an increase in the number of studies

with large datasets, the median sample sizes in fMRI studies were

still below 30 in 2015 (Poldrack et al., 2017), which is well below

the sample size needed to detect large effect sizes (Cohen's d > 0.8)

with confidence (Geuter, Qi, Welsh, Wager, & Lindquist, 2018).

Here, we present an alternative way to improve the statistical

power of fMRI studies: we will demonstrate that the sensitivity of

statistical tests can be substantially increased (up to fivefold) by

combining two approaches: (a) creating test statistics that are

affected less by physiologically implausible effect patterns, and

(b) adopting a new approach for combining test statistics with dif-

ferent sensitivity profiles.

To achieve this goal, we operate within the randomization infer-

ence framework. This framework has a number of important advan-

tages over existing statistical frameworks because it allows (a) to

prove FA rate control under a relevant null hypothesis (statistical inde-

pendence between the biological data and the explanatory variable;

see further), (b) the use of an arbitrary test statistic, which allows us

to select a test statistic solely on the basis of its sensitivity to the

effects of interest, and (c) to combine test statistics with different sen-

sitivity profiles (e.g., different CDTs). All these advantages will be illus-

trated by the simulations and the analyses on empirical data on which

we report in this article.

In the remainder of this introduction section, we will (a) provide a

recipe for a group-level randomization test for studies with a within-

participants design, (b) prove and discuss the FA rate control of this

randomization test, and (c) discuss ways to optimally design a test sta-

tistic. In the results section, we will use simulations to demonstrate

that the use of different test statistics can substantially increase the

sensitivity of fMRI data analysis.

1.1 | A recipe for a group-level randomization test
for a within-participants study

The randomization inference framework we propose here, tests the

null hypothesis of statistical independence between the biological

(i.e., fMRI data) and the explanatory variable (i.e., the experimental

conditions). Statistical independence involves that, for the biological

data of a randomly sampled participant, it does not matter in which

experimental condition it is observed.

The randomization test relies on randomization of the explana-

tory variable across participants. For a within-participant study, the

explanatory variable is the order in which the conditions are pres-

ented (denoted as “condition order” in the following). The randomiza-

tion inference framework requires that there are multiple condition

orders that reflect the effect of interest. To clarify the steps that are

involved in performing the randomization test, we give an example for

one specific study (see Figure 1). This example study involves eight tri-

als and two experimental conditions (A and B), and 20 participants are

completing both experimental conditions. Importantly, the first step

occurs prior to the data collection.

1. The participants are randomly assigned to one of two condition

orders. To optimize sensitivity, it is important to select condition

orders that are as different as possible, which is realized by comple-

mentary condition orders (e.g., [AABBABAB, BBAABABA]).

2. The fMRI data are collected for every participant.

3. The effect of the experimental conditions (A vs. B) is quantified

separately within every participant. When analyzing fMRI data, this is

commonly done by running a regression on the voxel-specific MR sig-

nals in which the Conditions A and B are represented as separate

regressors. Contrast images, which reflect the difference between the

beta values of the regressors A and B are typically the basis for the

quantification of the effect of interest.

4. A test statistic is computed by combining the effects identified

in Step 3 across participants. Typically, this is done by computing a T-

statistic across the contrast images. However, the randomization

framework allows for any other statistic that reflects the difference

between Conditions A and B. In the case of cluster-based statistics,

clusters are typically identified by applying a CDT and then counting

the number of voxels in this cluster or summing its thresholded voxel-

level statistics. Usually, multiple clusters are identified, and the test

statistic is then taken as the maximum (for thresholding from below)

or the minimum (for thresholding from above) of the cluster-level sta-

tistics. The randomization framework allows for many variations on

this typical way of calculating cluster-based statistics (see

Section 1.3).

5 + 6. The randomization p-value is calculated for the observed

test statistic. This is done using a reference distribution that is

obtained by randomly reassigning the participants to one of the two

condition orders, while keeping the observed data (i.e., the single sub-

ject contrast images) fixed. Participants are randomly reassigned to

one of the two condition orders and the maximum/minimum cluster-

based statistic is recalculated. Repeating these steps (random

reassignment and recalculation) a large number of times results in the

randomization distribution, which is the reference distribution of a

randomization test.

7. Each of the observed cluster-level statistics can be compared

to the reference distribution to obtain a randomization p-value. If one

of these p-values (the smallest one, which corresponds to the maxi-

mum/minimum observed cluster-based statistic) is less than the
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nominal alpha level, the null hypothesis of statistical independence

between the biological data and the explanatory variable is rejected.

The literature on nonparametric tests for neuroimaging data is

dominated by permutation tests (Hayasaka & Nichols, 2003;

Hayasaka & Nichols, 2004; Nichols & Holmes, 2002; Pantazis, Nichols,

Baillet, & Leahy, 2005; Winkler et al., 2014; Winkler et al., 2016). To

describe the difference between a randomization and a permutation

test, we must start from a blocked instead of an event-related design.

Consider a blocked design with two Conditions A and B, which can be

taken in the order AB or BA. Let the data in these two conditions be

denoted by the pair [Y1, Y2], of which Y1 is observed in the first condi-

tion and Y2 in the second. Now, with a permutation test, one tests the

null hypothesis of exchangeability, which involves that the probability

of the data [Y1, Y2] is not affected by changing the order of the com-

ponents (Y1 and Y2) over the conditions. In other words, the idea that

the identity of the conditions does not matter is captured by the

hypothesis that the probability of the pair [Y1, Y2] is identical to the

pair [Y2, Y1]. The permutation test compares some statistic of the

observed data under the reference distribution that is obtained by

randomly permuting the elements of the pair [Y1, Y2] separately and

independently for all the participants. The essential difference with a

randomization test is that, for a permutation test, it does not matter

how the participants were assigned to the possible condition orders

AB and BA: all to the same condition order, fifty-fifty, random, or

fixed. In contrast, for a randomization test, the participants must be

randomly assigned to the different condition orders.

1.2 | FA rate control

The randomization test described in the previous subsection controls

the brain-level FA rate, and the formal proof is given in the Appendix.

F IGURE 1 Schematic explanation of the steps in the randomization test. This example represents the procedure for a test with one variable
of interest (i.e., one voxel). However, the same steps apply in the case of cluster-based statistics, as explained above
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This is not a proof of voxel-level FA rate control, which is a require-

ment for spatially specific inference. A possible failure to control the

voxel-level FA rate is best described for a cluster-based test statistic.

Specifically, if one or more of the observed cluster-level statistics

exceeds the test statistic's critical value under the randomization dis-

tribution, this does not allow for spatially specific statements such as

“Voxel X does not belong to a significant cluster, and therefore the

probability of an effect at this voxel is less than the nominal FA rate.”
Although spatially specific inference is highly useful, we do not

consider a formal proof of voxel-level FA rate control a necessary

requirement. To our knowledge, there are only two ways to achieve

voxel-level FA rate control: (a) Bonferroni correction, and (b) the

max(T) test statistic, the maximum of the voxel-level test statistics

(Friston, Holmes, Poline, Price, & Frith, 1996). Because of their low

sensitivity, both ways are rarely used in practice. A realistic position is

to ask for brain-level FA rate control as a first requirement and, only for

tests that fulfill this criterium, to evaluate voxel-level FA rate control.

We did this in our simulation study: for a number of randomization

tests, we not only evaluated their sensitivity, but also their voxel-level

FA rate control. It is important to know that not all commonly used sta-

tistical tests control the brain-level FA rate. This was shown by Eklund

et al. (2016) for cluster-level inference based on GRF theory (Friston

et al., 1994) and for cluster-based permutation tests that depend on

independent and symmetric errors (Winkler et al., 2014).

We will now describe some differences between our randomization

test and parametric statistical tests (e.g., the T- and the F-test) with

respect to the nature of the null hypothesis and the auxiliary require-

ments for a valid statistical test. First, a parametric statistical test con-

trols the FA rate under a null hypothesis that pertains to moments of

the probability distribution of the biological data (expected values, vari-

ances, regression coefficients, …). Our randomization test, on the other

hand, controls the FA rate under the null hypothesis of statistical inde-

pendence between the biological data and the explanatory variable (the

condition orders to which the participants are randomly assigned; in the

example above, AABBABAB or BBAABABA). In neuroimaging,

researchers typically interpret their effects in terms of the amplitude of

the stimulus-evoked hemodynamic response (HR) in relation to the

occurrence of particular stimuli. Now, our null hypothesis at the level of

the whole biological data are implied by a null hypothesis at the level

of the stimulus-evoked HR amplitude: statistical independence between

the stimulus-evoked HR amplitude and the experimental Conditions A

and B (Maris, 2019). Therefore, by modus tollens, if the latter HR-level

null hypothesis is false, then so is the null hypothesis at the level of the

whole biological data.

A second difference with a parametric statistical test is that, in its

simplest form, our randomization test requires random assignment to

one of two condition orders. To maximize sensitivity, we take these

condition orders to be each other's complement, but this is not neces-

sary for FA rate control. The requirement of random assignment to

only two condition orders can be relaxed by extending the randomiza-

tion test procedure, and a proof for this extended procedure is given

in Maris (2019). For example, consider an existing dataset in which

participants were randomly assigned to one of all possible condition

orders. For this scenario, a valid and sensitive randomization test is

also obtained if the randomization distribution is constructed by ran-

domly reassigning every participant to either the (a) condition order to

which they were actually assigned, or (b) complement of that particu-

lar participant-specific condition order. Thus, every participant has its

own pair of complementary condition orders, of which one member is

always the observed condition order. Maris (2019) also describes how

the randomization test procedure can be extended to allow for

designs with more than two conditions, and to explanatory variables

that are not under experimental control (e.g., behavioral outcome,

non-blood-oxygen-level-dependent [BOLD] physiological variables

like EEG and pupil diameter).

A third and last difference with a parametric statistical test is that

the latter requires a particular test statistic (e.g., the Z-, T-, or F-statis-

tic). Our randomization test, on the other hand, controls the FA rate

for all possible test statistics. In the next subsection, we will make use

of this fact to optimize the sensitivity profile of the statistical test.

1.3 | How to construct a test statistic?

We now make use of the fact that the randomization test controls the

FA rate for all possible test statistics. This fact allows to construct a

test statistic that is maximally sensitive to the effects of interest.

There are many ways in which a test statistic for cluster-based infer-

ence can be constructed. The first consideration is which voxel-

connectivity structure should be used. The connectivity structure

determines which voxels should be treated as each other's neighbors,

thereby defining the basis for merging voxels in a cluster. Connectivity

between voxels can be defined as voxels that share a corner with the

current voxel (26 neighbors for each voxel—C26, the FSL default),

voxels that share an edge (18 neighbors—C18, the default in SPM) or

voxels that share a surface (6 per voxel—C6, the default in AFNI, see

Figure 2a). A stricter connectivity definition will result in smaller sized

clusters, and this affects the sensitivity for detecting a cluster with

some shape of interest. In line with the AFNI defaults, we propose

defining neighbors as voxels that are connected via a surface (C6).

This will reduce the chance of identifying clusters with voxels that are

only connect through a series of corners or edges, as we believe that

such a narrow thread is biologically implausible. In our simulation

study (see further), we compared the sensitivity of cluster-based test

statistics that involve different connectivity definitions.

Another way to vary the cluster definition is by varying the CDT.

Strict CDTs are best suited to detect large effects that are present in

a small number of voxels. Lenient CDTs are best suited to detect small

effects that are present across a large area of the brain. There are also

different ways to quantify to the magnitude of a cluster. In the para-

metric framework, a cluster's magnitude is typically quantified by its

size: the number of voxels within the cluster. However, other quantifi-

cations such as the sum over the T-values of within-cluster voxels

have been shown to be a more sensitive measure in EEG data

(Maris & Oostenveld, 2007). Here we use the sum over T-values to

determine cluster magnitude.
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To devise a potentially sensitive test statistic for fMRI data, we

also looked at the cluster patterns in a large number of spatial maps of

thresholded T-statistics that were calculated on data without an

effect. We observed that especially at low CDTs, there were often

two or more separate clusters that were connected via a narrow

thread of voxels in between. This resulted in larger cluster sizes in the

randomization distribution and less sensitive statistical tests. By

adapting the cluster definition, it is possible to avoid such sprawling

clusters. One option is to impose a minimum number of above-

threshold neighbors that each voxel should have before it is included

in the cluster. Here, were we will investigate cluster definitions with

no restrictions on the minimum number of neighbors (N0), at least

3 neighbors (N3), 5 neighbors (N5), or 6 neighbors (N6). By removing

voxels with a low number of above-threshold neighbors, it is possible

to counteract the effects of the data smoothness that is often intro-

duced during preprocessing: voxels at the edge of the cluster will be

removed while voxels at the center remain. Single voxels or very small

clusters of above threshold voxels are biologically implausible and can

be the result of spatial smearing around isolated voxels with high

T-values. The effects of these restrictions on the number of neighbors

are illustrated in Figure 2b. To further reduce such sprawling clusters,

instead of a single removal of voxels with a low number of above

threshold neighbors, we can perform this removal several times (den-

oted as “iterative peeling,” with shorthand notation P#, in which the #

denotes the number of iterative removals minus one). This way, we

can avoid both clusters of isolated voxels, as well as clusters with a

small volume that may haphazardly merge to form a larger sprawling

cluster. Table 1 provides an overview of the cluster definitions we

examined in this article and the shorthand we will use to refer to

those definitions in the remainder of the paper.

1.4 | How to combine different test statistics?

A crucial advantage of the randomization framework is that it allows

to combine cluster statistics with different sensitivity profiles. A

F IGURE 2 (a) Illustration of the three different voxel connectivity structures. Blue voxels are neighbors of the central voxel. (b) 2D illustration
of the effect of neighborhood requirements on the identified clusters

TABLE 1 Overview of cluster definitions

Shorthand Connectivity structure (C) Neighborhood requirements Peeling

C18N0P0 18, sharing edges None No

C6N0P0 6, sharing surfaces None No

C6N3P0 6, sharing surfaces Min. 3 active neighbors No

C6N5P0 6, sharing surfaces Min. 5 active neighbors No

C6N6P0 6, sharing surfaces Min. 6 active neighbors No

C6N6P1 6, sharing surfaces Min. 6 active neighbors Apply neighborhood definition in two iterations

Note: Each of these cluster definitions can be paired with different CDTs.

Abbreviation: CDTs, cluster defining thresholds.
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researcher may not know whether to expect small or large clusters. In

that case, it is possible to analyze the data using different cluster defi-

nitions, for example, by varying the CDT, the neighbor definition,

and/or the number of required neighboring voxels. Within the ran-

domization framework, the results can be combined over these differ-

ent cluster definitions. For each of the different cluster definitions

(CDT, neighbor definition, etc.), the randomization step results in a

distribution of optimum (i.e., maximum or minimum) cluster magni-

tudes (size or sum). These randomized optimum cluster magnitudes

can each be transformed into p-values by comparing them to their

corresponding randomization distribution (see Figure 3). By definition,

and separately for each of the cluster definitions, the probability

distribution of these p-values is uniform (see Figure 3, Step 2). Simi-

larly, each observed cluster magnitude can also be transformed into a

p-value by comparing it to its corresponding randomization distribu-

tion. After transforming the cluster-definition-specific magnitudes into

p-values, these transformed magnitudes can be meaningfully com-

bined in a single randomization distribution. This is realized by taking

the minimum p-value over all cluster definitions. This min(p) randomi-

zation distribution is constructed in a loop over draws from the ran-

domization distribution: for every draw, evaluate which of the cluster

definitions (statistics) has the smallest p-value, and use the resulting

value as a realization of the min(p) randomization distribution. This

min(p) randomization distribution is the final distribution that is used

F IGURE 3 Illustration of how to combine cluster statistics with different sensitivity profiles. This illustration is for combining cluster
definitions with different cluster-defining thresholds (CDTs), but the method is the same for combining other test statistics or more than two test
statistics
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for decision-making: if the observed min(p)-value is less than the

α × 100th percentile of the min(p) randomization distribution, then

we reject the null hypothesis of statistical independence between bio-

logical data and the explanatory variable. By using the min(p) randomi-

zation distribution for decision-making (instead of the cluster-

definition-specific randomization distributions), we correct for multi-

ple testing (one test per cluster definition).

The min(p) statistic was first proposed by Tippett (1931), but for a

different purpose. Pesarin (2001) was the first to propose the min(p)

statistic as a component of a nonparametric statistical test, namely as

a special case of his nonparametric combination of dependent permu-

tation tests. This method was introduced to neuroimaging by Winkler

et al. (2016), but for a different purpose as in the present paper.

Winkler et al. (2016) use the min(p) statistic at the level of the single

voxels in a situation in which there are multiple statistical tests per

voxel. This situation occurs when there are multiple explanatory vari-

ables of interest or voxel-level multivariate signals, such as in the case

of multimodal imaging and multiple processing pipelines. In this article,

we use the min(p) method to combine test statistics that depend on

the signal at all voxels jointly, specifically cluster statistics with differ-

ent sensitivity profiles.

2 | METHODS

2.1 | Data

In our simulation study, we used resting state fMRI data from

103 healthy controls from Oulu dataset in the 1000 Functional Con-

nectomes Project (Biswal et al., 2010) were used for all analyses

(http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html). We

used the Oulu dataset because previous work showed poor brain-

level FA rate control for the permutation tests with this particular

dataset (Eklund et al., 2016). The dataset includes 37 male and

66 female participants with a narrow age range (20–23 years,

mean = 21.52, SD = 0.57). Collection of the data was approved by the

ethics committee of the Northern Ostrobothnia Hospital District.

Data were collected using a 1.5 Tesla MR scanner, with a repetition

time (TR) of 1.8 s. The data consist of 245 time points per subject,

64 × 64 × 28 voxels of size 4 × 4 × 4.4 mm.

For our reanalysis of an existing task dataset, we used fMRI data

from 34 participants (25 females; average age of 24.9 years and SD of

4.8 years) who participated in an experiment on statistical learning

(Richter & de Lange, 2019). The study followed institutional guidelines

of the local ethics committee (CMO region Arnhem-Nijmegen,

The Netherlands). Data were collected using a 3 Tesla MR scanner,

with a TR of 1 s and a T2*-weighted multiband-6 sequence

(TR/TEgeerligs = 1,000/34.0 ms, 66 slices, voxel size 2 mm isotropic,

75� flip angle, A/P phase encoding direction, FOV = 210 mm,

BW = 2090 Hz/Px).

In a learning session outside of the MR scanner, participants first

learned statistical regularities in object image pairs; in every pair, the

second object image was fully predictable based on the first. In the

follow-up fMRI session, participants were presented with the same

leading object images, but now were followed by the expected trailing

object image only in 50% of the cases, and by a different, unexpected

trailing object image in the remaining 50%. Participants performed

two tasks using these object images: an object categorization task and

a character recognition task. In the object categorization task, they

categorized the trailing (predictable/unpredictable) object as elec-

tronic or nonelectronic, which rendered the object images task-

relevant and therefore attended. In the character recognition task,

they classified a concurrently shown letter or symbol presented in the

fixation dot as a letter or no letter. This task rendered the object

images task-irrelevant and therefore unattended. Importantly, the trial

order was fully randomized, which made the data suited for applying

the randomization test.

2.2 | Simulation design

The aim of the simulations was to investigate the FA rate control and

the sensitivity of different test statistics within the randomization

framework in comparison to the current standards in the field. We

focused on group-level analyses comparing two different task condi-

tions. The resting state data were used in two types of simulations:

(a) noise-only simulations using only the resting state data

(as performed by Eklund et al., 2016), and (b) simulations in which the

resting state data were used as the background signal on top of which

we added a stimulus-evoked signal. When the expected magnitude of

the stimulus-evoked signal was equal in the two task conditions, we

could investigate the brain-level FA rate control of different statistical

tests. To investigate the sensitivity profiles of the different statistical

tests, we manipulated the (a) between-condition difference in the

expected magnitudes of the evoked signals (denoted as “effect size”
in the following), and (b) size of the gray-matter volume that exhibited

this difference (denoted as “spatial extent” in the following). The

effect sizes were quantified as the (population-level) Cohen's d of the

between-condition differences in the signal magnitudes. The values of

Cohen's d in our simulation design were 0 (for investigating the brain-

level FA rate control), 0.6, 0.8, 1, and 1.2. The task-related BOLD sig-

nals were added to the resting state data (see Section 2.3) in a cluster

of voxels which was defined by a sphere with a radius of 10, 15, or

20 mm centered at MNI coordinate [3–60 30] (see Figure 4). Thus,

our simulation design was 5 (effect size) by 3 (spatial extent).

2.3 | Simulating data

For each of the 15 cells of our simulation design, we performed 1,000

group analyses, each of which started from a random sample of

40 participants from the Oulu dataset. These 1,000 random samples

of participants were the same as in Eklund et al. (2016) and were kept

constant across all statistical tests.

We simulated an event-related paradigm with two stimulus

sequences, of which one was assigned to Condition A and the other
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to Condition B. Each stimulus sequence had 62 simulated stimulus

onsets with random durations (1–4 s) and inter-stimulus intervals

(3–6 s; same as E2 in Eklund et al., 2016). The order of stimulus dura-

tions and inter-stimulus intervals was reversed for sequence 2 as com-

pared to sequence 1. The same stimulus sequences were used for all

participants. In line with the argument in A recipe for performing a

group-level randomization test for a within-participants study, we simu-

lated data for two complementary condition orders. For one condition

order, one sequence was associated with condition A and the other to

Condition B. For the complementary condition order, this was

reversed. In each random sample of 40 participants, half of the partici-

pants were randomly assigned to one condition order and the other

half to the complementary order.

The amplitude of the simulated evoked blood-oxygen-level-

dependent (BOLD) response varied across participants but was the

same for different events within the same individual. For each partici-

pant in the Oulu dataset, the amplitude of the evoked response in

each of the two task conditions was drawn from a normal distribution

with a mean of 4.5 and SD of 2.25. Using these values, when contra-

sting each task condition with the baseline, a significant cluster was

found in approximately 90% of 1,000 stimulations (using GRF-based

inference with a CDT of p < .001). Differences in the evoked

responses between task conditions were introduced by adding a con-

stant value to the evoked response amplitudes of all participants for

condition A. The size of this constant was chosen such that the effect

size of the between-condition difference for the evoked response

amplitudes (quantified as Cohen's d) was either zero (for testing the

FA rate control), 0.6, 0.8, 1, or 1.2.

Two task-related BOLD signals were created for each participant

by convolving the stimulus functions (specifying onset and duration)

F IGURE 4 (a) Schematic overview of how the data were simulated. (b) Illustration of the sizes of the (unsmoothed) simulated clusters with
radii of 10, 15, and 20 mm
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with the canonical hemodynamic response function (HRF) and multiply-

ing the resulting time course with the amplitude of the evoked response

in each task condition. After convolution with the canonical HRF, the

regressors for Conditions A and B were uncorrelated (r < .01).

The task-related BOLD signals were added to the resting state

data in a cluster of voxels which was defined by a sphere with a radius

of 10, 15, or 20 mm centered at MNI coordinate [3–60 30] (see

Figure 1). To ensure that the assumptions of GRF theory were met,

the image containing the cluster definition (specified as zeros and

ones) was smoothed with a Gaussian kernel (6 mm FWHM, same as

the smoothness of the resting state data, see Section 2.4). When com-

bining the task-related BOLD signal and the resting state data, the

task signal was multiplied by the weights in the cluster definition

image. True positive voxels were defined as voxels that were part of

the cluster definition before smoothing. True negative voxels were

defined as voxels that contained less than 1% of the task-related sig-

nal (i.e., after smoothing). Only these true positive and true negative

voxels were considered in metrics of sensitivity or specificity of the

statistical tests.

2.4 | fMRI data analyses

The fMRI data used for the simulations were preprocessed using stan-

dard SPM 8 processing pipelines (http://www.fil.ion.ucl.ac.uk/spm/

software/spm8/), including realignment, coregistration, normalization,

and 6 mm FWHM smoothing (see Eklund et al., 2016 for more

details). The fMRI data were not corrected for geometric distortions,

as no field maps are available.

A general linear model (GLM) was applied to the preprocessed

fMRI data, using two regressors for each of the two task conditions

(A and B): the HRF-convolved stimulus function (specifying onsets

and durations) and its first derivative. The stimulus onset and duration

times in the GLM were matched to the stimulus onset and duration

times that were used to simulate the data (which depend on the con-

dition order). The estimated head motion parameters were used as

additional regressors in the design matrix, to reduce effects of head

motion. To account for low-frequency drifts in the data, a discrete

cosine transform with cutoff of 128 s was used. Temporal correlations

were corrected for with a global AR(1) model in SPM. The first-level

contrast between task Conditions A and B (A-B) was used as the input

for the group-level analyses.

For the analysis of the task fMRI dataset, we used the first-level

contrast images provided by the authors of the original study

(Richter & de Lange, 2019). Preprocessing and first-level modeling of

the data was done using FSL 5.0.11 (FMRIB Software Library; Oxford,

UK; www.fmrib.ox.ac.uk/fsl), as described in Richter and de

Lange (2019). The original analyses of these data demonstrated that

neural activity was attenuated for expected compared to unexpected

stimuli when stimuli were attended, but not when they were

unattended (Richter & de Lange, 2019). Here we statistically tested

the simple effect of expectation (expected vs. unexpected trailing

objects) in the attended condition.

In the group-analyses, we looked for voxels or clusters in which the

first level contrast of interest was significantly different from zero. As a

baseline for the evaluation of the performance of the randomization

test, we investigated the FA rate and the sensitivity of the following

alternative statistical methods: thresholding using false discovery rate

(FDR) control (Genovese, Lazar, & Nichols, 2002), cluster-level inference

using GRF theory (Friston et al., 1994), and control using the randomiza-

tion distribution of threshold-free cluster enhancement (TFCE; Smith &

Nichols, 2009). For the analyses relying on the randomization distribu-

tion, we used the maximum value the test statistic of interest (summed

within-cluster T-statistics or voxel-specific TFCE values) to correct for

multiple comparisons. To display whole-brain results, we used the

MATLAB data visualization toolbox Slice Display (Zandbelt, 2017).

2.5 | Replicating and extending our simulation
study

For the purpose of replicating and extending our simulation study, we

have shared the preprocessed fMRI data and the code (a MATLAB

script and a library of functions) that were used to produce the results

of this simulation study (see https://doi.org/10.34973/zw83-tn77).

The script was shared as a Life Script, a MATLAB format that is specif-

ically designed for documenting code. The library of MATLAB func-

tions is documented by means of extensive help text. Crucially, this

function library can also be used for the second-level analysis of one's

own fMRI data. The first-level analyses can be performed using any of

the existing fMRI analysis packages. If SPM 8 (http://www.fil.ion.ucl.

ac.uk/spm/software/spm8/) is used for the first-level analyses, then

the shared code requires only minor changes to produce the required

input to the second-level functions.

The preprocessed resting state fMRI data and the library of

MATLAB functions will be publicly available at https://doi.org/10.

34973/zw83-tn77 only after the paper is published. However, for

reviewing purposes, the editor can request an anonymous link to this

collection, which can then be forwarded to the reviewers. The Life

Script is also shared as Supporting Information to this article.

3 | RESULTS

3.1 | An empirical check of the FA rate control

As a part of our simulation study, we performed an empirical check of

the correctness of the proof in the Appendix. We ran two types of simu-

lations under the null hypothesis (statistical independence between the

biological and the explanatory variable): (a) noise only simulations using

raw resting state data (as performed by Eklund et al., 2016), and

(b) simulations using simulated fMRI data in which every participant's

data exhibited nonzero stimulus-evoked HR amplitudes to both experi-

mental conditions within a restricted cluster of voxels (see Section 2).

When used for checking the FA rate control, the expected values of the

stimulus-evoked HR amplitudes (calculated over the population of
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participants) were equal in the two conditions (see Section 2). We calcu-

lated the brain-level FA rates of the cluster definitions in Table 1, each

combined with four CDTs (0.05, 0.01, 0.005, and 0.001), and compared

these with the brain-level FA rates of three alternative popular methods:

FDR control (Genovese et al., 2002), cluster-level GRF inference (Friston

et al., 1994), and control using the randomization distribution of TFCE

(Smith & Nichols, 2009). FDR and GRF control have a rationale in the

parametric framework, and TFCE achieves brain-level FA rate control by

making use of the randomization distribution of the maximum TFCE-

value (instead of the maximum cluster statistic, as in our approach).

TFCE can be performed for different connectivity structures, and here

we used the surface (TFCE-C6) and the corner connectivity structure

(TFCE-C26). TFCE depends on two tuning parameters, and for the first

set of results, we used the values that were also used in the original

publication of the method (Smith & Nichols, 2009). In a later set of

results, we also report on the FA rate control of randomization tests

using min(p) statistics.

The two types of simulations (noise only and noise plus a

stimulus-evoked signal) resulted in almost identical results. Figure 5

shows the results for the second type of simulations (stimulus-evoked

signals with equal expected values in the two conditions). These

results support the proof in the Appendix: the randomization test con-

trolled the brain-level FA rate for each of the cluster definitions in

Table 1 and each of the CDTs. FDR and the randomization-based

TFCE also controlled the FA rate, although FDR was too conservative.

Importantly, for the parametric inference based on GRF theory the

brain-level FA rate was only accurately controlled for a CDT equal to

0.001; it rose up to 32% for parametric inference with a CDT of 0.05.

Therefore, in the remainder of the paper, we only consider GRF-based

inference using a CDT equal to 0.001.

3.2 | Sensitivity

The main objective of our simulation study was to investigate the sen-

sitivity of the different test statistics to detect simulated effects in the

data. To this end, we simulated data using stimulus-evoked HR

amplitudes of which the expected values differed between the two

conditions (see Section 2). In the simulation design, we varied across

four effect sizes (Cohen's ds of 0.6, 0.8, 1, and 1.2; see Section 2) and

three simulated true cluster sizes (spheres with radii of 10, 15, and

20 mm; see Section 2). As a baseline for our comparisons, we calcu-

lated the sensitivity of the three alternative popular methods: FDR,

GRF, and randomization-based TFCE.

There are several ways of quantifying sensitivity. Here, we quan-

tify sensitivity using a measure that reflects the aggregated

voxel-specific hit rates over the brain. Specifically, we calculated the

identification rate, which is the proportion of simulations in which the

significant clusters (those with a p-value less than .05) cover at least

half of the simulated cluster. This reflects our interest in identifying

the location of the effect, instead of only detecting the presence of an

effect somewhere in the brain. At the end of the results section, we

will also report on the brain-level hit rate, which does not depend on

the coverage of the simulated cluster, but only on whether or not a

cluster was significant.

Figure 6 shows that, when the cluster is large or the effect size is

small, TFCE shows the highest identification rate. In the other cases,

GRF with CDT = 0.001 is the most sensitive test. FDR is the least sen-

sitive test statistic. TFCE with the surface connectivity structure

(TFCE-C6) is slightly more sensitive than TFCE with the corner con-

nectivity structure (TFCE-C26). Therefore, we will use TFCE-C6 and

GRF with CDT = 0.001 as the reference statistics in the comparison

with our cluster statistics.

Next, we compared the sensitivity of the different cluster defini-

tions in Table 1 across the four CDTs. Figure 7 shows that the choice

for a particular CDT and cluster-definition has a large impact on the

sensitivity of the statistical test. We observed that the sensitivity of

the test statistics involves a trade-off between CDT and cluster defini-

tion: cluster definitions with more neighborhood restrictions tend to

be more sensitive when they are combined with more lenient CDTs,

while cluster definitions with fewer restrictions tend to be more sensi-

tive when combined with stricter CDTs. Also, for small effect sizes,

the lenient CDTs are always more sensitive than the strict CDTs. On

the other hand, for intermediate and large effect sizes, the strict CDTs

tend to be more sensitive in the case of a small cluster size while the

more lenient CDTs tend to be more sensitive for a large cluster size.

To characterize the sensitivity of the different cluster definitions

for the real task fMRI dataset we analyzed, we visualized the randomi-

zation distribution of the maximum cluster statistic (Figure 8a). We

observed that the distance between the observed maximum cluster

statistic and its randomization distribution increased for smaller CDTs

(i.e., for more selective criteria) and for stricter neighborhood defini-

tions (especially for C6N6P1). This pattern of results was very similar

to our simulations with an intermediate cluster extent and a large

effect size.

In Figure 8b, we show how the number of active voxels decreases

as a result of decreasing the CDT and increasing the restrictiveness of

the neighborhood definition. The effects of the CDT and the restric-

tiveness of the neighborhood definition on the spatial distribution of

the active voxels are illustrated in Figure 8c,d. While for many

F IGURE 5 The observed brain-level false alarm (FA) rate for the
Gaussian random field (GRF) theory and for each of the six different
cluster definitions that we used in the randomization testing
framework. The dotted lines show the binomial 95% confidence
interval around the 5% nominal FA rate for 1,000 simulations
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F IGURE 6 The observed identification rates for four test statistics that are commonly used in functional magnetic resonance imaging (fMRI)
research. The identification rate is the % of simulations in which a significant cluster overlaps with at least half of the simulated cluster. Note the
different scaling of the axes for the four simulated effect sizes, reflecting the fact that the identification rate depends on the simulated effect size

F IGURE 7 The observed
identification rates for each of the
basic different cluster definitions

that we used in the randomization
testing framework. As a
reference, we also plotted the
identification rates for Gaussian
random field (GRF) with a cluster-
defining threshold (CDT) of
p < .001 and for TFCE-C6
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clusters, we observe similar effects of decreasing the CDT and

increasing the restrictiveness of the neighborhood definition, there

are also some interesting differences. For example, in the anterior cin-

gulate gyrus (marked by a white arrow in Figure 8b) the cluster of acti-

vation disappears when the CDT decreases but it is preserved when a

more restrictive neighborhood definition (C6N6P0) is combined with

a larger CDT (CDT = 0.05), due to its large spatial extent.

The three cluster definitions with the fewest constraints on

neighborhood structure (C18N0P0, C6N0P0, and C6N3P0) showed

very similar sensitivity and activity patterns, and therefore we will

only consider C6N3P0 in the remainder of the paper. Crucially, our

simulation results show that for all effect sizes and cluster sizes, we

can identify at least one test statistic that outperforms both GRF at

p < .001 and TFCE-C6. However, the sensitivity to different effect

sizes and cluster sizes differs widely across test statistics (i.e., cluster-

definition-CDT combinations) and it is not possible to choose a single

test statistic that performs best in all cases.

3.3 | The effect of combining cluster definitions

Figures 7 and 8 show that different test statistics are optimal for dif-

ferent combinations of effect sizes and cluster sizes. This was our

motivation for combining different test statistics by means of the

min(p) method (see Section 1.4). In particular, for each of the four

remaining cluster definitions (C6N3P0, C6N5P0, C6N6P0, and

C6N6P1) we computed a combined test statistic that combines across

different CDTs (0.05, 0.01, 0.005, and 0.001). We also used the min(p)

method to compute a combined cluster statistic that combines across

all of these four cluster definitions and CDTs. The combined test sta-

tistics for the four cluster definitions (across all CDTs) are denoted as

minp-C6N3P0, minp-C6N5P0, minp-C6N6P0, and minp-C6N6P1, and

the combined test statistic across all cluster definitions and CDTs is

denoted as minp-all.

Figure 9a shows the identification rates for the minp-C6N3P0

test statistic. Importantly, these identification rates were calculated

on the basis of corrected p-values for the clusters, that is, the p-values

were calculated under the randomization distribution of the minp-

C6N3P0 test statistic. Figure 9a shows that combining the C6N3P0

test statistic over CDTs using the min(p) method results in a sensitivity

that is similar to the best performing CDT, for all cluster sizes and

effect sizes. For large and small cluster sizes, the minp-C6N3P0 statis-

tic performs a little better than the best performing CDT, whereas for

the intermediate cluster size it performs a little bit worse. Our finding

that the minp-C6N3P0 statistic performs as well or nearly as well as

the optimal CDT for the C6N3P0 statistic shows that the correction

F IGURE 8 Analyses of real
task functional magnetic
resonance imaging (fMRI) data.
(a) Each dot indicates a
realization of the randomization
distribution of the maximum
cluster statistic for a specific
cluster definition, scaled as a
percentage relative to the

maximum observed cluster
statistic for that cluster
definition. (b) The percentage of
active voxels identified in the
group analyses, based on
different cluster definitions.
(c) The voxels that are included in
the active clusters depending on
the chosen cluster-defining
threshold (CDT) (based on
C6N3P0). (d) The voxels that are
included in the active clusters
depending on the chosen
neighborhood definition (based
on CDT = 0.05). The arrow
indicates a region in anterior
cingulate where a cluster is
preserved with a strict
neighborhood definition but not
with a strict CDT
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for multiple testing (i.e., the multiple CDT-specific C6N3P0 statistics)

using the min(p) method has only minimal effects on the sensitivity.

The results for the other three cluster definitions (C6N5P0,

C6N6P0, and C6N6P1) are highly similar. However, there are substan-

tial differences between the different cluster definitions, as is also

clear from Figures 7 and 8. This fact motivates the use of the minp-all

statistic, for which the results are shown in Figure 9b. This figure

shows that combining different cluster definitions using the min(p)

method results in further improvements in sensitivity. In fact, for all

cluster sizes and effect sizes, the minp-all statistic is equally sensitive

or more sensitive than the best performing single cluster definition

statistic. This shows that combining different cluster definitions using

the min(p) method results in a better sensitivity for the different types

of effect.

As a further check on the proof in the Appendix, we also calcu-

lated the empirical brain-level FA rates for the different min(p) test

statistics. Figure 9c shows that all these test statistics control the FA

rate at their nominal values.

3.4 | Combining TFCE-parameters

In Figure 9, we reported on the results that were obtained by combin-

ing different CDTs and different cluster definitions into a single test

statistic by means of the min(p) method. The same method can also

be used to combine across the different tuning parameter values for

TFCE. The calculation of the TFCE image depends on a width and a

height parameter, and different values for these parameters may

result in a different sensitivity profile of the associated statistical test.

Therefore, we also investigated the sensitivity of a min(p)-TFCE statis-

tic that combined across all 25 tuning parameter combinations that

were considered in the original paper by Smith and Nichols (2009).

We applied this method to TFCE with surface (TFCE-C6) connectivity

structure. Figure 10a shows that the min(p)-TFCE-C6 statistic shows

better sensitivity than TFCE-C6 for small effect sizes. However, for

intermediate and large effects sizes we did not observe an advantage

of combining across TFCE parameter settings.

3.5 | Comparing the best test statistics

We now compare the four test statistics that are the most promising

on the basis of our previous analyses: GRF with CDT = 0.001,

TFCE-C6, minp-TFCE, and minp-all. Figure 10a shows the identifica-

tion rates for these four test statistics. We found that, for all simu-

lated cluster sizes and effect sizes, minp-all outperformed all three

other test statistics (the existing methods). For small effect sizes

(0.6 and 0.8) and intermediate or large clusters, the identification

rate of minp-all is up to five times larger than the one for the best

performing existing method. For larger effect sizes (1.0 and 1.2), the

identification rate increases for all test statistics, but minp-all con-

tinues to outperform the existing methods. For example, for large

clusters with an effect size of 1, the identification rate increases

from 31 to 74%.

F IGURE 9 (a) The effect of
combining cluster-defining
threshold's (CDT's) using the
min(p) method on the
identification rate is illustrated
for the C6N3P0 test statistic.
(b) The effects of combining
cluster definitions using the
min(p) method on the

identification rate. Each of the
cluster definitions was also
combined across CDTs using
the min(p) method. (c) False
alarm (FA) rates of the
combined cluster definitions
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Identification rate, the measure of sensitivity on which we

reported so far, is the probability that at least 50% of the voxels in

the simulated cluster is detected as significant. This measure

depends on two factors: (a) the probability that one or more clusters

are significant (the brain-level hit rate), and (b) the probability that

these significant clusters cover more than 50% of the voxels in the

simulated cluster. In Figure 10b, we show the brain-level hit rates

for the four best test statistics. In terms of this measure, for medium

and large clusters, the minp-all statistic outperformed all other test

statistics. For small clusters, GRF at CDT = 0.001 slightly out-

performed the minp-all statistic. Together, the results in Figure 10a,

b suggest that GRF at CDT = 0.001 is good at detecting whether

there is an effect, but performs poorly in identifying the spatial

extent of the effect. The minp-all statistic performs well for both

measures of sensitivity.

The flipside of a better effect coverage is a potentially reduced

spatial specificity. To investigate whether this is indeed the case, we

calculated the percentage of simulations in which the number of false

positive voxels was larger than the number of true positive voxels,

which we will call the false identification rate. The result of this analy-

sis is shown in Figure 10c. For small cluster sizes, the false identifica-

tion rate for all four test statistics is approximately the same. For

intermediate and large clusters, the false identification rate is higher

for the minp-all statistic than for the existing methods. However, in

absolute terms, the minp-all statistic showed adequate spatial

sensitivity for all cluster and effect sizes, as the false identification

rate was always between 6 and 8%.

In Figure 11, we show the results of our analyses of the real

task fMRI data. These analyses pertain to the contrast “unexpected
minus expected” and they reflect the suppression of the stimulus-

evoked response when the objects expected. Although not relevant

for the present paper, this suppression was only observed when the

objects were attended. For each of the four statistical tests, we

obtained a significant difference between the expected and the

unexpected condition. However, there is a substantial variability in

the activation maps. In line with our simulation results, we find that

the spatial extent for GRF at CDT = 0.001 is very small. The spatial

extent for minp-all and TFCE-C6 are very similar and both are much

larger than GRF at CDT = 0.001. The spatial extent for minp-TFCE-

C6 is the largest and some of the included voxels have a very low t-

statistic, with the minimum t-statistic equaling 1.000018. This lib-

eral behavior of the minp-TFCE-C6 statistic seems inconsistent with

the fact that, in our simulation study, the minp-all statistic was more

sensitive for all combinations of effect size and true effect cluster

size. It is possible that the real task fMRI data have true active

voxels that can only be detected when the TFCE is performed using

appropriate tuning parameters. Alternatively, the larger spatial

extent for the minp-TFCE-C6 statistic may be the result of spatial

smearing that increases the false identification rate (Woo

et al., 2014).

F IGURE 10 Different
measures of sensitivity and
spatial specificity of the
Gaussian random field (GRF),
TFCE, minp-TFCE, and minp-all
test statistics. (a) The
identification rate, which is the
% of simulations in which a
significant cluster overlaps with

at least half of the simulated
cluster. (b) The dataset hit rate,
which shows the percentage of
simulations in which an above
threshold cluster was detected,
regardless of whether this
overlapped with the simulated
cluster. (c) The spatial
specificity, which is measured
as the percentage of
simulations in which more false
positive than true positive
voxels were detected
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4 | DISCUSSION

We have described a randomization test that can be used for group-

level analyses in a within-participant neuroimaging study. This ran-

domization test controls the FA rate under the null hypothesis of sta-

tistical independence between the biological data and the explanatory

variable. Because the FA rate control of a randomization test does not

depend on the test statistic, we discuss ways to design a test statistic

that optimizes sensitivity. Specifically, we introduce the min(p)

method for combining test statistics with different sensitivity profiles.

We performed a set of simulations that demonstrate accurate FA rate

control and illustrate the different sensitivity profiles of cluster-based

test statistics with different CDTs and cluster definitions. Using the

min(p) method for combining these test statistics resulted in a drastic

increase of sensitivity, improving on the existing methods for statisti-

cal analysis of fMRI data. This increase in sensitivity was not at the

expense of the spatial specificity of the inference.

This article belongs to a long tradition of nonparametric statistical

methods for the analysis of neuroimaging data (Bullmore et al., 1996;

Hayasaka & Nichols, 2003; Maris, 2012; Maris & Oostenveld, 2007;

Nichols & Holmes, 2002; Raz, Zheng, Ombao, & Turetsky, 2003;

Winkler et al., 2014; Winkler et al., 2016). There are three essential

differences between the existing literature and the present paper.

First, the present paper builds on the novel null hypothesis of statisti-

cal independence between the biological data and the explanatory

variable, whereas previous work has mainly focused on exchangeabil-

ity and distributional symmetry (Maris & Oostenveld, 2007; Nichols &

Holmes, 2002; Winkler et al., 2014). Even a proper randomization test

for single-participant event-related fMRI data (Raz et al., 2003) was

introduced from a perspective that focused on exchangeability.

Because the null hypothesis is formulated at the level of the raw data

(instead of functions of the raw data, such as regression coefficients),

this formal framework allows for a straightforward application to

event-related designs. In contrast, null hypotheses about functions of

the raw data require distributional assumptions that may be violated

(Eklund et al., 2016; Winkler et al., 2014).

Second, the present paper demonstrates the usefulness of the

min(p) method for combining test statistics with different sensitivity pro-

files. The application of this method to the analysis of neuroimaging data

is not novel (see Winkler et al., 2016), but the motivation for its applica-

tion (here, combining different sensitivity profiles) is novel. The idea of

constructing test statistics with specific sensitivity profiles is also not

novel. In fact, it lies at the heart of the TFCE methodology (Smith &

Nichols, 2009). However, it is often unknown which sensitivity profile is

optimal for a given dataset, and the min(p) method effectively deals with

this ignorance by combining the different sensitivity profiles.

Third, our main quantification of sensitivity involved a measure

that indexes coverage probability (identification rate), instead of the

usual brain-level hit rate. This quantification is in line with the main

scientific interest in current neuroimaging research: identifying the

F IGURE 11 Analyses of real
task functional magnetic
resonance imaging (fMRI) data.
Map of significantly active voxels
for the Gaussian random field
(GRF), TFCE, minp-TFCE, and
minp-all test statistics. The colors
in each activity map indicate the
T-statistic for the contrast

“unexpected minus expected”
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location of the neural tissue that is affected by some experimental

contrast. Especially in terms of coverage probability, our best per-

forming cluster statistic (minp-all) outperformed all the existing statis-

tical methods. In addition, our simulations show that spatial specificity

does not appreciably suffer from combining different test statistics

(see Figure 10c).

As with every simulation study, its results do not have the status

of a mathematical proof. In fact, it cannot be excluded that different

results may be obtained with other ingredients for the simulation

study (e.g., effect topography, noise correlations, test statistics). In

other words, its conclusions depend on the parameters that were

manipulated and the ones that were kept constant. An important

parameter that was kept constant in our simulation study is the effect

topography across our population of participants. Inducing heteroge-

neity in the participant-specific effect topographies would result in a

decrease in the sensitivity of all statistical tests on which we reported.

In addition, it would complicate the assessment of the spatial specific-

ity of the statistical inference, both in terms of sensitivity (here, mea-

sured by the identification rate) as well as voxel-specific FA rate (here,

measured by the false identification rate). Heterogeneity in the effect

topography confronts us with the difficulty of defining a group-level

effect cluster that represents all the participant-specific effect clus-

ters. This is further complicated by the fact that most fMRI data ana-

lyses use spatial smoothing as a part of the preprocessing. The

MATLAB code that we have shared is a good starting point for an effi-

cient simulation workflow that can address this issue.

Compared to parametric tests based on GRF theory, our randomi-

zation test has the advantage that spatial smoothing is not required. It

is also not required to define clusters by thresholding one-sample

T-statistics, which have the disadvantage that, via their denominator,

they depend on the heterogeneity of the participant-specific effect

topographies. When using the randomization distribution as the refer-

ence distribution, there is complete freedom with respect to

preprocessing as well as the choice of the test statistic. This allows us

to make (the type of) spatial smoothing optional and to select from a

much broader range of test statistics. As example of this advantage,

consider the possibility that, depending on the spatial structure in the

data, statistical sensitivity may increase as a result of an appropriate

type of spatial smoothing. Depending on the data, different types

of spatial smoothing may be optimal; smoothing of the contrast- or

T-images, smoothing with or without edge-preservation, and so forth

(see Lohmann et al., 2018). Calculating parametric p-values for

smoothed T-images is a nontrivial statistical problem. In contrast,

p-values under the randomization distribution can be obtained easily,

and they control the FA rate for every type of spatial smoothing. Thus,

it is both easy and useful to combine spatial smoothing methods such

as LISA (Lohmann et al., 2018) with randomization testing.

Analytic flexibility is one of the main threats of reproducible neu-

roimaging research (Poldrack et al., 2017). This practice involves that,

after collecting the data, the researcher analyses his data in several

different ways, with each analysis pipeline typically culminating in a

statistical test. Combining the min(p) method with preregistration pro-

vides a sensitivity-preserving solution for the FA rate inflation that

results from this analytic flexibility. This FA rate inflation follows from

two errors: (a) designing analysis pipelines after inspecting the pat-

terns in the data, and (b) failing to correct for multiple testing. The

simplest prevention against the first error is preregistration, and the

simplest remedy for the second error is Bonferroni correction. How-

ever, Bonferroni correction fails to take into account the statistical

dependence (correlation) between the different test statistics, and this

goes at the expense of statistical sensitivity. The min(p) method is

very likely to be a sensitivity-preserving alternative for Bonferroni

correction because the randomization distribution of the minimum

p-value does take this statistical dependence into account.

In conclusion, the present paper describes two statistical innova-

tions for neuroimaging studies: (a) a randomization test for group-level

analysis in within-participant studies, and (b) a method for combining

test statistics with different sensitivity profiles. These two innovations

allow for novel statistical tests that control the FA rate and drastically

outperform the existing statistical tests with respect to sensitivity.

Future research has to show (a) whether the formal framework used

in the present paper can also be used for improving sensitivity in other

study types (e.g., studies involving explanatory variables that are not

under experimental control), and (b) to what degree the results of our

simulation study depend on its specific ingredients.
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APPENDIX

The randomization test for a within-participant design controls the

FA rate

Here, we give a formal proof of the fact that the randomization test

controls the FA rate. Before the actual proof, we introduce the nota-

tion, and give a formal description of the null hypothesis and the ran-

domization test procedure.

Notation

The biological data are denoted by Y, and the explanatory variable by

X. The variables Y and X are random variables and their realizations

(i.e., the values that were actually observed) are denoted by, respec-

tively, y and x. The biological variable Y is an array of n component data

structures Yr (r = 1, …, n) with realizations yr, each one corresponding

to one participant (indexed by r) that is randomly and independently

drawn from some population. In a single-run fMRI experiment, yr is the

multivoxel signal recorded in this run.

The explanatory variable X is a variable of which the relation with

the biological variable Y is of scientific interest: stimulus/cue type,

task/instruction, and so forth. The variable X is an array of n compo-

nents Xr (r = 1, …, n) with realizations xr, each one corresponding to

one participant. Every component Xr in turn consists of m subcompo-

nents Xrs (s = 1, …, m) with realizations xrs, each one corresponding to

one event time. In the following, we will denote Xr as the condition

order.

The data are depicted in Figure A1. This figure is schematic and

applies to both scalar and high-dimensional biological data; the struc-

ture of the data arrays is not shown in the figure. Note that it is not

possible to separate the participant-specific Yr in a set of m smaller

subcomponent data structures, each one corresponding to one of the
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m subcomponents Xrs. This is because in an MR time series the effects

of the different events are superimposed on each other. Also note

that there are only two possible condition orders, but that the partici-

pants can have different time courses of triangle heights, which corre-

spond to the magnitudes of the event-specific BOLD-responses.

The hypothesis of statistical independence

Our randomization test is a test of the hypothesis of statistical inde-

pendence between the biological data Y and the explanatory variable

X. This hypothesis pertains to the conditional probability distribution

of the biological data Y given the explanatory variable X: f

(Y = yj X = x). The probability distribution of Y may of course depend

on other variables besides X, the explanatory variable of interest, but

the effect of all these other variables will be considered noise that

contributes to the variability of Y for a given realization x of X.

Formally, with our randomization test, we test the null hypothesis

of statistical independence between Y and X:

f Y = y X = xj Þ= f Y = yð Þ,ð ðA1Þ

or, in brief, f(Yj X) = f(Y). In the remainder of this article, unless there is

a risk for confusion, we will disregard the distinction between a ran-

dom variable (X, Y) and its realization (x, y). Statistical independence is

symmetrical between Y and X, and therefore can also be expressed as

follows:

f X Yj Þ= f Xð Þð ðA2Þ

Equation (A2) is useful for proving the FA rate control of the

randomization test.

Equations (A1) and (A2) are the most general formulation of the

null hypothesis of statistical independence. However, a more specific

formulation is possible if the participant-specific component data

structures Yr are statistically independent from each other. In this

case, the null hypothesis can be formulated as follows

f Yr Xrj Þ= f Yrð Þ, for r =1,…,nð ðA3Þ

Because the participants are randomly drawn from some popula-

tion, the functions f(Yrj Xr) and f(Yr) characterize probability distribu-

tions over this population.

The probability distribution f(Xr) is called the randomization distri-

bution, and we assume it to be known, typically because it is under

experimental control. The randomization distribution f(Xr), specifies

the probabilities of the different condition orders. The proof that will

be given in the following applies to all randomization distributions.

However, not all randomization distributions are equally interesting

from a neurobiological point of view. The interest is almost always in

the difference between two experimental conditions A and B. For a

within-participants design, this interest translates into a randomization

distribution with nonzero probabilities only for complementary condi-

tion orders, such as ABBA and BAAB. Noncomplementary condition

orders (e.g., ABBA and ABAB) would result in a statistical test that is

less sensitive in detecting a difference between A and B.

The variable Y and its components Yr denote raw data. Of course,

when calculating a test statistic, the raw data will be processed with

the goal of extracting the relevant information for some phenomenon

of interest (by means of averaging, GLM-based deconvolution, the

Fourier transform, …). However, the proof that will be given in the fol-

lowing makes no assumptions that limit this data processing: if the null

hypothesis of statistical independence holds for the raw data, it also

holds for any function of the raw data. Of course, if this null hypothe-

sis does not hold, then the choice of the test statistic may very well

affect the probability of rejecting it (i.e., the sensitivity). In general, a

well-informed choice of the test statistic (zooming in on the aspect of

the data that best reflects the effect) increases the sensitivity.

The randomization test procedure

The randomization test can be performed with an arbitrary test statis-

tic S(yobs, xobs), in which yobs and xobs are the realizations of Y and X

that were observed in the study. In a study with a within-participants

manipulation, the test statistic typically depends on the contrasts

between the condition-specific regression coefficients that are

obtained from the participant-specific GLM-analyses. These contrasts

are combined over the participants, by averaging or by calculating a

one-sample (paired-samples) T-statistic.

The reference distribution for the test statistic is obtained by

repeatedly calling the same randomization mechanism that also gener-

ated xobs, and plugging the resulting random variable X in the test sta-

tistic: S(yobs, X). Note that we use the symbol X both to denote the

random variable that generates the initial assignment xobs, as well as

the random variable that is used to construct the reference

F IGURE A1 Schematic representation of the data of a study with
a within-participants manipulation of the explanatory variable. Every
timeline (row) corresponds to one participant and every triangle to
one event. The colors of the triangles denote the experimental
conditions (red = A, green = B), and their heights denote the
amplitude of the biological data
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distribution under which the p-value is calculated (using the fixed

values xobs and yobs). In the following, whenever there is a risk for con-

fusion, we will use Xrand to denote the random variable that is used to

construct the reference distribution. We will use the same name (ran-

domization distribution) to denote f(X), f(Xrand), and the reference dis-

tribution f(S(yobs, Xrand)). The p-value is calculated by evaluating S(yobs,

xobs) under f(S(yobs, Xrand)).

For the implementation of a randomization test, one must know

the randomization distribution f(X), which specifies the probabilities of

the different condition orders. With two experimental conditions, the

most sensitive option is a randomization distribution with two com-

plementary condition orders with equal probabilities. Most

researchers want to have an equal number of participants per condi-

tion order, and therefore the random assignment involves sampling

without replacement. However, the proof of the randomization test's

FA rate control does not depend on the details of this randomization

mechanism.

To exactly construct the randomization distribution, all possible

assignments must be enumerated. When the number of units is large,

it is computationally infeasible to perform a complete enumeration.

However, in this situation, it is possible to approximate the randomi-

zation distribution (with arbitrary accuracy) by randomly drawing

values from it. The resulting approximation is denoted as a Monte

Carlo estimate, and its accuracy can be quantified by means of a

Monte Carlo confidence interval.

The decision about the null hypothesis is taken on the basis of a

p-value that is obtained under the randomization distribution. For a

test statistic of which large values provide evidence against the null

hypothesis, the randomization p-value can be expressed as P(S(yobs,

X) > S(yobs, xobs)), in which P denotes “probability.”
The decision about the null hypothesis (accept or reject) is taken

by comparing the randomization p-value with the so-called nominal

alpha level. This nominal alpha level is some a priori value between

0 and 1, typically 0.05 or 0.01. If the randomization p-value is less

than the nominal alpha level, the null hypothesis is rejected; other-

wise, it is accepted.

The randomization test controls the FA rate

We will now prove that, under the null hypothesis of statistical inde-

pendence, the probability of a randomization test rejecting this null

hypothesis is equal to the nominal alpha level. This proof differs from

the corresponding proof for a parametric statistical test (e.g., the

t-test). In the latter case, the test statistic's reference distribution (its

probability distribution under the null hypothesis) is known prior to

collecting the biological data. In contrast, for a randomization test, the

reference distribution depends on yobs. We will deal with this depen-

dence in two steps:

1. We start by proving FA rate control for a specific realization yobs of

Y. That is, we will prove conditional FA rate control.

2. We prove that conditional FA rate control implies unconditional

FA rate control (i.e., independent of yobs).

The randomization test controls the FA rate conditionally given

Y = yobs

The FA rate is the probability of falsely rejecting the null hypothesis.

A false rejection occurs if, under this null hypothesis, the randomiza-

tion p-value P(S(yobs, X) > S(yobs, xobs)) is less than the nominal alpha-

level (α). The FA rate is evaluated over hypothetical replications of the

study, and therefore we must allow for the possibility that the initial

assignment (explanatory variable) xobs differs over these replications.

We begin by fixing Y at yobs, and will therefore consider the condi-

tional FA rate given Y = yobs. Now, the randomization p-value for a

given study is P(S(yobs, Xrand) > S(yobs, X = xobs)), in which the probability

is taken over the realizations of Xrand. For given values of yobs and xobs,

this p-value is a constant, but as a function of the random variable X,

it is random. Now, the probability of rejecting the null hypothesis

equals the probability that this random p-value is less than α. In

terms of the random test statistic S(yobs, X), this equals the probability

that S(yobs, X) is larger than the (1 − α) × 100 percent quantile of the

randomization distribution f(S(yobs, Xrand)). Here, we tacitly assume a

one-tailed test. However, our proof generalizes to two-tailed tests in

a straightforward way.

Because our objective is to determine the FA rate conditionally

given Y = yobs, we must know the corresponding conditional probabil-

ity distribution of S(yobs, X): f(S(yobs, X)j Y = yobs). We now make use of

the null hypothesis of statistical independence between X and Y. Spe-

cifically, because S(yobs, X) is a function of the random variable X,

under this null hypothesis, not only X but also S(yobs, X) is statistically

independent of Y. Thus, the conditional probability distribution f(S

(yobs, X)j Y = yobs) is identical to f(S(yobs, X)), which in turn is identical to

the randomization distribution f(S(yobs, Xrand)), whose (1 − α) × 100

percent quantile is used to determine whether the null hypothesis will

be rejected. As a consequence, under the null hypothesis, and condi-

tional on Y = yobs, the probability that S(yobs, X) is larger than the (1

− α) × 100 percent quantile of the randomization distribution f(S(yobs,

Xrand)) is exactly equal to α. In other words, conditional on Y = yobs, the

probability of falsely rejecting the null hypothesis is exactly equal to α.

This completes our proof of the fact that the randomization controls

the FA rate conditionally given Y = yobs.

FA rate control conditionally given Y = yobs implies unconditional FA

rate control

At first sight, controlling the FA rate in this conditional sense

(i.e., conditional on Y = yobs) is not very appealing. After all, who is

interested in the conditional FA rate given one specific realization of

Y? However, the FA rate is equal to the critical alpha-level, regardless

of whether the p-value has a conditional or an unconditional interpre-

tation. This is because, for every realization yobs of Y on which we con-

dition, the FA rate is equal to the same critical alpha-level. Therefore,

if we average over the probability distribution of the random variable

Y, the FA rate remains equal to this critical alpha-level. This can also

be shown in a short derivation. In this derivation, the FA rate under
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the conditional distribution f(Y, X j Y = yobs) is denoted by

P RejectH0jY = yobs
� �

, and the FA rate under f(Y, X) by P RejectH0ð Þ .
The FA rate P RejectH0ð Þ is obtained by averaging the conditional FA

rate P RejectH0jY = yobs
� �

over the probability distribution f(Y = yobs):

P RejectH0ð Þ=
ð
P RejectH0jY = yobs
� �

f Y = yobs
� �

dyobs

= α
ð
f Y = yobs
� �

dyobs = α

In the first line of this derivation, we make use of the following

equality from elementary probability theory: P(A) =
Ð
P(Aj B = b)P

(B = b)db. And in the third line, we make use of the fact that the prob-

ability densities f(Y = yobs) integrate to 1.

We can conclude that an FA rate that is controlled under the con-

ditional distribution f(Y, X j Y = yobs) is also controlled under the

corresponding unconditional distribution f(Y, X). This conclusion is a

special case of the following general fact: for every event (in our case,

falsely rejecting the null hypothesis) whose probability is controlled

under a conditional distribution, also the probability under the

corresponding unconditional distribution is controlled. This general

fact will be called the conditioning rationale.

The conditioning rationale is used to prove the unconditional

control of the FA or Type 1 error rate, and does not involve a claim

about the Type 2 error rate (i.e., the probability that null hypothe-

sis is maintained while in fact the alternative hypothesis is true).

This is similar to classical parametric statistics, in which only the

Type 1 error rate is controlled. However, different from classical

parametric statistics, in the nonparametric framework the

researcher is free to choose the test statistic. He may do this on

the basis of prior knowledge, with the objective to reduce the Type

2 error rate.
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