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Abstract

Tropical montane habitats, grasslands, in particular, merit urgent conservation attention

owing to the disproportionate levels of endemic biodiversity they harbour, the ecosystem

services they provide, and the fact that they are among the most threatened habitats glob-

ally. The Shola Sky Islands in the Western Ghats host a matrix of native forest-grassland

matrix that has been planted over the last century, with exotic timber plantations. The popu-

lar discourse on the landscape change is that mainly forests have been lost to the timber

plantations and recent court directives are to restore Shola forest trees. In this study, we

examine spatiotemporal patterns of landscape change over the last 40 years in the Palani

Hills, a significant part of the montane habitat in the Western Ghats. Using satellite imagery

and field surveys, we find that 66% of native grasslands and 31% of native forests have

been lost over the last 40 years. Grasslands have gone from being the dominant, most con-

tiguous land cover to one of the rarest and most fragmented. They have been replaced by

timber plantations and, to a lesser extent, expanding agriculture. We find that the spatial

pattern of grassland loss to plantations differs from the loss to agriculture, likely driven by

the invasion of plantation species into grasslands. We identify remnant grasslands that

should be prioritised for conservation and make specific recommendations for conservation

and restoration of grasslands in light of current management policy in the Palani Hills,

which favours large-scale removal of plantations and emphasises the restoration of native

forests.
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Introduction

Tropical montane habitats harbour great diversity but are threatened by climate change [1]

and conversion to other uses [2], such as agriculture [3] and plantations [4]. These habitats do

however harbour relict species [5] and disproportionately high endemism across the world [6–

8] and can serve as an early warning system for the impacts of climate change [9].

Within these habitats, tropical montane grasslands have been shown to occur naturally, and

exist as an alternative stable state to adjacent forests [10–12]. Despite occupying a fraction of

protected habitat, montane grasslands host unique assemblages of endemic and threatened

species of plants, birds, mammals and amphibians [7, 13, 14]. Grasslands also play an impor-

tant role in the global carbon cycle due to the slower decomposition rates of organic materials

and by allocating as much as 90% of their biomass to underground storage [15]. Finally, they

serve as a water source for downstream communities in different parts of the world [7, 16, 17].

Despite their economic and ecological significance, tropical montane grasslands are often

used for agriculture, livestock rearing and urbanisation [2, 7, 18, 19]. These threats are com-

pounded by changes to fire regimes, soil fertility and the spread of invasive alien species [20–

22] The flawed perception that these grasslands are ‘degraded habitats’ [23] has also resulted in

the establishment of extensive plantations of exotic species for timber (ibid), biofuels and more

recently, carbon sequestration at vast scales [24]. Consequently, Bond and Parr (13) character-

ise afforestation as ‘one of the most severe threats’ to these grasslands. Tropical montane grass-

lands are thus amongst the most threatened habitats today [25] and these threats are expected

to amplify with anthropogenic global climate change [26].

The Shola Sky Islands of the Western Ghats

The montane sky islands—situated within the Western Ghats-Sri Lanka global biodiversity

hotspot [27]—consist of a unique natural mosaic of forest (locally called Shola) and grassland

[17]. Like other tropical montane ecosystems, the sky islands of the Western Ghats have

undergone significant habitat loss to plantations, agriculture and other developmental pres-

sures [28]. These losses have exacerbated the isolation and fragmentation associated with these

high-elevation mosaics and impacted gene flow in birds [29] and butterflies [30] and caused

cultural divergences in birdsong [31, 32]. Grassland loss has even driven local extinction of

several endemic plants Impatiens tangachee Bedd., Papilionanthe subulata (Willd.) Garay [33],

Rhododendron arboreum Sm. ssp. nilagiricum (Zenker) Tagg. [34], Strobilanthes kunthianus
(Nees) T. Anderson ex Benth. [35], and a bird—the threatened Nilgiri Pipit [36] in parts of the

Palani landscape.

Historical changes in Shola-Grasslands in the Palani Hills

The Palani Hills hold a significant portion of the sky island habitat of the Western Ghats. His-

torically, small populations of different human groups including the indigenous Paliyans have

inhabited the lower slopes [37]. The upper plateau however, did not have a significant human

population until the arrival of American missionaries and British civil servants in the early 19th

Century [38]. At the time this mosaic was contiguous with the High Range-Anamalais land-

scape to the west. The establishment of Kodaikanal as a hill station in 1845 triggered significant

changes near the town including the creation of an artificial lake, and the introduction of

exotic, fast-growing timber species (Acacia mearnsii, Eucalyptus globulus and Pinus spp.), that

were introduced to meet local needs. Nonetheless, it was not until the 1960s that landscape-

scale changes occurred, when the forest department began replacing montane grasslands, then

categorised as ‘wasteland’ [23], with exotic timber plantations. Some plantation species–most

notably Acacia mearnsii–are recognised invasives [39] and began invading the grassland. In
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1996 there was a nationwide ban on tree felling [40], but planting activities continued.

Recently, a significant part of the Palani landscape, including large tracts of plantations, was

designated as the Kodaikanal Wildlife Sanctuary (KWS; 20.09.2013 G.O Ms No 143).

Current perception of ecosystem change and restoration in the Palani Hills

Of late, there is a growing perception that these exotic timber plantations have adversely

affected biodiversity and the water table, although Rangan et al. [41] suggests that regional cli-

matology may be responsible for the latter. These issues have been reported across several

newspapers [42] and social media platforms [43] and even resulted in a court’s interim direc-

tion to “ensure that Shola forests and tropical rain forests are restored to its original state” [44].

Despite a lack of detailed information on the extent and nature of landscape change in the

Palani Hills, the state forest department has now been tasked to “annihilate wattle” (sic) and

restore forests, assuming that only forests have been impacted by these plantations (WR1-

7028-2014 dated 26-3-2014). Additionally, regional assessments of landscape change have

focused on forest cover while ignoring the loss of native grasslands [45, 46] However, a prelim-

inary assessment of the Palani Hills landscape suggested an extensive loss of grassland habitat

[47].

Given current forest policy in the Palani Hills and the fact that major changes in this land-

scape have occurred since the 1970s, we feel that a quantitative assessment of landscape change

using satellite images, with a focus on both forests and grasslands, is appropriate and necessary.

Our objectives are to study landscape changes from 1973–2014, with a focus on the loss and

conservation of natural habitats. Specifically, we ask:

1. What are the spatiotemporal patterns of change in grasslands, forests, plantations and agri-

culture in the Palani Hills?

2. What factors influence the pattern of grassland loss?

3. What is the representativeness of protected area system in this landscape given historical

change?

Methods

Data and study area

We procured Landsat images from U.S. Geological Survey (https://earthexplorer.usgs.gov/)

and Global Land Cover Facility (http://www.landcover.org/) for every decade (1973, 1981,

1993, 2003 & 2014) from the earliest available date (S1 Fig) for the Palani Hills landscape (S1

Table). Data were procured for the dry season when cloud cover is low and spectral differences

between agriculture and grasslands are accentuated. We restricted our analysis to areas�

1400m elevation; this is a conservative threshold for the occurrence of montane shola-grass-

land habitat [17]. On the western side, we used the state boundary to restrict our study to

Tamil Nadu (Fig 1), since state governments uniquely determine forest management and this

boundary has been stable for the period of the study. The study area falls in the Dindigul dis-

trict, between 10˚ 6’ to 10˚20’N and 77˚16’ to 77˚24’E.

Image preprocessing and classification

We conducted noise reduction for the satellite remote sensing images (Landsat MSS/TM/ETM

+) in the visible data. We used a self-adaptive filter method for non-periodic noise and Fast

Fourier Transformation for auto removal of periodic noise [48] in ERDAS IMAGINE 2014.
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We then converted Digital Number (DN) of the images to radiance, and further, to retrieve

only the surface reflectance, we removed the atmospheric components (e.g. water vapor, dust

particles) using FLAASH in ENVI[49]. In order to bring all satellite imageries to the same geo-

graphical coordinate system for change detection studies, all imageries were georeferenced

into WGS 84 datum. We then used Image-to-image registrations using Ground Control Points

(GCPs) obtained from Landsat 8 OLI orthorectified data. Multi-resolution satellite imageries

were resampled into 30 m resolution to reduce pseudo change detection [45]. We mapped

roads and verified locations of settlements, grasslands and water bodies with Survey of India

(SOI) toposheets (1:50,000) and obtained the KWS boundary from Tamil Nadu Forest Depart-

ment (TNFD). For image classification and ground-truthing, we divided the study area into 5

km2 grids (Fig 1) and collected data on landcover. Data was gathered from 555 points between

Feb 2016–Oct 2016 using Garmin (etrex Vista-H) GPS. GPS PDOP error was less than 20 m—

less than the 30m resolution of the Landsat pixel. The Palani study area is spread across two

LANDSAT scenes, and we were unable to obtain cloud-free data for this region in 2015 or

2016. The 2014 imagery cloud-free data was therefore the closest in time to the 2016 training

Fig 1. Palani Hills with ground data collected across the landscape.

https://doi.org/10.1371/journal.pone.0190003.g001
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samples and was used for classification. There was, however, one scene (89% of study area)

that was cloud-free in 2016. We found a small (1.3%) difference between this image and the

2014 imagery (S2 Fig), and accordingly chose to use the 2014 images for the full landscape.

For the years 1973–2003, we used a hybrid classification method [45] combining supervised

classification, topography and reference data (collected from the SOI toposheets), visual inter-

pretation techniques [50] using image characteristics (e.g. tone & texture) and site-associated

features to classify the landscape (S2 Table). Information on forest plantations was also col-

lected for 1993 and 2003 from TNFD management plans. We used a supervised classification

approach (Spectral Angular Mapper) to classify the landscape into six discrete landcover

types–Shola Grassland, Shola Forest, Timber Plantations (includes soft and hardwood), Settle-

ments, Agricultural and Fallow Lands, and Water bodies. We also classified the 2014 imagery

with the same techniques as the 1973–2003 data, in order to assess accuracy across methods.

We found that this accuracy (2014 data classified using hybrid classification method) was simi-

lar across methods.

As we were unable to classify plantation forests by species (i.e. Acacia, Pinus, and Eucalyp-
tus) due to the limited resolution of the historical images, we merged them into a single class–

timber plantations. Agricultural fallows and grasslands were observed to have similar reflec-

tance. Misclassifications also occurred between bare rock and settlements and between young

plantations and shola forests. These errors were addressed through reclassification in ERDAS

IMAGINE (v2014) using a combination of field data and high-resolution Google Earth imag-

ery (http://earth.google.com/). We were unable to accurately demarcate settlements from

agriculture in our supervised classification. We addressed this by digitising agriculture and set-

tlements from Google Earth imagery for 2014 (http://earth.google.com/). For earlier dates, we

used SOI toposheets (surveyed between 1972–1973) to digitise these boundaries along with

visual interpretation techniques.

Accuracy assessment

We assessed the accuracy of our 2014 classification using ground truth data (150 points

excluding training samples) to create an error matrix [51]. The accuracy of historical classified

maps was assessed using NRSC visual interpretation techniques and toposheets [50]. To mini-

mise errors due to differences in classification of the present (2014) and historical imagery, we

also assessed the accuracy of the former (S3 Table) using NRSC’s visual interpretation tech-

niques in addition to the assessment with ground truth data.

Landscape change detection

We used the Landscape Change Modeler in TerrSet GIS v18.30, [52] to quantify landscape

change and to calculate the area occupied by each class, after converting all the pixels to the

same (30 m) resolution. We used compound interest formula to derive the (S4 Table) annual

rate of change [53] in grasslands, forests and plantations.

Spatial pattern of change

We examined change in spatial distribution of shola grassland, plantation and agriculture over

the study period using metrics measuring the size distribution of patches, shape complexity,

the degree of isolation and spatial dispersion of patches [54]. We also compared patterns of

grassland loss to plantation versus agriculture by extracting a layer of polygons for grasslands

lost to plantations, and to agriculture at each time step, and comparing their size distribution,

shape complexity and spatial arrangement. These analyses were conducted in Fragstats v4

[54].
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Logistic regression

We used logistic regression models (LRMs) to assess the relationship between existing planta-

tions and agriculture and the probability of grassland loss in the two most recent time periods

(1993–2003 and 2003–2014) [55], as this was when most of the grassland loss took place (this

study). Specifically, we were interested in: a) whether area under agriculture or plantation in

the surrounding landscape was able to predict grassland loss to agriculture or plantation

respectively, after accounting for distance to roads, settlements and topography; and b) the

spatial scale at which surrounding plantations or agriculture was best able to explain grassland

conversion.

As the effects of surrounding land use (plantation or agriculture) on probability of grass-

land conversion are not additive, we chose to model grassland loss to plantation and agricul-

ture separately by generating Boolean images with values of ‘1’ for grassland converted to

plantations and ‘0’ for grasslands remaining unchanged in 1993–2003 and in 2003–2014 (S3

and S4 Figs). We repeated this for grassland converted to agriculture in both time periods (S5

and S6 Figs).

The explanatory variables we used were: distance from major road which was normalized

and log-transformed [56] (S7 and S8 Figs), proportional area under settlements in a

1050x1050m moving window (S9 and S10 Figs), proportional area under agriculture in 1993

and 2003 (in moving windows of 210x210m and 1050x1050m: S11–S14 Figs) and proportional

area under plantations in 1993 and 2003 (in moving windows of 150x150m and 450x450m:

S15–S20 Figs). In the case of plantations, we included a local scale (150x150m) moving win-

dow to examine effects of local invasive spread through seed rain and vegetative propagation

from neighbouring plantations (Richardson and Kluge 2008). Slope variability was derived

from ASTER GDEM (http://gdem.ersdac.jspacesystems.or.jp/; S21 and S22 Figs)

Two LRMs were run for each grassland conversion type (loss to agriculture, and loss to

plantations) at each time step, where only the spatial scale of surrounding agriculture/planta-

tion was varied while all other predictors were held constant(S1 R Code). We then used Akaike

Information Criterion (AIC;[57]) to select the best model. A random sample of 80% of the

data was used to run the LRMs, and the remaining 20% was used to validate the models. The

accuracy of the LRMs predictions was assessed using the AUCROC (Area Under the Receiver

Operating Characteristic Curve). This analysis was conducted in R [58] and in ArcGIS v 10.1

[59].

Results

We were able to classify the landscape into shola forest, shola grassland, timber plantations,

human settlements, agriculture and water bodies. The overall classification accuracy was

91.3%, 90.0%, 92.6%, 94.6% and 96.0% for the images from 1973, 1981, 1993, 2003, and 2014

respectively, suggesting that our classification was effective and reliable [60]. The lower accu-

racy for the 1973 and 1981 images was likely due to coarser spectral and spatial resolution of

the Landsat MSS sensor. The Kappa coefficient was calculated to be 0.89, 0.88, 0.91, 0.94 and

0.95 for 1973, 1981, 1993, 2003 and 2014 maps respectively.

Temporal characteristics of landscape change

More than half (58%) of the study landscape has undergone a change from 1973–2014. This

change is characterised by a disproportionate loss (249 km2) of Shola grasslands from 71% to

24% of the study area whereas the loss of shola forests during the same period was 33 km2

(Tables 1 and 2, Fig 2). The loss of native habitat was driven by a 12-fold increase in planta-

tions, while agriculture increased from 31.1 km2 to 104.5 km2 in the same interval. Smaller
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increases were observed in settlements and water bodies. Between 1973–2014, area decreases

(e.g. grasslands) & increases (e.g. timber plantations) were gradual (Figs 2 and 3). Nevertheless,

the maximum change occurred from 1993–2014 when grassland loss and an increase in plan-

tations and agriculture were the highest (Figs 2 and 3).

Spatial pattern of landscape change

The area-weighted mean (AREA_AM) grassland patch size decreased from 137.5 km2 ± 8.6SD

to 3.5 km2 ± 0.49SD, with the greatest reduction (94.7 km2) occurring between 1981 and 1993

(S23A Fig). In the same period, the Largest Patch Index (LPI), which measures the proportion

of the landscape occupied by the largest patch of a cover type, decreased greatly for grasslands

from 53% to 29% (Fig 4A). The AREA_AM plantation patch size increased from 0.15 km2 ±
0.05SD to 95.2 km2 ± 3.3SD, with most of the increase taking place post-1993 (S23B Fig). The

AREA_AM patch size for agriculture increased from 6.1 km2 ± 1.1SD to 24 km2± 3.4SD (S23C

Fig).

Comparison of the spatial pattern of grassland loss to plantations with the loss to agri-

culture. Grassland loss to plantations (AREA_AM patch size) increased from 0.19km2 to

0.98 km2 ± 0.12SD from 1973–2003, after which it decreased (Fig 5A). Although patches of

grassland lost to agriculture showed higher AREA_AM values and greater levels of variation,

the temporal trend was similar, with the largest patches (3.2 km2 ± 0.47SD) lost to agriculture

from 1993–2003 (Fig 5B). Grassland patches lost to plantation had higher shape complexity

(Perimeter to Area Fractal dimension—PAFRAC) than those lost to agriculture. Further,

PAFRAC values associated with plantation-driven loss increased with time unlike the agricul-

ture-driven loss of grassland (Fig 5B). Finally, grassland patches lost to plantations showed

lower aggregation (55.4%-74.7%) than patches lost to agriculture (81.7%-90.5%, Fig 5D).

Factors influencing grassland loss

All predictors chosen were significantly correlated to grassland loss. In the case of grasslands

lost to plantations, the model with proportion area under plantation in a 150x150m window

Table 1. Area (in sq.km.) of each classified land use type across four decades, in the Palani Hills.

LULC Class 1973 1981 1993 2003 2014

Shola Grassland 373.777 325.298 257.052 183.016 124.389

Shola Forest 99.954 87.081 89.422 65.417 66.375

Timber Plantations 18.2662 65.3104 111.4 173.727 217.9

Settlements 3.159 3.588 4.600 5.862 9.381

Agricultural and Fallow Land 31.145 45.254 60.029 94.588 104.560

Water bodies 0.726 0.491 1.044 0.998 1.033

https://doi.org/10.1371/journal.pone.0190003.t001

Table 2. Change in area (in sq.km.) between decades, in the Palani hills, across classified land use types.

LULC Class 1973–1981 1981–1993 1993–2003 2003–2014 1973–2014

Shola Grassland -48.479 -68.246 -74.036 -58.627 -249.388

Shola Forest -12.873 2.340 -24.004 0.958 -33.578

Timber Plantations 47.044 46.089 62.327 44.173 199.6338

Settlements 0.428 1.012 1.261 3.519 6.221

Agricultural and Fallow Land 14.109 14.775 34.558 9.971 73.414

Water bodies -0.234 0.552 -0.045 0.035 0.307

https://doi.org/10.1371/journal.pone.0190003.t002
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performed the best (β = 2.74, p< 0.001 in 1993–2003 and β = 4.75, p< 0.001 in 2003–2014).

The proportion of plantation in the immediate neighbourhood of grasslands explained grass-

land loss better than the proportion of plantation at coarser scales. The AUCROC values for

these models were -0.72 (1993–2003) and -0.84 (2003–2014). In the case of grasslands lost to

agriculture, the area under agriculture within a 1050x1050m neighbourhood was a better pre-

dictor of grassland loss (β = 5.47, p< 0.001 in 1993–2003 and β = 7.27, p< 0.001 in 2003–

2014) than area under agriculture within a 210x210m neighbourhood. The AUCROC values for

these models were -0.76 (1993–2003) and -0.86 (2003–2014).

Regions with flat terrain (lower slope variability) were consistently and significantly associ-

ated with higher grassland loss. Grassland lost to agriculture was negatively related (p<0.001)

with distance from major roads, while grasslands lost to plantation were positively related

(p<0.05) to distance to major roads. The proportional area under settlements in a 1km2

neighbourhood did not show consistent correlation with grassland loss across the models.

Discussion

We used historical and current satellite images and extensive ground data to establish the

widespread loss of tropical montane habitats in the Palani Hills landscape from 1973–2014. As

Fig 2. Landuse and landcover changes across the Palani Hills over four decades. GIF of this change at http://gph.is/2eBvoB2.

https://doi.org/10.1371/journal.pone.0190003.g002
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much as 88% of this loss occurred in Shola grasslands while the rest occurred in Shola forests,

owing to conversion to timber plantations, followed by agriculture. The former increased dra-

matically by 1097% and the latter by 236% during this period. This loss of native habitats con-

tradicts other studies that indicate an increase in forest cover in the Palani Hills [61, 62]. These

differences could be because other studies restrict assessments to forests that ignore native

grasslands or do not distinguish exotic tree plantations from native forests [45] As this study

indicates, these generalisations may grossly misrepresent the extent of change to native habi-

tats, especially with reference to Palani Hills.

The decimation of grasslands

While most popular discourse suggests that timber plantations have replaced Shola forests, our

data shows instead that in the last forty years, Shola grasslands have gone from being the domi-

nant, most contiguous cover type to one of the rarest and most fragmented. This data supports

naturalists’ careful observations [33, 63] of the threat to grasslands since the early 1980s.

Today, less than 33% of the original extent of Shola grassland remains, and much of this is

highly fragmented. Such loss of native grasslands has also been reported from the South Amer-

ican mountains [64], Qinghai-Tibet Plateau [65], and northern New Mexico in USA [66].

Although Shola forests have undergone a substantial loss in the Palani Hills, they have per-

sisted in many locations and are even regenerating under the cover of older plantations [67].

These successional patterns have also been reported in South Africa [68–70].

Policy Drivers and timeline of grassland loss. Although plantations have been previously

recognised as the major driver of landscape change [47], this analysis also highlights the role of

Fig 3. Change in landcover. (A) as expressed in the percent cover for each decade, and (B) as expressed in the decadal changes in plantation, agriculture and grassland

cover as a proportion of the total change between 1973–2014 recorded for that class.

https://doi.org/10.1371/journal.pone.0190003.g003
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settlements and agriculture. While expanding plantations drove grassland loss from 2003–2014,

an increase in agriculture was primarily responsible for the loss from 1993–2003. During contact

meetings with the Kodaikanal community, we learned of two events during this period that

could explain our findings. The first was the settlement of Sri Lankan refugees under the Siri-

mavo-Shastri Pact which likely drove increases in agriculture and settlements. The second was

the nationwide ban on green felling issued in 1996 [40]. This restricted Forest Department felling

operations, but the establishment of new plantations continued unabated, resulting in a net

increase of plantations. These two factors may have also interacted as the refugees were also used

for planting operations[71]. Records of timber plantations from TNFD (S5 Table) management

plans for this period roughly match our estimates for the plantation expansion in this decade.

Are timber plantations invading the grassland?. The spatial pattern of grassland loss to

plantations is quite different from the loss to agriculture. The former has occurred in a spatially

Fig 4. Change in the spatial characteristics of the landscape as assessed by various parameters. (A) Largest Patch Index (LPI) (B) Edge Density (ED) of the cover type

(C) Mean Euclidean Nearest Neighbor Distance (ENN_MN) between patches (D) Perimeter to Area Fractal Dimension (PAFRAC) of patches (E) Aggregation Index (AI)

(F) Interspersion and Juxtaposition Index (IJI) for areal extent of grasslands, plantation and agriculture between 1973 and 2014 in the Palani Hills.

https://doi.org/10.1371/journal.pone.0190003.g004
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disaggregated manner with several smaller, increasingly irregularly shaped patches being lost

throughout the landscape. Grassland loss to plantations, therefore, appears to be increasingly

driven by natural processes, such as the invasive spread of plantation species, particularly Aca-
cia mearnsii. This species is known to be a prolific seed producer and can spread vegetatively

[72] In comparison, grassland loss to agriculture is characterised by relatively large, compact,

spatially aggregated patches: a pattern characteristic of anthropogenic processes. This implies

that grasslands in other parts will be threatened by the invading plantations unless conserva-

tion action is not taken to check this advance. Within Palani hills there are 27 species of

endemic grasses among which one is near threatened [73]–all of these face significant conser-

vation challenges.

Current grassland extent and conservation strategy

Only half of the existing grasslands (55.05 km2) appear to be included in the KWS; this area is

steadily dwindling by the year. The loss of grassland to date has substantially impacted the pop-

ulation of the endemic Nilgiri Pipit [36] and retaining existing grasslands is critical for the con-

servation of endemics. We identified eight grasslands along cliff edges or bordering

abandoned agricultural areas that could be included in the KWS (S24 Fig). We also recom-

mend the following conservation actions:

1. Identify and conserve core grasslands: Core grassland areas consist of a few to many hectares

of grassland encompassing hillocks, streams, marshes and rock outcrops. These areas, even

when nestled in a plantation matrix, should be protected and form the core around which

grassland restoration efforts should focus.

2. Check invasion in sparsely invaded grasslands: These areas are often characterised by young

plantations located in grasslands where grass cover is still extensive. Here, we recommend

physical removal of invasive species. Forest departments often have access to significant

funding through the Compensatory Afforestation (Bill passed in 2016) funds and these

could be utilized for these activities. Such funds could be used for the restoration of

marshes, existing grasslands and to manage the invasive plantations.

3. Review indiscriminate removal of mature plantations: Mature plantations often have native

shola forest regenerating under them and lack native grass cover. Grassland restoration

here is likely to be very resource-intensive. Conservation efforts should focus on sparsely

invaded and pristine grasslands. In mature plantations, we recommend conducting experi-

mental or controlled studies (like at Vattavada, Munnar Kerala), perhaps also examining

the role of fire, and monitoring soil and moisture conditions in these areas. Moreover,

removal of mature plantations could stimulate regeneration of plantation species from satu-

rated soil seed banks [72]. Monitoring of these areas is important to assess the effectiveness

of plantation removal.

4. Contain agriculture: Our field surveys indicate that paddy cultivation has been discontinued

in some marshes. Given the critical role of these marshes in regulating local hydrology,

efforts should be made to contain agriculture to the current extent and restore these

marshes using a community-led conservation effort.

Fig 5. Change in spatial characteristics of grassland lost to plantation vs. grassland lost to agriculture between 1973 and 2014 in the Palani Hills. (A) Area

weighted mean patch size (AREA_AM) with standard deviation (B) Perimeter-Area Fractal Dimension (PAFRAC) (C)Patch Density (PD) (D) Aggregation

Index (AI).

https://doi.org/10.1371/journal.pone.0190003.g005
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Our analysis was limited by the spatial and spectral resolution of LANDSAT imagery. Hence

we were unable to differentiate timber plantations by species or identify sparsely invaded grass-

lands. Future work should use high-resolution imagery to identify grasslands for restoration.

Despite these limitations, we believe this study provides the first quantitative assessment of

change in this landscape. We provide unambiguous evidence for the loss of montane grassland

to plantations and agriculture and indirect evidence for ongoing invasion by plantation species.

Given the considerably greater threat to shola grasslands compared to shola forests from planta-

tions and climate change, we recommend prioritisation of efforts to conserve and restore grass-

lands. We recommend that the need of the hour is a nuanced restoration model, developed in

collaboration with forest managers and other stakeholders. We also caution that the large-scale

removal of mature plantations as currently implemented may be counterproductive, causing

further ecological damage. Conserving remnant grasslands and stemming the advance of invad-

ing plantations offers the best chance to secure the future of grasslands in this landscape.
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