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Learning fine‑grained estimation 
of physiological states 
from coarse‑grained labels 
by distribution restoration
Zengyi Qin1, Jiansheng Chen1*, Zhenyu Jiang1, Xumin Yu1, Chunhua Hu2, Yu Ma3, 
Suhua Miao3 & Rongsong Zhou3

Due to its importance in clinical science, the estimation of physiological states (e.g., the severity 
of pathological tremor) has aroused growing interest in machine learning community. While the 
physiological state is a continuous variable, its continuity is lost when the physiological state is 
quantized into a few discrete classes during recording and labeling. The discreteness introduces 
misalignment between the true value and its label, meaning that these labels are unfortunately 
imprecise and coarse-grained. Most previous work did not consider the inaccuracy and directly utilized 
the coarse labels to train the machine learning algorithms, whose predictions are also coarse-grained. 
In this work, we propose to learn a precise, fine-grained estimation of physiological states using these 
coarse-grained ground truths. Established on mathematical rigorous proof, we utilize imprecise labels 
to restore the probabilistic distribution of precise labels in an approximate order-preserving fashion, 
then the deep neural network learns from this distribution and offers fine-grained estimation. We 
demonstrate the effectiveness of our approach in assessing the pathological tremor in Parkinson’s 
Disease and estimating the systolic blood pressure from bioelectrical signals.

Machine learning based algorithms1–8 have been recognized as promising enablers of computer-aided diagnosis 
and smart healthcare systems, since these algorithms are suitable for capturing the complex features and latent 
information in the recorded medical data to estimate the physiological states of the subjects. For instance, a recent 
work9 proposes a data efficient similarity learning algorithm that uses surface electromyography (sEMG) to clas-
sify the Parkinson’s Disease tremor into 5 levels with state-of-the-art accuracy. Researchers have also proposed 
effective time-frequency feature extraction and learning algorithms10–12 to estimate the neuromuscular disorders 
with EMG signals. Research13–16 has also been conducted to use novel convolutional neural networks to clas-
sify the sleeping stage of the subjects using the electroencephalogram (EEG) of their brains. EEG, EMG and 
sEMG are examples of medical data. Tremor severity, sleep stage and neuromuscular disorders are examples of 
physiological states that the machine learning models are employed to estimate. Normally, when we build such 
a machine learning model, we need a set of labeled data to train the model before it can perform the desired 
diagnostic task. Each input (e.g., a sequence of EMG) is labeled with the physiological state it implies (e.g., one 
of the stages of sleep). The labels are provided by human annotators, and the quality of these labels can have a 
significant influence on the model performance.

A typical problem faced by many of these machine learning algorithms is that the labels that they learn from 
are coarse-grained. In various scenarios the labels are provided as classification labels. By learning from such 
labels, the machine learning model takes the raw medical data as input and classifies the physiological state into 
discrete classes. Nevertheless, since the physiological state is inherently continuous, the discrete labels provided 
by human annotators may not be fine-grained enough to precisely reflect the physiological state. For instance, 
consider the simplest case where we classify the severity of a certain disease on a patient into two levels, slight 
and severe. In this sense, the annotators are required to provide binary labels by quantizing their judgments 
into two discrete categories. However, since the severity of a disease is actually a continuous variable, the binary 
quantization unavoidably introduces misalignment between the label and its true value. As a consequence, the 
model trained with such labels is not able to make precise predictions. Physiological states should be represented 
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by real-valued continuous variables instead of discrete classes. One may argue that we can define more and finer 
classes to solve the problem, so that regression can be used instead of classification. However, obtaining precise 
ground truth is extremely difficult since in most cases, expert annotators label the physiological states based on 
their subjective clinical observation, rather than a ruler with precise scales.

In this work, we are interested in developing a general machine learning method to learn the fine-grained 
estimation of physiological state from coarse labels, which has notable benefits in exploring the rich details of 
physiological rhymes. Figure 1a illustrates the high-level framework, where we aim to build an estimator that 
takes the bioelectrical signal as input and predicts the fine-grained physiological states as real-valued continu-
ous variables. The smooth color gradients indicate that the physiological states should change continuously. 
Figure 1b illustrates the classification labels that quantize the continuous physiological states (see Fig. 1c) into 
coarse-grained discrete classes. Developing machine learning algorithms that learn coarse labels to make fine-
grained predictions is difficult, because the information the algorithm aims to learn is not explicitly provided by 
the labels in the training set. In previous literature, the research most relevant to ours is using Gaussian Process 
based approaches to learning fine-grained estimation from aggregate outputs17,18. They assume that the aggregate 
output or group statistics (e.g., the average fine-grained label) of a bag of inputs is known. Nevertheless, in our 
scenario, what we have is only the coarse label of each input, rather than the aggregation (e.g., the average) of 
their fine-grained labels. Therefore, these Gaussian Process based methods are targeted at a task intrinsically 
different from ours and cannot be used to directly solve our task.

Our approach is based on a mathematically rigorous theorem that we propose, which proves that such a task is 
achievable if the predictions of the machine learning algorithm satisfy two conditions. Based on this understand-
ing, we propose the distribution restoration and ordinal-scale learning method to train the machine learning 
model so that the two conditions can be approximately satisfied. The proposed method is easy to implement 
using simple loss functions, yet effective in diverse tasks. More details are described in the “Method” section. 
Extensive experiments have been conducted on tremor severity estimation, parameter estimation on synthetic 
signals and systolic blood pressure estimation. The quantitative results demonstrate the superior performance 
of our method in learning fine-grained estimate of physiological states from coarse-grained labels.

Remark 1  Physiological states as considered as continuous variables in this article. Typical examples include the 
severity of a disease, the blood pressure and the frequency of heartbeats. In some situations the states are discrete, 
but they still have their continuous measurements. For instance, heartbeats are discrete, but the frequency of 
heartbeats is continuous. By choosing a suitable definition of the physiological states, we can ensure that the 
states are viewed as continuous in these scenarios.
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Figure 1.   Overview. The basic objective is to estimate the intrinsic physiological state of subjects from their 
bioelectrical signals, illustrated in (a). (b) Shows an example of coarse labels, where the red arrows point to 
different states but have the same label. The inaccuracy is caused by quantizing the continuous physiological 
state (c) into discrete stages in (b). Although imprecise, the coarse labels are easy to obtain and abundant in 
quantity. The final objective is to offer a precise estimate of the real physiological state by learning from those 
coarse labels. (d) Compares the typical classification and the proposed fine-grained assessment. Classifiers 
tend to build boundaries in feature space, while there should be no absolute boundary between neighboring 
physiological states. (e) Shows an example distribution of discrete classification labels suffering from inaccuracy 
in describing continuous physiological states. (f) Presents the approximated distribution of continuous fine-
grained labels, which is restored from (e) via interpolation by assuming the ordinal and continuous nature of 
physiological states.
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Remark 2  This work mainly studies ordinal physiological states. While in some cases the states can bifurcate 
instead of being ordinal, our method is still applicable by incorporating with a classifier. For example, when the 
physiological state bifurcates into two branches corresponding to different types of diseases, we can first clas-
sify which branch the physiological state is on, then apply our method to that branch to perform fine-grained 
estimation of the disease severity.

Results
We conduct comprehensive experiments on three specific tasks: (1) tremor severity assessment for Parkinson’s 
Disease (PD) using surface electromyography (sEMG), (2) parameter estimation for synthetic sEMG signals 
and (3) systolic blood pressure estimation using photoplethysmography (PPG) and electrocardiogram (ECG) 
signals. To the best of our knowledge, this work represents a pioneering attempt on the fine-grained assessment 
of bioelectrical states by learning from coarse labels.

Tremor severity estimation.  Tremor is a typical movement disorder occurring on the limbs of patients 
with Parkinson’s Disease. According to the universally accepted MDS-UPDRS19, the tremor severity is divided 
into 5 escalating levels, normal, slight, mild, moderate, severe, which we represent with integers {1, 2, 3, 4, 5} 
respectively. The main evaluation is done on PD-sEMG9 dataset containing 10K sequences of single-channel 
sEMG collected from the upper limbs of 147 individuals at a sampling rate of 1 KHz. Figure 2 visualizes typical 
samples from the dataset. Each sample was annotated by multiple experts independently, and would not be used 
if the annotations were different, leading to generally unbiased labeling. In this experiment, the physiological 
state refers to the tremor severity.

Comparison to state‑of‑the‑art methods.  We cannot directly compare our approach with existing 
methods10–13,20–23, which focus on multi-class classification instead of fine-grained regression. For comparison, 
we round the predicted real-valued tremor severity to the nearest integers. We present the recall, precision for 
each class and the average accuracy in Table 1. Results are reported on the test set corresponding to9. FE and SL 
are short for feature engineering and similarity learning respectively. The proposed approach outperforms others 
under various evaluation metrics.

Fine‑grained estimation of tremor severity.  Our ultimate goal is not building a new multi-class classifier. Despite 
the classification performance shown in Table 1, we are not able to directly validate the correctness of the deci-
mal part of our outputs because of the absence of fine-grained ground truth. However, it is still possible to 
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Figure 2.   Visualization of PD-sEMG dataset. Each sEMG sequence is annotated with a class label among the 
five classes defined by the internationally accepted MDS-UPDRS19 rating scale. The class label indicates the 
tremor severity where Class 5 represents severe and Class 1 represents normal. It is clear that the sEMG features 
change gradually from Class 1 to Class 5 corresponding to the fact that the physiological states are naturally 
continuous. The discrete classification labels are only coarse approximations of the real situation and cannot 
capture the smooth transitions between neighbouring classes.

Table 1.   Comparison to state-of-the-arts on PD-sEMG dataset. The best performance in each column is 
marked in bold.

Method

Recall (%) Precision (%)

Class 1 Class 2 Class 3 Class 4 Class 5 Class 1 Class 2 Class 3 Class 4 Class 5

Bayes + FE24 72.25 47.50 55.25 22.00 52.50 46.69 63.33 56.09 29.73 53.71

MLP + SL9 67.00 68.50 26.75 73.50 99.50 62.04 56.61 84.92 81.00 66.90

S-Net + SL9 81.00 93.25 85.00 94.00 99.50 85.49 87.55 90.43 96.90 92.34

BioeNet (Ours) 93.75 90.50 99.75 100.0 100.0 91.01 93.78 99.50 99.75 100.0
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estimate the lower bound performance, which occurs when the model is predicting an instance lying on the 
boundary between neighbouring classes. We implement this idea by assuming that the ground truth of class i is 
missing. We train the model using input signals of class {. . . , i − 1, i + 1, . . .} and test the model using those of 
class i, which lies on the boundary of class i − 1 and i + 1 because of the ordinal nature of classes. The evaluation 
results are shown in Table 2. Results are reported on the test set corresponding to9. The precision is calculated 
by rounding the network output to the nearest integer to obtain the classification results, and then counting 
the classification precision for Class i. The pseudo MAE refers to the average of |c̃i − cci | , where c̃i is the pre-
diction and cci  is the coarse label that is regarded as pseudo ground truth. The model is trained using labels of 
class {. . . , i − 1, i + 1, . . .} and evaluated on class i, the boundary between class i − 1 and i + 1 . This experiment 
indirectly verifies the fine-grained output c̃i . The slack L1 loss is always applied in training, and the two distribu-
tion losses both contribute to the performance according to the table. Even though the labels for class i are not 
provided, it is shown that the model still manages to predict the unseen instances of this class. Likewise, if we 
train the model using all the data of classes {1, 2, 3, 4, 5} , the decimal part of prediction c̃ is supposed to match 
the inaccessible fine-grained ground truth.

Feature space interpretation.  In Fig. 1d, we have pointed out that typical classification model tends to build a 
boundary separating the features of different classes. This intuition is supported by Fig. 3b, where the samples 
are grouped around class centers, leaving a large gap among those centers. In this sense, because the intra-class 
separability is weakened, the model only learns a coarse estimation of physiological state. On the contrary, by 
employing the distribution loss, the distance in feature space is well correspondent with the distance in clinimet-
ric scale as is shown in Fig. 3a. The boundaries are almost eliminated, corresponding to the fact that physiologi-
cal states are generally continuous instead of being separated by sharp boundaries.

Parameter estimation on synthetic signals.  A disadvantage of the experiment of tremor severity esti-
mation is that the fine-grained ground truth is unavailable, which means we can only indirectly examine the 
effectiveness of our approach. In this subsection we perform a new experiment using synthesized data whose 
fine-grained ground truth is accessible, which allows us to directly compare the network outputs with the 
ground truth. Based on the previous work25, we synthesized sEMG signals with controllable parameters, which 
are regarded as the fine-grained ground truth to be learned. The previous study26 has revealed that the wave-
length of sEMG signals is correlated with the physiological states such as the frequency of pathological tremor. 
Therefore, we choose wavelength as the parameter to be estimated. Within a sequence of synthetic signal (i.e., a 
training or testing example), the wavelength is set to a constant floating point number generating the signal. 90K 
training sequences and 10K testing sequences are generated with wavelength uniformly distributed in [150, 250] . 
During training, we evenly divide the range into 5 intervals. The coarse label of sequences in an interval is set to 
the medium of the interval. In testing, the network is expected to predict the fine-grained label of each testing 
sequence.

Table 2.   Fine-grained estimation on PD-sEMG dataset. The best performance in each column is marked in 
bold.

Loss 
configuration Precision (%) Pseudo MAE

Lm Lr i = 2 i = 3 i = 4 i = 2 i = 3 i = 4

� 75.58 58.33 49.64 0.937 1.015 0.838

� � 81.50 86.34 71.57 0.528 0.623 0.674

Figure 3.   Interpretation in feature space. Each dot represents a sequence of bioelectrical signal in feature 
space obtained by executing PCA to the output of the forth convolutional layer from the end of BioeNet (see 
“Method” section for the detailed description of BioeNet). (a) Represents the case where the proposed training 
method is applied, while in (b) the network is trained as a typical classifier. The color represents the estimation 
of physiological state c ∈ [1, 5] . In (a), the distances among samples correspond well to their distance in real 
physiological states, while in (b) the continuity is broken, contradicting the fact that the physiological state 
should be continuous in nature.
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Evaluation results.  We consider four baseline methods including the most commonly used L1 regression (L1) 
and L2 regression (L2), as well as the immediate-threshold regression (IT)27 and all-threshold ordinal regression 
(AT)27. We evaluate the mean absolute error (MAE), root mean square error (RMSE) and the normalized inver-
sion. Denote the fine-grained label of two sequences as ci and cj , and the predicted label as c̃i and c̃j . An inversion 
refers to the case where ci < cj and c̃i > c̃j , or ci > cj and c̃i < c̃j . The normalized inversion refers to the number 
of inversions divided by the maximum possible number of inversions that equals to 

(n
2

)

 , where n is the number of 
examples in the testing set. As is shown in the first row of Fig. 4, our method has the least fine-grained estimation 
error, exhibiting superior performance over the compared methods.

Systolic blood pressure estimation.  Here we perform an experiment on real data where the fine-grained 
ground truth is known, instead of using the synthetic data. The task is regressing blood pressure from bioelectri-
cal signals. We adopt the cuff-less blood pressure estimation28 dataset where the Photoplethysmography (PPG), 
Electrocardiography (ECG) and corresponding Arterial Blood Pressure (ABP) are collected from at least 441 
patients. Sampled data are visualized in Fig. 5. The network is to predict the maximum Systolic Blood Pressure 
(SBP) within a segment from the PPG and ECG signals. The fine-grained SBP ground truth is divided into 5 
equally spaced coarse classes for training the deep neural network using the proposed framework. The baseline 
methods and evaluation criteria are the same as the experiment on synthetic signals.

Evaluation results.  As is shown in the second row of Fig. 4, predictions made by the proposed method are the 
closest to the fine-grained ground truth and have the least estimation error. Our predictions also have the least 
normalized inversion. While a typical blood pressure value is between 80 and 120 mmHg, 92.97% of our predic-
tion errors are less than 5 mmHg, while using the all-threshold based ordinal regression approach this number 
decreases to 76.56%.

Figure 4.   Estimation errors. The first row is for the parameter estimation of synthetic signals, and the second 
row is for the systolic blood pressure estimation.

Figure 5.   Visualization of the Cuff-less blood pressure estimation dataset. The Electrocardiography (ECG) and 
Photoplethysmography (PPG) are normalized for better visualization. The Systolic Blood Pressure (SBP) refers 
to the peak of Arterial Blood Pressure (ABP).
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Conclusions
In this article we propose a machine learning approach for predicting the fine-grained physiological states when 
only coarse-grained labels are given in the training data. Different from previous methods that aim to classify 
the physiological states into discrete classes, our method offers continuous and fine-grained estimation that are 
informative of even the slightest changes. Learning fine-grained predictions from coarse labels is intrinsically 
challenging due to the lack of supervision. Starting from mathematically rigorous proof, we reveal the possibility 
to solve this challenge by (1) restoring the continuous probability distribution of the fine-grained labels and (2) 
preserving the order of the fine-grained predictions. Then we propose a set of simple yet effective loss functions 
that enable the network outputs to approximately satisfy both conditions.

The fine-grained estimation of physiological states is potentially useful in a wide range of applications such 
as monitoring the physical condition of patients. Take the Parkinson’s Disease tremor as an example. The tremor 
is divided into 5 discrete levels by the MDS-UPDRS19. But this does not provide sufficient resolution to monitor 
the tremor severity in a fine-grained scale. After taking a medicine, the tremor might become less severe, but the 
difference could be too small to change the severity from one level to another. Our method reveals the possibility 
to automatically monitor the slight changes and provide more information, for example, on the effectiveness of 
medication.

To evaluate the proposed method, we conduct comprehensive experiments on tremor severity estimation 
using sEMG signals, systolic blood pressure estimation using PPG and ECG signals, as well as the parameter 
estimation from synthetic sEMG signals. Results have shown that the proposed approach can significantly reduce 
the regression errors. The effectiveness of each loss function we propose is also examined. Our algorithm has 
demonstrated potentials in automatically and precisely diagnosing diseases and monitoring the physical condi-
tions of individuals in a more sophisticated way.

Method
Problem formulation.  Given a sequence of stochastic bioelectrical signal V = [v1, v2, . . . , vL] with L sam-
pling time steps, our objective is to learn a mapping function f : V → c , where c ∈ [1,C] is the assessment of 
the physiological pattern that V reflects. For example, c can represent the severity of tremor and C equals to 
the maximum severity level. In a typical classification setting, c is an integer belonging to the set {1, 2, . . . ,C} , 
as such the classification model is not designed to offer sufficient resolution to account for the intra-class vari-
ations, indicating that such classification is coarse-grained. Previous work discretized c into countable classes 
(e.g., 1, 2, . . . , 5) and modeled f : V → c as a classification function. This formulation cannot give a fine-grained 
estimate of physiological states. For instance, when two patients are both of severity level 2, their actual severity 
can be slightly different (e.g., 2.1 vs 2.3) but the classification method cannot distinguish them. Instead, our aim 
is to provide a fine-grained estimate of the physiological state that can differentiate the slight differences. This 
is potentially useful in various scenarios. Suppose that a patient of severity level 2 took a medicine and then 
the severity decreased to 1 after 10 h. Using our fine-grained estimation, we can measure the small changes of 
the severity overtime, which could help physicians to understand the effect of the medicine. On account of the 
importance of fine-grained estimation, we first replace the discrete classification with the continuous regression 
so that c is a floating point number, which is expected to reasonably correspond with the naturally continuous 
physiological states. Nevertheless, it causes difficulties in training for the lack of ground truth labels. After all, it 
is over demanding for doctors, the annotators, to score their observation in accurate floating point numbers. The 
available ground truth data are only discrete integers indicating the categories. Hence we consider the problem 
as learning an estimator function f that maps V to a continuous real-valued c using typical classification labels, 
which we refer to as coarse-grained labels.

Approximating the estimator function.  We propose a convolutional neural network BioeNet (see 
Fig. 6a for details) to approximate the function f : V → c . BioeNet takes as input a batch of bioelectrical signals 
with length L and the number of channels D. It outputs a floating point number for each sequence of signal in a 
batch representing the estimated physiological state. The batch size is denoted as H. By using global max-pooling 
in the head layer, BioeNet is translation invariant to input signals. In the followings, we will show how the neural 
network can approximate the function f by learning from coarse labels. We will first propose a theorem that 
mathematical proves the feasibility of learning fine-grained estimation from coarse labels. Then we will propose 
two learning strategies, distribution restoration and ordinal scale learning, to implement the theory.

Theorem 1  Two continuous probability density functions pA(x) and pB(x) are defined on x ∈ [θ1, θ2] . pA(x) ≥ δ > 0 
and pB(x) ≥ δ > 0 . SA = {a1, a2, . . . , an} and SB = {b1, b2, . . . , bn} are independent random samples from pA(x) 
and pB(x) respectively. If satisfying (I) pA(x) ≡ pB(x) and (II) ∀i, j ∈ {1, 2, . . . , n} , ai ≤ aj ⇔ bi ≤ bj , then 
∀i ∈ {1, 2, . . . , n} we have:

Here we propose Theorem 1 as the mathematical basis of our method and prove it at the end of this section. 
Note that Theorem 1 does not rely on a specific network architecture (e.g., BioeNet). Based on Theorem 1 we 
conclude that when n is sufficiently large, we have

(1)E||ai − bi||
2 ≤

1

2δ2(n+ 2)

(2)lim
n→∞

E ||ai − bi||
2 = 0,
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which means SB almost equals to SA , or their element-wise error has zero expectation, if both conditions stated 
in Theorem 1 are satisfied. In our specific task, we consider SB as the network prediction and SA the fine-grained 
ground truth as floating point numbers. SA is inaccessible in training but is assumed to exist in reality. Our 
objective is to enable the network prediction SB to approximately comply with both of the conditions so that it 
is close to SA.

Distribution restoration.  Meeting the first condition of Theorem 1 requires the probabilistic distribution 
of network predictions accord with that of the intrinsic physiological state c. As a continuous variable, c obeys 
a continuous distribution that can be restored from the discrete distribution of training labels as is in Fig. 1e by 
interpolation. Mathematically, there are a infinite number of curves that can interpolate the discrete points. In 
order to obtain a smooth curve and reduce redundancy, we utilize cubic interpolation here. The justification of 
interpolating neighboring stages comes from the rationality of clinical practices. Clinical experts define these 
stages to thoroughly describe a physiological process. If the experts had observed that a phenomenon seriously 
undermined the smoothness of the stage change, they should have already defined a new stage based on this 
phenomenon. Therefore, the changes between neighboring stages should be generally gradual and smooth. The 
physiological states are continuous because of the natural continuity of most physiological processes. Figure 1f 
shows the continuous probabilistic density obtained from the discrete distribution of coarse classification labels 
in Fig. 1e. The essence of this distribution restoration is making use of the ordinal information of class labels. 
In physiological state classification, neighboring classes can be assumed to be in a natural order. It should be 
noticed that this may not be true in other classification tasks such as object recognition in computer vision 
and emotional semantic analysis in natural language processing. Let pC(x) denote the restored distribution. 
Although pC(x) is only an approximation, it still provides richer information than the discrete classification 
labels. During training, we sample a batch of floating point numbers to represent pC(x) statistically, then calcu-
late its Maximum Mean Discrepancy loss Lm with the network outputs

where H is the batch size, c̃i ( ̃cj ) denotes the network output and csi  ( csj  ) indicates the floating point numbers 
sampled from the distribution pC(x) ; and k(x, y) represents the Gaussian kernel. This loss item minimizes the 

(3)Lm =
1

H2

H
∑

i,j

[

k(c̃i , c̃j)− 2k(c̃i , c
s
j )+ k(csi , c

s
j )

]

,
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Figure 6.   Network and pipeline overview. (a) illustrates the proposed BioeNet. Taking the bioelectrical signals 
as input, BioeNet predicts the physiological states indicated by these signals. The specific type of physiological 
states depends on training labels, for example, tremor severity. (b) Provides a systematic view of the training and 
testing process.
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discrepancy between the distribution of network predictions and the continuous distribution restored from 
coarse labels. In order to avoid the network outputs to concentrate in the vicinity of integers, We also minimize 
the kurtosis of the outputs. The kurtosis loss Lr is formulated in Eq. (4), where µc̃ and σc̃ indicate the forth-order 
expectation and variance of c̃i for class ĉ . The kurtosis of all classes are summed up to be optimized.

The distribution loss is the sum of Lm and Lr . It functions as an implicit supervision. Although the ground truth 
value corresponding to c̃i cannot be directly obtained, we expect c̃i s to comply well with the restored continuous 
probabilistic distribution pC(x).

Ordinal scale learning.  The second condition of Theorem 1 requires the element order in SB to be the 
same as that in SA . A specific example in Fig. 1b involves two arrows indicating different physiological states. 
The network is expected to give the left one a lower score than the right one, preserving their real order. When 
there are sufficient many arrows, the second condition can be approximately satisfied. In training labels, though 
the instances of the same class are randomly permuted, the order of instances from different classes is provided 
by their coarse-grained labels. Hence we propose the following Slack L1 loss for the network to learn such an 
ordinal scale.

where cci  indicates the coarse classification label as integer; α is the tolerance range and β is utilized to smooth 
the gradients. When the difference |c̃ − cc| is less than a tolerance threshold α , Ll equals to zero so that the 
network does not get punished. The basic concept underlying Eq. (5) is that, the coarse-grained label cc only 
represents the integer part of the real ground truth, and thus the difference |c̃ − cc| may not equals to zero when 
c̃ is a floating point number. Therefore, we slack the objective to a tolerance range α to introduce more flexibility 
to the network, which learns a generalized ordinal regression without suffering from the discontinuity of train-
ing labels. Note that the order of instances within the same class is inaccessible due to the absence fine-grained 
ground truth. Even so, the network still manages to distinguish the intra-class order, which will be demonstrated 
in the experiment section.

Pipeline overview.  A systematic view of the learning pipeline is shown in Fig. 6b. During training, a mini-
batch contains H sequences of bioelectrical signals, each with L timesteps and D channels. BioeNet predicts a 
score indicating the physiological state for each sequence of signal, thus yielding a H × 1 vector, whose Slack L1 
loss with the coarse-grained labels is computed. Meanwhile, we sample H numbers from the restored continuous 
distribution and compute their maximum mean discrepancy loss with the network outputs. The parameters of 
the convolution kernels in BioeNet are optimized via gradient descent. During testing (inference), BioeNet takes 
a sequence of bioelectrical signal and directly predicts the physiological state in an end-to-end fashion.

Implementation details.  The proposed BioeNet is implemented using Tensorflow and Python. All the 
convolutional layers are followed by a batch normalization layer and ReLU non-linearity, except that the last 
layer is purely linear. We choose H = 512, L = 2048 in training, while the number of channels D depends on 
the acquisition instruments of different bioelectrical signal datasets. We utilize Adam optimizer to train for 60 
epochs at a learning rate 10−4 and then for 20 epochs at 10−5.

Proof of Theorem 1 The proof consists of two parts. For the first part, let y ∼ U(0, 1) and z ∼ U(0, 1) be inde-
pendent stochastic variables. {y1, y2, . . . , yn} and {z1, z2, . . . , zn} are two sets of independent samples of y and z 
with elements sorted in an ascending order, i.e., ∀i ≤ j , yi ≤ yj and zi ≤ zj . It is well-known that yk and zk are 
the k th order statistic29 of the standard uniform distribution and the variance.

Since yk and zk are independent, we have

For the second part, we consider two continuous probability density functions pA(x) and pB(x) defined on 
x ∈ [θ1, θ2] . pA(x) ≥ δ > 0 and pB(x) ≥ δ > 0 . SA = {a1, a2, . . . , an} and SB = {b1, b2, . . . , bn} are independent 
random samples from pA(x) and pB(x) respectively, satisfying (I) pA(x) ≡ pB(x) and (II) ∀i, j ∈ {1, 2, . . . , n} , 
ai ≤ aj ⇔ bi ≤ bj , then ∀i ∈ {1, 2, . . . , n} . Let âk and b̂k be the k th smallest elements in SA and SB respectively, and 
F(x) be the cumulative distribution of pA(x) that is the same as pB(x) . Established on the fact that any continuous 

(4)Lr =

C
∑
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distribution can be mapped to the standard uniform by its cumulative distribution function, we can conclude 
that SFA = {F(a1), F(a2), . . . , F(an)} and SFB = {F(b1), F(b2), . . . , F(bn)} both follow U(0, 1) . Then we have

which is based on Eq. (7). And thus:

Since ∀i, j ∈ {1, 2, . . . , n}, ai ≤ aj ⇔ bi ≤ bj , the ranking of ai in SA equals to that of bi in SB . There exists a k that 
ai and bi are the k th smallest element in SA and SB respectively. The theorem is finally proved.

Data availability
The PD-sEMG9 dataset, the synthetic sEMG dataset and the source code are available at https​://githu​b.com/
Zengy​i-Qin/fine-biost​ate. The Cuff-Less Blood Pressure Estimation28 dataset is publicly available online https​
://www.kaggl​e.com/mkach​uee/Blood​Press​ureDa​taset​.
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