
sensors

Article

Development of Virtual Resource Based IoT Proxy
for Bridging Heterogeneous Web Services in
IoT Networks

Wenquan Jin ID and DoHyeun Kim *

Department of Computer Engineering, Jeju National University, Jeju 63243, Korea; wenquan.jin@jejunu.ac.kr
* Correspondence: kimdh@jejunu.ac.kr

Received: 11 April 2018; Accepted: 22 May 2018; Published: 26 May 2018
����������
�������

Abstract: The Internet of Things is comprised of heterogeneous devices, applications, and platforms
using multiple communication technologies to connect the Internet for providing seamless services
ubiquitously. With the requirement of developing Internet of Things products, many protocols,
program libraries, frameworks, and standard specifications have been proposed. Therefore, providing
a consistent interface to access services from those environments is difficult. Moreover, bridging the
existing web services to sensor and actuator networks is also important for providing Internet of
Things services in various industry domains. In this paper, an Internet of Things proxy is proposed
that is based on virtual resources to bridge heterogeneous web services from the Internet to the
Internet of Things network. The proxy enables clients to have transparent access to Internet of Things
devices and web services in the network. The proxy is comprised of server and client to forward
messages for different communication environments using the virtual resources which include the
server for the message sender and the client for the message receiver. We design the proxy for the
Open Connectivity Foundation network where the virtual resources are discovered by the clients
as Open Connectivity Foundation resources. The virtual resources represent the resources which
expose services in the Internet by web service providers. Although the services are provided by web
service providers from the Internet, the client can access services using the consistent communication
protocol in the Open Connectivity Foundation network. For discovering the resources to access
services, the client also uses the consistent discovery interface to discover the Open Connectivity
Foundation devices and virtual resources.

Keywords: Internet of Things (IoT); proxy; web services; virtual resource (VR); Open Connectivity
Foundation (OCF); resource directory (RD)

1. Introduction

A wide range of the industries has been equipped with the massive and heterogeneous
connected-devices through the growing technologies of the Internet of Things (IoT). The growing
number of Internet-connected devices had surpassed the population of human more than 1.84 times
in 2010 [1], and is expected to reach 50 billion in 2025 [2]. As a global network infrastructure, the IoT
can be comprised of numerous connected-devices which are developed in multiple technologies to
deploy in various industries such as transportation, healthcare, energy, smart home, etc. IoT devices
can be equipped with embedded sensors, actuators, storages, processors, and communication modules
to support functionalities in the network [3]. Based on the collaboration of IoT devices, the sensor
and actuator networks can be ubiquitous to provide efficient, seamless, and comfortable services to
end users through wired and wireless communications [4]. However, for deploying and developing
heterogeneous IoT devices in those domain-specific or cross-domain IoT systems using various

Sensors 2018, 18, 1721; doi:10.3390/s18061721 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8404-9447
http://www.mdpi.com/1424-8220/18/6/1721?type=check_update&version=1
http://dx.doi.org/10.3390/s18061721
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 1721 2 of 21

technologies, the specifications of frameworks, hardware platforms, and communication protocols
need to be considered. Therefore, the diversity of IoT devices brings difficulty of deployment and
development. Moreover, IoT devices must interwork with not only the newly deployed elements using
emerging technologies but also the existing systems.

According to the environment where an IoT device is deployed, the IoT device can be directly
connected to the Internet using a physical Ethernet, Wi-Fi radio, or cellular modem or through a
proxy [5]. Many IoT devices equip with limited power supply, computing, and network platforms,
and such constrained devices do not use pervasive network solutions [6]. Furthermore, many IoT-
related protocols and standards have been published and applied for supporting management,
discovery, and communication functionalities to IoT elements [7]. However, it is difficult to enable
the connection between constrained networks and the Internet or different communication solutions
because there is no a uniform standardization in communication protocols and network technologies
and it is also not possible to support a uniform standard [8]. Moreover, traditional web services are
provided based on the Hypertext Transfer Protocol (HTTP), it is not possible to be revised to match
the IoT challenges, and it needs to consider many underlying IoT-specific protocols [9]. Therefore,
the proxy is necessary for bridging the different elements in the IoT environment.

The proxy is an important element in the IoT network that supports protocol translation,
registration, discovery, management, and other major functions [10]. The proxy is a necessary network
element in the IoT which aims to enable communication between heterogeneous networks [11].
The perspective from service clients, the proxy bridges services including traditional web services and
emerging IoT services from various domains through a consistent interface. For the appearance of
services in the network where the proxy is deployed, the information of services needs to be registered.
Especially, the IoT devices in the constrained environment cannot always keep the client updated
about the device status because these devices are in a hibernate state most of the time [12]. The resource
directory (RD) is used for registering the resources information to provide the information to clients [13].
The proxy involves the functionalities of RD to provide the information of resources for enabling the
client to lookup accessible services in the network. Once the resource information is retrieved by a
client, then the client can access the service which is exposed by the resource. The accessing to the
service can be direct if the client and server use the same protocol, or through the proxy for converting
the protocol. Therefore, the client needs to be aware regarding the server for selecting a suitable way to
generate the request message whether the server is a service provider or a proxy. However, supporting
a consistent client scheme for enabling transparent access to the different network can allow users do
not consider which client to be used.

In this paper, an IoT proxy is proposed that is used for bridging the web services from the Internet
to the IoT network. Most of the existing web applications are developed in HTTP based servers to
provide services in the Internet. Through accessing a service from the server of web service provider
(WSP), the information can be delivered to the client. The proposed IoT proxy supports transparent
access to the web services for the client in the IoT network such as the Open Connectivity Foundation
(OCF) network. The client in the OCF network can access IoT devices directly through the OCF
communication protocol. For accessing the web services from the OCF network, the client needs
to request the proxy for forwarding the message to the destination server in the Internet. However,
the proposed IoT proxy presents the resources of WSPs in OCF network using OCF resources, and the
OCF client can request the OCF resources to access services which are provided by the WSPs. The OCF
resource is a virtual resource (VR) that represents the concrete resource of WSP in the OCF network.
The VR presents the resource information for the web service through the discovery interface by the
RD function of IoT proxy. Once the VR is discovered by the IoT client, the client can request to the VR
for accessing the concrete resource in the Internet. In the forwarding process, the message translator
function of IoT proxy translates the messages between the IoT client and WSP.

The rest of the paper is structured as follows; Section 2 introduces the related works including
the existing solutions of proxies for interconnecting different protocols and related terminologies

Sensors 2018, 18, 1721 3 of 21

regarding this paper. Section 3 introduces models of the proposed IoT proxy and IoT network, and the
methodology of translating scheme using proxy based on the VR in the IoT network. Section 4
introduces the scenarios of registration, discovery, and service accessing the resource in the proposed
IoT network. Section 5 introduces implementation detail and evaluation results regarding the IoT
proxy in the OCF network. Finally, this paper is concluded in Section 6.

2. Related Works

The emerging IoT standardization aims to support lower entry for developing services and
improve the interoperability of different entities for the better performance of services [14]. In order
to reduce the manufacturing costs of IoT devices, many frameworks have been published for the
standardization of architecture, interfaces, protocols, and services to enable the development. One of
them, the IoTivity, is a framework that is sponsored by the OCF for implementing the OCF standard
specifications. The OCF core specification includes architectures of functions, resource models,
definitions of properties, communication schemes, and other functional extensions such as discovery,
notification, and group communication [15]. The OCF as a framework for the IoT environment
that is designed to run on various systems such as Linux, Windows, Android, iOS, and Arduino [16].
The IoTivity is an implementation of OCF that support the core functions in OCF framework. Therefore,
the constrained application protocol (CoAP) is the mandatory protocol for the communication, which is
a protocol for providing IoT services with RESTful APIs by the constrained devices [17,18]. The CoAP
is a standard application protocol that is designed for REST architectural style to be the optimized
alternative to the HTTP [19]. According to the structure of the CoAP and HTTP, the proxy can be
designed to be based on mapping the request and response messages. However, once the client
requests to the destination server through the proxy, the requests need to be generated based on the
URI of proxy with the parameters for requesting the destination server.

To implement the proxy for different protocols and network architectures, the proxy needs
to involve the technologies of both sides, e.g., if an HTTP client wants to access a CoAP server,
then the proxy needs to involve the implementation of HTTP and CoAP. In this case, most of the
implementations support an interface from the proxy for receiving the HTTP request and forwarding
to the CoAP server. However, the URI of the interface shows the client requests to the proxy, e.g.,
https://p.example.com/hc/?target_uri=coap://s.example.com/light [20]. This URI structure requires
the client to select a specific proxy for the CoAP resource after the discovery. In another case,
the request involves the ID and other parameters for accessing the destination server [21]. Then,
the proxy retrieves the information of the destination server through the repository using the ID to get
required information.

The publish–subscribe (PS) model enables the constrained devises as the clients in the network to
publish their data when desiring to save power using sleepy or scheduling schemes [22]. The status
of devices can be stored and synchronized with the devices in the physical world. The clients can
subscribe the status information from the PS server to receive notifications once the device publishes
its status. Many IoT communication protocols have been presented with this model, such as HTTP [23],
MQTT [24], and CoAP [25]. Using heterogeneous communication protocols for the PS model, the PS
server needs to provide publish interfaces for the devices in different protocols. Then clients request
the subscribe interface to get data from the PS server.

In the OCF network, the OCF devices can be requested directly by the OCF clients. However,
the servers in the non-OCF network cannot be requested directly. The proxy functions as the
middleware between the client and the destination server, which can forward the original message
to the destination server after translating for the protocol of server. In this case, the proxy needs to
include the implementation of both protocols, e.g., HTTP client with OCF server or CoAP client with
HTTP server, etc. [26,27]. A specification of OCF presents an architecture of OCF device that includes
the client, server, and translator to forwarding message between different network environments [28].
In another case, the proxy can be a part of the destination server. The proxy acts as a partial function

https://p.example.com/hc/?target_uri=coap://s.example.com/light

Sensors 2018, 18, 1721 4 of 21

attached above the server to translate the received request for mapping the native interface of resources
in the framework such as oneM2M [29,30]. Moreover, the client can be implemented to support more
than one protocol for requesting the servers through multiple protocols. For accessing the destination
server, the client must know beforehand regarding to the proxy [31]. The proposed IoT proxy in this
paper also is required to be known by the client. However, the client is not aware regarding whether
the accessed server is a proxy or not. Therefore, the client accesses all services using a consistent
communication protocol without using the URI of proxy with the parameters.

Using the proposed proxy scheme, which bridges web services to the OCF network from the
Internet. The existing server applications are mainly built in HTTP, although the services are provided
for the IoT applications such as smart homes, smart cities, and other smart environments with a group
of devices [32]. Therefore, many frameworks try to support the interworking scheme between IoT
network and HTTP based servers [33]. Furthermore, the WSPs are equipped with high-performance
parts to process thousands of requests using massive data which are used for composing response
messages, such as weather information. Most of the web services are developed for providing HTTP
based APIs using XML or JSON data formats to carry the information in the response payload.
In the implementation details of this paper, the proposed proxy bridges the weather information
provider—Open Weather Map (OWM) from the OCF network [34]. The WSP provides several
weather-related services in free. Each API requires one or more parameters for accessing the service.
For the appearance in the OCF network, the service information needs to be registered. The profile
of WSP can be described by a specific data format, such as JSON, XML, etc. There are also popular
frameworks to provide a data structure for involving properties and its values to describe web services,
such as RESTful API Modeling Language (RAML) [35] and Swagger [36]. The OCF also have been
presented many descriptions of IoT devices using those frameworks [37]. In the proposed proxy,
RAML data model is used that enables the detail information can be described such as the basic
information of WSP including the base URI, resource URIs, requirement of requesting the resources of
WSP, and data model of response message. A handler of HTTP resource can be assessed by the API
with the method, and the service exposes the resource to the Internet. We define the weather service
of OWM using RAML which include the basic information of OWM and a resource specification
including relative URI, parameters, and response schema in JSON.

3. Proxy-Based IoT Architecture

3.1. IoT Architecture Based on IoT Proxy in OCF Network

In the proposed IoT network, the IoT clients can access the services which are discovered in
the network. The services are exposed by the resources of servers which are physical devices in the
same network with the IoT client [38]. For the consistent scheme to access the services provided by
heterogeneous networks, the IoT proxy can be the bridge to expose the services into the network where
the IoT client is involved.

Figure 1 illustrates the model of providing IoT services and web services to the IoT client in the
proposed IoT network where the IoT proxy is deployed. The IoT client, IoT proxy, and IoT device are
physical devices which communicate using a unique network protocol. The IoT services are provided
by IoT devices and web services are provided by WSPs. Therefore, the resources of IoT devices and
WSPs shall be enabled to access by the IoT client. An IoT device can include more than one resource
to provide IoT services, and a sensor and actuator network can include more than one IoT devices.
Those devices actually exist in the network where the IoT client is involved. The WSPs are deployed in
the Internet, and servers of the WSPs provide services through HTTP in general. We assume the IoT
network supports the OCF communications for the services. Then the IoT proxy can be the bridge for
supporting the connection between IoT client and WSPs. Therefore, the IoT client enables access to
services using a consistent protocol client such as OCF client in the OCF network. Through the IoT
proxy, services of WSPs are exposed by the VRs of IoT proxy to the IoT client.

Sensors 2018, 18, 1721 5 of 21

The VRs can appear to the IoT clients as the IoT resources which are included in the IoT devices.
From the perspective of IoT client, the information of VRs for the WSPs and IoT resources for the sensor
and actuator networks describe the same assessing interface because the IoT proxy and IoT device
provide services through the same protocol. The request to the IoT device can be directly reached
and handled by the handler of resource in the IoT device. The request to the WSP is handled first
by the handler of VR for forwarding the request to the destination WSP. Once the WSP receives the
request, then the WSP shall respond the result to IoT proxy, and IoT proxy responds the result to the
IoT client. Therefore, the IoT client can access IoT devices and WSPs using consistent request client in
this IoT architecture.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 21

first by the handler of VR for forwarding the request to the destination WSP. Once the WSP receives

the request, then the WSP shall respond the result to IoT proxy, and IoT proxy responds the result to

the IoT client. Therefore, the IoT client can access IoT devices and WSPs using consistent request

client in this IoT architecture.

Figure 1. Proxy-based IoT architecture for providing services from sensor/actuator network and WSP.

Figure 2 shows the proxy-based IoT architecture. The architecture is comprised of IoT proxy, IoT

device, WSP, and IoT client. The IoT proxy, IoT device, and WSP play the role of server to provide

services to clients in the network. Those servers include resources to handle the service requests from

clients. Each server entity can be structured to include perception layer, network layer, and

application layer in the IoT environment for sensing the environment through sensors, connecting

other devices to transmit data, and delivering services the users [39]. However, some devices on the

Internet are not used for gathering information from the environment where the devices are

deployed, rather they are used to service provisioning, e.g., the WSP in the proposed architecture.

Figure 2. IoT network model based on proxy for bridging heterogeneous protocols.

Figure 1. Proxy-based IoT architecture for providing services from sensor/actuator network and WSP.

Figure 2 shows the proxy-based IoT architecture. The architecture is comprised of IoT proxy,
IoT device, WSP, and IoT client. The IoT proxy, IoT device, and WSP play the role of server to provide
services to clients in the network. Those servers include resources to handle the service requests from
clients. Each server entity can be structured to include perception layer, network layer, and application
layer in the IoT environment for sensing the environment through sensors, connecting other devices to
transmit data, and delivering services the users [39]. However, some devices on the Internet are not
used for gathering information from the environment where the devices are deployed, rather they are
used to service provisioning, e.g., the WSP in the proposed architecture.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 21

first by the handler of VR for forwarding the request to the destination WSP. Once the WSP receives

the request, then the WSP shall respond the result to IoT proxy, and IoT proxy responds the result to

the IoT client. Therefore, the IoT client can access IoT devices and WSPs using consistent request

client in this IoT architecture.

Figure 1. Proxy-based IoT architecture for providing services from sensor/actuator network and WSP.

Figure 2 shows the proxy-based IoT architecture. The architecture is comprised of IoT proxy, IoT

device, WSP, and IoT client. The IoT proxy, IoT device, and WSP play the role of server to provide

services to clients in the network. Those servers include resources to handle the service requests from

clients. Each server entity can be structured to include perception layer, network layer, and

application layer in the IoT environment for sensing the environment through sensors, connecting

other devices to transmit data, and delivering services the users [39]. However, some devices on the

Internet are not used for gathering information from the environment where the devices are

deployed, rather they are used to service provisioning, e.g., the WSP in the proposed architecture.

Figure 2. IoT network model based on proxy for bridging heterogeneous protocols.
Figure 2. IoT network model based on proxy for bridging heterogeneous protocols.

Sensors 2018, 18, 1721 6 of 21

The proxy-based IoT architecture involves heterogeneous entities with various protocols.
We assume the IoT client is implemented to be based on the protocol-A in the network. Therefore,
the IoT client only can request the servers which provide services through the protocol-A. Each entity
has a protocol to be used for communicating with others which have the same protocol to be used.
The WSP and the IoT device-2 provide services through protocol-B and protocol-C. In order to access
those services, the IoT client needs the IoT proxy to forward the requests to the different protocols.
For the different protocols, the IoT proxy implements different handlers which are used to instantiate
the VRs. The functionalities of the handlers are used for translating and forwarding the message
between different protocols. The VRs expose services to the IoT client through the same protocol with
the IoT client. Therefore, the IoT client gets the results from the WSP and IoT device-2 through the
exposed services from the IoT proxy.

For applying the proposed IoT proxy that is used for bridging the WSP in the Internet to the
network where the IoT client is deployed, the OCF network is presented for deploying the IoT
client, IoT device, and IoT proxy. Figure 3 shows interactions of IoT device information registration,
WSP information registration, resource information discovery, IoT device service accessing, and WSP
service accessing based on the OCF network and Internet. For the appearance of resources in the
network, the resource information of IoT devices and WSPs need to be registered in an RD that
provides discovery service to the IoT clients. The IoT device registers resource information by itself
through publishing the IoT device information. The WSP cannot register resource information by itself
because web services exist in the Internet. For registering the WSP resource information, the profile of
the WSP can be made to register the information. The IoT client can discover the resource information
from the RD through retrieving the list of registered resource information.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 21

The proxy-based IoT architecture involves heterogeneous entities with various protocols. We

assume the IoT client is implemented to be based on the protocol-A in the network. Therefore, the

IoT client only can request the servers which provide services through the protocol-A. Each entity

has a protocol to be used for communicating with others which have the same protocol to be used.

The WSP and the IoT device-2 provide services through protocol-B and protocol-C. In order to access

those services, the IoT client needs the IoT proxy to forward the requests to the different protocols.

For the different protocols, the IoT proxy implements different handlers which are used to instantiate

the VRs. The functionalities of the handlers are used for translating and forwarding the message

between different protocols. The VRs expose services to the IoT client through the same protocol with

the IoT client. Therefore, the IoT client gets the results from the WSP and IoT device-2 through the

exposed services from the IoT proxy.

For applying the proposed IoT proxy that is used for bridging the WSP in the Internet to the

network where the IoT client is deployed, the OCF network is presented for deploying the IoT client,

IoT device, and IoT proxy. Figure 3 shows interactions of IoT device information registration, WSP

information registration, resource information discovery, IoT device service accessing, and WSP

service accessing based on the OCF network and Internet. For the appearance of resources in the

network, the resource information of IoT devices and WSPs need to be registered in an RD that

provides discovery service to the IoT clients. The IoT device registers resource information by itself

through publishing the IoT device information. The WSP cannot register resource information by

itself because web services exist in the Internet. For registering the WSP resource information, the

profile of the WSP can be made to register the information. The IoT client can discover the resource

information from the RD through retrieving the list of registered resource information.

Figure 3. Interactions in the proposed IoT network model based on proxy.

The IoT proxy includes the functionalities of RD for registration and discovery the information

of resources, and as well as supporting the interworking proxy functionalities for bridging the IoT

client to the WSP. For accessing services which are provided by WSPs, the IoT client sends the request

message to the IoT proxy, and the IoT proxy forwards the request message to the destination WSP.

Figure 3. Interactions in the proposed IoT network model based on proxy.

The IoT proxy includes the functionalities of RD for registration and discovery the information
of resources, and as well as supporting the interworking proxy functionalities for bridging the IoT
client to the WSP. For accessing services which are provided by WSPs, the IoT client sends the request
message to the IoT proxy, and the IoT proxy forwards the request message to the destination WSP.

Sensors 2018, 18, 1721 7 of 21

For accessing services which are provided IoT devices, the IoT client sends the request message to the
IoT device directly because the communication protocol is the same in both sides.

3.2. IoT Proxy Based on VR

The IoT proxy is a server as well as a client between the IoT client and WSP. The IoT proxy has
the RD functionalities for registering information of resources which expose services in the network
and discovering the information by IoT clients. The interworking proxy function of the IoT proxy
is involved in the VR that translates the protocol to the destination protocol. Figure 4 shows the
architecture of proposed IoT proxy in the OCF network for bridging the web services of WSPs in
the Internet. The IoT proxy includes modules of the provisioning manager, RD registration resource,
RD discovery resource, OCF VRs, bridge handler for HTTP, and database. The provisioning manager is
used for initializing the network configuration and inserting information of WSPs through reading the
RAML definition files. The information of WSPs is registered by the IoT proxy using the self-registration
approach. Once the IoT proxy is stared, the application reads the files of RAML definition that involves
resource information and WSP basic information. The application parses and inserts the information
into the database for the registration process. The RD registration resource is used for providing the
registration service to the IoT devices. The IoT devices register the resource information through
requesting the resource of IoT proxy for being discovered by IoT clients.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 21

For accessing services which are provided IoT devices, the IoT client sends the request message to

the IoT device directly because the communication protocol is the same in both sides.

3.2. IoT Proxy Based on VR

The IoT proxy is a server as well as a client between the IoT client and WSP. The IoT proxy has

the RD functionalities for registering information of resources which expose services in the network

and discovering the information by IoT clients. The interworking proxy function of the IoT proxy is

involved in the VR that translates the protocol to the destination protocol. Figure 4 shows the

architecture of proposed IoT proxy in the OCF network for bridging the web services of WSPs in the

Internet. The IoT proxy includes modules of the provisioning manager, RD registration resource, RD

discovery resource, OCF VRs, bridge handler for HTTP, and database. The provisioning manager is

used for initializing the network configuration and inserting information of WSPs through reading the

RAML definition files. The information of WSPs is registered by the IoT proxy using the self-registration

approach. Once the IoT proxy is stared, the application reads the files of RAML definition that

involves resource information and WSP basic information. The application parses and inserts the

information into the database for the registration process. The RD registration resource is used for

providing the registration service to the IoT devices. The IoT devices register the resource information

through requesting the resource of IoT proxy for being discovered by IoT clients.

Figure 4. Proposed IoT proxy configuration based on VR.

The IoT client sends a request to the IoT proxy for discovering resources of WSPs and accessing

the WSPs. The IoT proxy handles the discovering request through the RD discovery resource and

handles the accessing request through the OCF VR. Once the RD discovery resource receives the

request from the IoT client, the RD retrieves the information of resources from its database using the

parameters of request message. The information is gotten from the RAML definition that is handled

by the IoT proxy to insert into the database. The client gets the information of WSP that is included

in the list of OCF resource information. Therefore, the WSP information is recognized as an OCF

server. Then the IoT client can request the resource in the list using a consistent message sender. The

OCF VR for the destination WSP that handles the service accessing request, and forwards the message

to the WSP. The OCF VR is generated using the bridge handler that is an OCF resource handler for

translating the messages between OCF based IoT clients and HTTP based WSPs.

3.3. Message Translator in IoT Proxy

An OCF VR shall be generated when a WSP resource information is read from a RAML file in

the IoT proxy. We implement one OCF bridge handler for each bridged protocol. Therefore, for the

Figure 4. Proposed IoT proxy configuration based on VR.

The IoT client sends a request to the IoT proxy for discovering resources of WSPs and accessing
the WSPs. The IoT proxy handles the discovering request through the RD discovery resource and
handles the accessing request through the OCF VR. Once the RD discovery resource receives the
request from the IoT client, the RD retrieves the information of resources from its database using the
parameters of request message. The information is gotten from the RAML definition that is handled by
the IoT proxy to insert into the database. The client gets the information of WSP that is included in the
list of OCF resource information. Therefore, the WSP information is recognized as an OCF server. Then
the IoT client can request the resource in the list using a consistent message sender. The OCF VR for
the destination WSP that handles the service accessing request, and forwards the message to the WSP.
The OCF VR is generated using the bridge handler that is an OCF resource handler for translating the
messages between OCF based IoT clients and HTTP based WSPs.

3.3. Message Translator in IoT Proxy

An OCF VR shall be generated when a WSP resource information is read from a RAML file in
the IoT proxy. We implement one OCF bridge handler for each bridged protocol. Therefore, for the

Sensors 2018, 18, 1721 8 of 21

WSP that provides the HTTP-based services in the Internet, a bridge handler shall be implemented for
bridging the HTTP servers.

For generating an OCF VR, the IoT proxy gets the information from the WSP’s RAML definition
to store in the database and uses the bridge handler entity and WSP information to generate the OCF
resource. The handler of OCF resource refers the functions of bridge handler entity. Therefore, once the
OCF VR is accessed, the handler of VR shall be triggered and runs the method of bridge handler entity.

The message translating mechanism is illustrated using the data flows with functional blocks in
the Figure 5. The OCF client can discover the OCF VR in the OCF network. The OCF VR is an OCF
resource that includes resource properties and OCF method handlers such as GET, POST, PUT, and
DELETE. Each method handler refers to the instance of bridge handler for bridging the HTTP servers.

The flowing steps illustrate the changes of request and response messages in the translating data
flow for accessing a service of WSP from the OCF client.

1. The OCF client requests the OCF VR, then the OCF request handler receives the message.
2. The OCF-request-to-HTTP-request function gets the query parameters from the request message,

and gets WSP’s URI from the database. Using that information, the function generates an HTTP
request message for accessing the service of WSP.

3. The HTTP request handler sends the HTTP message to the HTTP server of WSP.
4. The HTTP response handler receives the HTTP message from the HTTP server of WSP.
5. The JSON-message-to-OCF-message function gets the information from the JSON message that

is sent from the HTTP server through the payload of response and generates the OCF message.
6. The OCF client receives the OCF response from the OCF response handler of OCF VR.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 21

WSP that provides the HTTP-based services in the Internet, a bridge handler shall be implemented

for bridging the HTTP servers.

For generating an OCF VR, the IoT proxy gets the information from the WSP’s RAML definition

to store in the database and uses the bridge handler entity and WSP information to generate the OCF

resource. The handler of OCF resource refers the functions of bridge handler entity. Therefore, once the

OCF VR is accessed, the handler of VR shall be triggered and runs the method of bridge handler entity.

The message translating mechanism is illustrated using the data flows with functional blocks in

the Figure 5. The OCF client can discover the OCF VR in the OCF network. The OCF VR is an OCF

resource that includes resource properties and OCF method handlers such as GET, POST, PUT, and

DELETE. Each method handler refers to the instance of bridge handler for bridging the HTTP servers.

The flowing steps illustrate the changes of request and response messages in the translating data

flow for accessing a service of WSP from the OCF client.

1. The OCF client requests the OCF VR, then the OCF request handler receives the message.

2. The OCF-request-to-HTTP-request function gets the query parameters from the request

message, and gets WSP’s URI from the database. Using that information, the function

generates an HTTP request message for accessing the service of WSP.

3. The HTTP request handler sends the HTTP message to the HTTP server of WSP.

4. The HTTP response handler receives the HTTP message from the HTTP server of WSP.

5. The JSON-message-to-OCF-message function gets the information from the JSON message that

is sent from the HTTP server through the payload of response and generates the OCF message.

6. The OCF client receives the OCF response from the OCF response handler of OCF VR.

Figure 5. Message translating mechanism for OCF to HTTP.

4. Registration, Discovery, Service Accessing of Web Service, and IoT Service

For implementing the proposed IoT architecture based on the IoT proxy, scenarios of

registration, discovery, and service accessing are presented through interactions between entities in

the IoT environment. The interaction of registration is used for registering the information of service

entities which need to be accessed, i.e., web services in the Internet and IoT services from IoT devices

in smart homes, factories, buildings, etc. The interaction of discovery is used for discovering the

information of resources in the OCF network. The IoT client shall discover the resources using the

discovery interaction, and access the services which are provided by resources of IoT devices and

VRs of IoT proxy for the WSPs. The interaction of accessing service is used for accessing services

which are provided by OCF servers in the network where the IoT client is included. The IoT client

can access services from IoT devices which provide indoor services in smart homes, hospitals,

factories, and other smart indoor spaces. Through the IoT proxy, the IoT client can also access services

from WSPs which provide outdoor services such as information of weather, traffic, and natural

disaster.

Figure 5. Message translating mechanism for OCF to HTTP.

4. Registration, Discovery, Service Accessing of Web Service, and IoT Service

For implementing the proposed IoT architecture based on the IoT proxy, scenarios of registration,
discovery, and service accessing are presented through interactions between entities in the IoT
environment. The interaction of registration is used for registering the information of service entities
which need to be accessed, i.e., web services in the Internet and IoT services from IoT devices in smart
homes, factories, buildings, etc. The interaction of discovery is used for discovering the information
of resources in the OCF network. The IoT client shall discover the resources using the discovery
interaction, and access the services which are provided by resources of IoT devices and VRs of IoT
proxy for the WSPs. The interaction of accessing service is used for accessing services which are
provided by OCF servers in the network where the IoT client is included. The IoT client can access
services from IoT devices which provide indoor services in smart homes, hospitals, factories, and other

Sensors 2018, 18, 1721 9 of 21

smart indoor spaces. Through the IoT proxy, the IoT client can also access services from WSPs which
provide outdoor services such as information of weather, traffic, and natural disaster.

Figure 6 illustrates the sequence diagram for registering an IoT device information. The IoT
device sends the request message using POST method to the IoT proxy. The RD of IoT proxy receives
the request, inserts the information to the database, and registers resource for enabling discovery
from /oic/res resource. The request URI structure includes the URI of IoT proxy with the relative
URI /oic/rd, and the query parameter for the resource type of RD. The request payload includes the
information of resources which are implemented in the IoT device. The response payload includes the
registered resources information.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 21

Figure 6 illustrates the sequence diagram for registering an IoT device information. The IoT

device sends the request message using POST method to the IoT proxy. The RD of IoT proxy receives

the request, inserts the information to the database, and registers resource for enabling discovery

from /oic/res resource. The request URI structure includes the URI of IoT proxy with the relative URI

/oic/rd, and the query parameter for the resource type of RD. The request payload includes the

information of resources which are implemented in the IoT device. The response payload includes

the registered resources information.

Figure 6. IoT device information registration.

Figure 7 illustrates the sequence diagram for registering a WSP information. The information is

involved in a RAML file that is deployed in the IoT proxy. The IoT proxy reads the RAML file and

gets the information of resources. If there is more than one available RAML file, then the process of

getting resources information shall be called again and again until all files are read. In the IoT proxy,

the application gets the RAML data from the RAML file that is formatted in a RAML definition. The

parser function gets the information from the RAML data and puts to value objects. Using the value

objects the application inserts the WSP information to the database and registers resource for enabling

discovery from /oic/res resource.

Figure 7. WSP information registration.

Figure 8 illustrates the sequence diagram for resource discovery in the OCF network. The OCF

resources expose services in the network, and for accessing the services, the client needs to know the

information of OCF resources. Through the registration process, the IoT proxy has the information

of IoT devices and WSPs. The OCF resources of IoT devices and VRs for WSPs are available to be

discovered through the resource /oic/res in the IoT proxy. The request to the resource /oic/res can be

structured with the URI of IoT proxy, relative URI /oic/res, and query parameters. The queries can be

resource types and resource interfaces which follows the specification of OCF standard. The response

payload includes the list of resource information that is formatted in the OCF proposed specification.

IoT Device IoT Proxy

POST coap://{IoT Proxy's IP:5683}/oic/rd?rt=oic.wk.rdpub
payload: {resource information}

Insert the IoT device information to DB

Register resource for /oic/res

payload: {response payload}

Application File System DB

Get RAML file name

{file name}

Get RAML data

loop

[for each file]

{RAML data}

Parse RAML data to value object

Insert the WSP information to DB

Register resource for /oic/res

Figure 6. IoT device information registration.

Figure 7 illustrates the sequence diagram for registering a WSP information. The information is
involved in a RAML file that is deployed in the IoT proxy. The IoT proxy reads the RAML file and
gets the information of resources. If there is more than one available RAML file, then the process
of getting resources information shall be called again and again until all files are read. In the IoT
proxy, the application gets the RAML data from the RAML file that is formatted in a RAML definition.
The parser function gets the information from the RAML data and puts to value objects. Using the
value objects the application inserts the WSP information to the database and registers resource for
enabling discovery from /oic/res resource.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 21

Figure 6 illustrates the sequence diagram for registering an IoT device information. The IoT

device sends the request message using POST method to the IoT proxy. The RD of IoT proxy receives

the request, inserts the information to the database, and registers resource for enabling discovery

from /oic/res resource. The request URI structure includes the URI of IoT proxy with the relative URI

/oic/rd, and the query parameter for the resource type of RD. The request payload includes the

information of resources which are implemented in the IoT device. The response payload includes

the registered resources information.

Figure 6. IoT device information registration.

Figure 7 illustrates the sequence diagram for registering a WSP information. The information is

involved in a RAML file that is deployed in the IoT proxy. The IoT proxy reads the RAML file and

gets the information of resources. If there is more than one available RAML file, then the process of

getting resources information shall be called again and again until all files are read. In the IoT proxy,

the application gets the RAML data from the RAML file that is formatted in a RAML definition. The

parser function gets the information from the RAML data and puts to value objects. Using the value

objects the application inserts the WSP information to the database and registers resource for enabling

discovery from /oic/res resource.

Figure 7. WSP information registration.

Figure 8 illustrates the sequence diagram for resource discovery in the OCF network. The OCF

resources expose services in the network, and for accessing the services, the client needs to know the

information of OCF resources. Through the registration process, the IoT proxy has the information

of IoT devices and WSPs. The OCF resources of IoT devices and VRs for WSPs are available to be

discovered through the resource /oic/res in the IoT proxy. The request to the resource /oic/res can be

structured with the URI of IoT proxy, relative URI /oic/res, and query parameters. The queries can be

resource types and resource interfaces which follows the specification of OCF standard. The response

payload includes the list of resource information that is formatted in the OCF proposed specification.

IoT Device IoT Proxy

POST coap://{IoT Proxy's IP:5683}/oic/rd?rt=oic.wk.rdpub
payload: {resource information}

Insert the IoT device information to DB

Register resource for /oic/res

payload: {response payload}

Application File System DB

Get RAML file name

{file name}

Get RAML data

loop

[for each file]

{RAML data}

Parse RAML data to value object

Insert the WSP information to DB

Register resource for /oic/res

Figure 7. WSP information registration.

Figure 8 illustrates the sequence diagram for resource discovery in the OCF network. The OCF
resources expose services in the network, and for accessing the services, the client needs to know the
information of OCF resources. Through the registration process, the IoT proxy has the information

Sensors 2018, 18, 1721 10 of 21

of IoT devices and WSPs. The OCF resources of IoT devices and VRs for WSPs are available to be
discovered through the resource /oic/res in the IoT proxy. The request to the resource /oic/res can be
structured with the URI of IoT proxy, relative URI /oic/res, and query parameters. The queries can be
resource types and resource interfaces which follows the specification of OCF standard. The response
payload includes the list of resource information that is formatted in the OCF proposed specification.Sensors 2018, 18, x FOR PEER REVIEW 10 of 21

IoT Client IoT Proxy

GET coap://{IoT Proxy's IP:5683}/oic/res{?query}

Retrieve resource information from /oic/res

payload: {resource information}

Figure 8. Resource discovery based on IoT proxy.

Figure 9 illustrates the sequence diagram for accessing a transparent service that is provided by

an IoT device, and a service that is provided by a WSP through the IoT proxy. The IoT device can

provide the indoor services using the sensors and actuators. Through the VRs, the IoT proxy can

provide outdoor services which are provided by the WSP. The IoT device resources and VRs

represent the information and functions of parts which are discovered by the IoT client. Through the

discovered information, the IoT client sends the OCF request to the IoT device and IoT proxy. Once

the IoT device receives the request, then the handler of the resource gathers the sensing data or

controls the actuator in the indoor environment. Once the IoT proxy receives the request, then the

handler of the VR translates the OCF request to the HTTP request and sends to the WSP. The response

from the WSP also needs to be translated, and the IoT proxy returns the result to the IoT client.

Figure 9. Transparent access to services of IoT device and WSP.

5. Performance Analysis

5.1. Implementation of IoT Network Based on Proxy

In this experimental environment, the services of IoT devices can be indoor services in the home

network, and the services of WSPs can be outdoor services from the Internet. The IoT proxy bridges

IoT client and WSP which provides services based on HTTP. In the perspective of IoT client, indoor

services and outdoor services are provided by the OCF server, because the services of WSP are

available in the OCF network through the IoT proxy. The indoor service is registered via sending the

information of IoT device using POST /oic/rd request to the IoT proxy by the IoT device and the

outdoor service is registered by the IoT proxy itself. Then the IoT client can discover indoor and

outdoor services in the OCF network using GET /oic/res request to the IoT proxy. Once the

information of resources is retrieved by the IoT client, the user can access the services of IoT device

and WSP.

IoT Client IoT Proxy

OCF request

Translate the request

{result}

WSP

HTTP request

Translate the response

{result}

Sensing or controlling status of the environment

payload: {result}

IoT Device

OCF request

Figure 8. Resource discovery based on IoT proxy.

Figure 9 illustrates the sequence diagram for accessing a transparent service that is provided by
an IoT device, and a service that is provided by a WSP through the IoT proxy. The IoT device can
provide the indoor services using the sensors and actuators. Through the VRs, the IoT proxy can
provide outdoor services which are provided by the WSP. The IoT device resources and VRs represent
the information and functions of parts which are discovered by the IoT client. Through the discovered
information, the IoT client sends the OCF request to the IoT device and IoT proxy. Once the IoT device
receives the request, then the handler of the resource gathers the sensing data or controls the actuator in
the indoor environment. Once the IoT proxy receives the request, then the handler of the VR translates
the OCF request to the HTTP request and sends to the WSP. The response from the WSP also needs to
be translated, and the IoT proxy returns the result to the IoT client.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 21

IoT Client IoT Proxy

GET coap://{IoT Proxy's IP:5683}/oic/res{?query}

Retrieve resource information from /oic/res

payload: {resource information}

Figure 8. Resource discovery based on IoT proxy.

Figure 9 illustrates the sequence diagram for accessing a transparent service that is provided by

an IoT device, and a service that is provided by a WSP through the IoT proxy. The IoT device can

provide the indoor services using the sensors and actuators. Through the VRs, the IoT proxy can

provide outdoor services which are provided by the WSP. The IoT device resources and VRs

represent the information and functions of parts which are discovered by the IoT client. Through the

discovered information, the IoT client sends the OCF request to the IoT device and IoT proxy. Once

the IoT device receives the request, then the handler of the resource gathers the sensing data or

controls the actuator in the indoor environment. Once the IoT proxy receives the request, then the

handler of the VR translates the OCF request to the HTTP request and sends to the WSP. The response

from the WSP also needs to be translated, and the IoT proxy returns the result to the IoT client.

Figure 9. Transparent access to services of IoT device and WSP.

5. Performance Analysis

5.1. Implementation of IoT Network Based on Proxy

In this experimental environment, the services of IoT devices can be indoor services in the home

network, and the services of WSPs can be outdoor services from the Internet. The IoT proxy bridges

IoT client and WSP which provides services based on HTTP. In the perspective of IoT client, indoor

services and outdoor services are provided by the OCF server, because the services of WSP are

available in the OCF network through the IoT proxy. The indoor service is registered via sending the

information of IoT device using POST /oic/rd request to the IoT proxy by the IoT device and the

outdoor service is registered by the IoT proxy itself. Then the IoT client can discover indoor and

outdoor services in the OCF network using GET /oic/res request to the IoT proxy. Once the

information of resources is retrieved by the IoT client, the user can access the services of IoT device

and WSP.

IoT Client IoT Proxy

OCF request

Translate the request

{result}

WSP

HTTP request

Translate the response

{result}

Sensing or controlling status of the environment

payload: {result}

IoT Device

OCF request

Figure 9. Transparent access to services of IoT device and WSP.

5. Performance Analysis

5.1. Implementation of IoT Network Based on Proxy

In this experimental environment, the services of IoT devices can be indoor services in the home
network, and the services of WSPs can be outdoor services from the Internet. The IoT proxy bridges IoT
client and WSP which provides services based on HTTP. In the perspective of IoT client, indoor services

Sensors 2018, 18, 1721 11 of 21

and outdoor services are provided by the OCF server, because the services of WSP are available in the
OCF network through the IoT proxy. The indoor service is registered via sending the information of
IoT device using POST /oic/rd request to the IoT proxy by the IoT device and the outdoor service
is registered by the IoT proxy itself. Then the IoT client can discover indoor and outdoor services in
the OCF network using GET /oic/res request to the IoT proxy. Once the information of resources is
retrieved by the IoT client, the user can access the services of IoT device and WSP.

Figure 10 shows the experimental environment which is comprised of the OCF network and the
Internet. The OCF network can be a home network to support the connectivity for the devices through
the LAN such as Wi-Fi networking which is provided by a Wi-Fi router. The OCF network includes
IoT client, IoT proxy, and IoT device, which communicate with other entities through the OCF protocol
in the LAN. In the Internet, the WSP is a weather service provider which provides weather data in
the JSON format through the APIs. In the implementation of the OCF network, the IoT client is an
Android phone which supports the UI to interact with the users; the IoT proxy is an IoT board which
enables the IoT client to communicate with the WSP using the Wi-Fi connection; the IoT device is an
IoT board which equips a temperature sensor and a LED, provides the temperature sensing service
and the LED controlling service, and also communicates with the IoT client using the Wi-Fi connection.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 21

Figure 10 shows the experimental environment which is comprised of the OCF network and the

Internet. The OCF network can be a home network to support the connectivity for the devices through

the LAN such as Wi-Fi networking which is provided by a Wi-Fi router. The OCF network includes

IoT client, IoT proxy, and IoT device, which communicate with other entities through the OCF

protocol in the LAN. In the Internet, the WSP is a weather service provider which provides weather

data in the JSON format through the APIs. In the implementation of the OCF network, the IoT client

is an Android phone which supports the UI to interact with the users; the IoT proxy is an IoT board

which enables the IoT client to communicate with the WSP using the Wi-Fi connection; the IoT device

is an IoT board which equips a temperature sensor and a LED, provides the temperature sensing service

and the LED controlling service, and also communicates with the IoT client using the Wi-Fi connection.

Figure 10. Experimental environment.

Table 1 illustrates the development environment of the entities in the experimental environment.

The application development tool is the Android Studio 3.0.1, it also is used for the analysis of

performance. The Android OS runs on those entities of the OCF network, therefore, Java is the

language for implementing the applications. The detail specification of Android platforms is different

for each entity, because the platform depends on the physical device.

Table 1. Implementation environment

Entity H/W Platform Framework and Library

IoT Proxy Intel Edison Board
Android Things 0.2 (Android

min SDK:24)

IoTivity 1.3.0 (×86), raml-

parser-2 1.0.13, Volley 1.0.0

IoT Device
Raspberry Pi 3 Model

B, BMP280, LED

Android Things 0.4.1

(Android min SDK:24)

IoTivity 1.3.0 (armeabi),

com.google.android.things.c

ontrib:driver-bmx280:0.4

IoT Client Samsung Galaxy S4
Android 5.0 Lollipop (Build:

compile SDK 26, min SDK 21)
IoTivity 1.3.0 (armeabi)

The IoT proxy runs on Intel Edison Board which operates Android Things 0.2, and the

application is supported minimum Android version is SDK 24, and it is developed using IoTivity

1.3.0 (×86) for OCF server, raml-parser-2 1.0.13 for RAML parser, and Volley 1.0.0 for HTTP client.

The IoT device runs on Raspberry Pi 3 Model B which equips a BMP 280 and a LED and operates

Android Things 0.4.1, and the application is supported minimum Android version is SDK 24, and it

Figure 10. Experimental environment.

Table 1 illustrates the development environment of the entities in the experimental environment.
The application development tool is the Android Studio 3.0.1, it also is used for the analysis of
performance. The Android OS runs on those entities of the OCF network, therefore, Java is the
language for implementing the applications. The detail specification of Android platforms is different
for each entity, because the platform depends on the physical device.

Sensors 2018, 18, 1721 12 of 21

Table 1. Implementation environment

Entity H/W Platform Framework and Library

IoT Proxy Intel Edison Board Android Things 0.2
(Android min SDK:24) IoTivity 1.3.0 (×86), raml-parser-2 1.0.13, Volley 1.0.0

IoT Device Raspberry Pi 3 Model B,
BMP280, LED

Android Things 0.4.1
(Android min SDK:24)

IoTivity 1.3.0 (armeabi),
com.google.android.things.contrib:driver-bmx280:0.4

IoT Client Samsung Galaxy S4
Android 5.0 Lollipop
(Build: compile SDK 26,
min SDK 21)

IoTivity 1.3.0 (armeabi)

The IoT proxy runs on Intel Edison Board which operates Android Things 0.2, and the application
is supported minimum Android version is SDK 24, and it is developed using IoTivity 1.3.0 (×86) for
OCF server, raml-parser-2 1.0.13 for RAML parser, and Volley 1.0.0 for HTTP client.

The IoT device runs on Raspberry Pi 3 Model B which equips a BMP 280 and a LED and
operates Android Things 0.4.1, and the application is supported minimum Android version is SDK 24,
and it is developed using IoTivity 1.3.0 (armeabi) for OCF server, com.google.android.things.contrib:
driver-bmx280:0.4 for sensing the temperature.

The IoT client runs on Samsung Galaxy S4 and operates Android 5.0 Lollipop, and the application
is supported at minimum in Android version SDK 21 and compiled in SDK 26, and it was developed
using IoTivity 1.3.0 (armeabi) for OCF client.

For the WSP, an open weather API provider is selected which is Open Weather Map. Open Weather
Map provides weather-related APIs based on JSON and XML data formats. In the implementation,
the service is used to provide the current weather information of a location. The resource of service
is defined in the RAML which is deployed in the IoT proxy for registering the WSP. In the RAML
definition, baseUri is http://api.openweathermap.org/data/2.5, the resource name is /weather,
queryParameters are if for the OCF resource interface, q for the query of location which is required for
accessing the API, and APPID for the API access key which is also required for accessing the API.

Figure 11 shows the ER-diagram for the database (DB) of IoT proxy. In order to store the
information of IoT device and WSP in the proposed system, a DB in the IoT proxy is presented.
The information which is stored in the DB is presented to be mainly divided into two categories.
The resource information is stored in the tables, i.e., t_device, t_resource, t_rt, t_if, and t_ep.
The provider information is stored in the table t_provider.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 21

is developed using IoTivity 1.3.0 (armeabi) for OCF server, com.google.android.things.contrib:

driver-bmx280:0.4 for sensing the temperature.

The IoT client runs on Samsung Galaxy S4 and operates Android 5.0 Lollipop, and the

application is supported at minimum in Android version SDK 21 and compiled in SDK 26, and it was

developed using IoTivity 1.3.0 (armeabi) for OCF client.

For the WSP, an open weather API provider is selected which is Open Weather Map. Open

Weather Map provides weather-related APIs based on JSON and XML data formats. In the

implementation, the service is used to provide the current weather information of a location. The

resource of service is defined in the RAML which is deployed in the IoT proxy for registering the

WSP. In the RAML definition, baseUri is http://api.openweathermap.org/data/2.5, the resource name

is /weather, queryParameters are if for the OCF resource interface, q for the query of location which

is required for accessing the API, and APPID for the API access key which is also required for

accessing the API.

Figure 11 shows the ER-diagram for the database (DB) of IoT proxy. In order to store the

information of IoT device and WSP in the proposed system, a DB in the IoT proxy is presented. The

information which is stored in the DB is presented to be mainly divided into two categories. The

resource information is stored in the tables, i.e., t_device, t_resource, t_rt, t_if, and t_ep. The provider

information is stored in the table t_provider.

Figure 11. IoT proxy ER-diagram.

Through the following example information of IoT device and WSP, the usage of each table is

explained.

Table t_device is used for storing device ID and retention time. The UUID is used for the device

ID of IoT device and WSP. The IoTivity framework generates the UUID for the entity in the initial

process. Once the IoT proxy is started, the UUID is generated for each WSP information.

Table t_resource, t_rt, t_if, and t_ep are used for storing the OCF resource properties which can

be referred to the specification of OCF. The values of anchor, href, rel, rt, if, and ep are attributes of

an OCF entity which is generated once the OCF entity is initialized. For the registering of an IoT

device, the IoTivity framework also supports packing of those values to a JSON data. Because the

registration specification in OCF network requires a standard message structure.

Table t_provider is used for storing the non-OCF related information of WSP. The baseUri is an

attribute of RAML definition that is the basic URI of the service provider. The attribute baseuri in the

table that stores the basic URI of WSP. For the weather API of Open Weather Map, the baseUri can

be http://api.openweathermap.org/data/2.5 and the full URI which includes the resource name can

be http://api.openweathermap.org/data/2.5/weather.

The data format and contents for publishing information of an IoT device to the IoT proxy follow

the OCF specifications. Once the IoT proxy receives the registering message, the information of

t_resource

insPK

anchor

href

device_di

rel

t_provider

idPK

baseuri

raml

device_di

t_rt

resource_rt

resource_ins

t_device

diPK

ttl

t_if

resource_if

resource_inst_ep

resource_ep

resource_ins

Figure 11. IoT proxy ER-diagram.

http://api.openweathermap.org/data/2.5

Sensors 2018, 18, 1721 13 of 21

Through the following example information of IoT device and WSP, the usage of each table
is explained.

Table t_device is used for storing device ID and retention time. The UUID is used for the device
ID of IoT device and WSP. The IoTivity framework generates the UUID for the entity in the initial
process. Once the IoT proxy is started, the UUID is generated for each WSP information.

Table t_resource, t_rt, t_if, and t_ep are used for storing the OCF resource properties which can be
referred to the specification of OCF. The values of anchor, href, rel, rt, if, and ep are attributes of an
OCF entity which is generated once the OCF entity is initialized. For the registering of an IoT device,
the IoTivity framework also supports packing of those values to a JSON data. Because the registration
specification in OCF network requires a standard message structure.

Table t_provider is used for storing the non-OCF related information of WSP. The baseUri is an
attribute of RAML definition that is the basic URI of the service provider. The attribute baseuri in the
table that stores the basic URI of WSP. For the weather API of Open Weather Map, the baseUri can be
http://api.openweathermap.org/data/2.5 and the full URI which includes the resource name can be
http://api.openweathermap.org/data/2.5/weather.

The data format and contents for publishing information of an IoT device to the IoT proxy follow
the OCF specifications. Once the IoT proxy receives the registering message, the information of
message shall be inserted to the proposed tables in the database. The WSP information also shall be
inserted to the database by the self-registration process. The RAML definition is used for involving the
information of a WSP.

The data format and contents for publishing information of IoT device to the IoT proxy that
follows the OCF specification. Once the IoT proxy receives the registering message, the information of
message shall be inserted to the proposed tables in the database. The WSP information also shall be
inserted to the database by the self-registration process. The RAML definition is used for involving the
information of a WSP.

Figure 12 shows a fragment of RAML definition for registering a WSP information. The service
in the Internet can be described by the RAML definition, and the information can be presented to
the client by the service of RD. The information of IoT devices can be registered by the devices,
however, the WSPs cannot register the information by the providers except they include the publishing
function in their system. The RAML definition includes a service that exposed by the resource/weather.
The provider’s base URI is http://api.openweathermap.org/data/2.5 that shall be used with other
relative URIs for requesting services from the WSP. The resource/weather requires parameters if, q,
and APPID, and the response message is defined in JSON schema in the fragment. The value of if
must be the resource interface that is used for the OCF purpose. The value of q must be the location
name, and APPID must be the key for requesting the service.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 21

message shall be inserted to the proposed tables in the database. The WSP information also shall be

inserted to the database by the self-registration process. The RAML definition is used for involving

the information of a WSP.

The data format and contents for publishing information of IoT device to the IoT proxy that

follows the OCF specification. Once the IoT proxy receives the registering message, the information

of message shall be inserted to the proposed tables in the database. The WSP information also shall

be inserted to the database by the self-registration process. The RAML definition is used for involving

the information of a WSP.

Figure 12 shows a fragment of RAML definition for registering a WSP information. The service

in the Internet can be described by the RAML definition, and the information can be presented to the

client by the service of RD. The information of IoT devices can be registered by the devices, however,

the WSPs cannot register the information by the providers except they include the publishing

function in their system. The RAML definition includes a service that exposed by the resource

/weather. The provider’s base URI is http://api.openweathermap.org/data/2.5 that shall be used with

other relative URIs for requesting services from the WSP. The resource /weather requires parameters

if, q, and APPID, and the response message is defined in JSON schema in the fragment. The value of

if must be the resource interface that is used for the OCF purpose. The value of q must be the location

name, and APPID must be the key for requesting the service.

Figure 12. Fragment of RAML definition for registering WSP.

Figure 13 presents the implementation result of discovering the resource information. The

screenshot shows the list of resource information which is discovered by the IoT client. For the

discovery, the IoT client requests the resource information from the IoT proxy using GET /oic/res

request. The IoT device information and WSP information are registered to the IoT proxy, which is

retrieved with the resource information of the IoT proxy together. In the list, the URIs from IoT device

are coap://192.168.1.184:5683/temperature and coap://192.168.1.184:5683/led, which can be accessed

by the OCF client directly. For the WSP, the URIs coap://192.168.1.30:5683/1/weather and /1/weather,

but the /1/weather is used for implementation that can be ignored. The user of theIoT client can click

an item from the list to the service accessing page.

Figure 12. Fragment of RAML definition for registering WSP.

http://api.openweathermap.org/data/2.5
http://api.openweathermap.org/data/2.5/weather
http://api.openweathermap.org/data/2.5

Sensors 2018, 18, 1721 14 of 21

Figure 13 presents the implementation result of discovering the resource information.
The screenshot shows the list of resource information which is discovered by the IoT client. For the
discovery, the IoT client requests the resource information from the IoT proxy using GET/oic/res
request. The IoT device information and WSP information are registered to the IoT proxy, which is
retrieved with the resource information of the IoT proxy together. In the list, the URIs from IoT device
are coap://192.168.1.184:5683/temperature and coap://192.168.1.184:5683/led, which can be accessed
by the OCF client directly. For the WSP, the URIs coap://192.168.1.30:5683/1/weather and /1/weather,
but the /1/weather is used for implementation that can be ignored. The user of theIoT client can click
an item from the list to the service accessing page.Sensors 2018, 18, x FOR PEER REVIEW 14 of 21

Figure 13. Fragment of RAML definition for registering WSP.

Figure 14 presents the implementation result of accessing the indoor service from the IoT device.

The IoT device equips a BMP 280 and a LED for the temperature sensing service and LED controlling

service. The screenshots of IoT client show the service accessing pages for gathering the temperature

data and controlling the LED. For accessing the temperature sensing service, the GET method needs

to be selected. Then the user can click the REQUEST button to get the current temperature value of

the sensor. For accessing the LED controlling service, the query parameter level is required and the

PUT method needs to be selected. Once the temperature sensing service is requested then a

temperature value in JSON format is returned, and the LED controlling service is requested then the

status of LED in JSON format is returned.

Figure 14. Fragment of RAML definition for registering WSP.

IoT Proxy

IoT Client

IoT Device

Information

WSP

Information

Registered

Discovery

GET /oic/res

IoT

Access

Indoor

IoT

Figure 13. Fragment of RAML definition for registering WSP.

Figure 14 presents the implementation result of accessing the indoor service from the IoT device.
The IoT device equips a BMP 280 and a LED for the temperature sensing service and LED controlling
service. The screenshots of IoT client show the service accessing pages for gathering the temperature
data and controlling the LED. For accessing the temperature sensing service, the GET method needs to
be selected. Then the user can click the REQUEST button to get the current temperature value of the
sensor. For accessing the LED controlling service, the query parameter level is required and the PUT
method needs to be selected. Once the temperature sensing service is requested then a temperature
value in JSON format is returned, and the LED controlling service is requested then the status of LED
in JSON format is returned.

Sensors 2018, 18, x FOR PEER REVIEW 14 of 21

Figure 13. Fragment of RAML definition for registering WSP.

Figure 14 presents the implementation result of accessing the indoor service from the IoT device.

The IoT device equips a BMP 280 and a LED for the temperature sensing service and LED controlling

service. The screenshots of IoT client show the service accessing pages for gathering the temperature

data and controlling the LED. For accessing the temperature sensing service, the GET method needs

to be selected. Then the user can click the REQUEST button to get the current temperature value of

the sensor. For accessing the LED controlling service, the query parameter level is required and the

PUT method needs to be selected. Once the temperature sensing service is requested then a

temperature value in JSON format is returned, and the LED controlling service is requested then the

status of LED in JSON format is returned.

Figure 14. Fragment of RAML definition for registering WSP.

IoT Proxy

IoT Client

IoT Device

Information

WSP

Information

Registered

Discovery

GET /oic/res

IoT

Access

Indoor

IoT

Figure 14. Fragment of RAML definition for registering WSP.

Sensors 2018, 18, 1721 15 of 21

Figure 15 presents the implementation result of accessing the outdoor service from the WSP.
The outdoor service is a service that provides weather information including temperature, wind speed,
humidity, etc. The service is provided by the WSP that is the free weather provider—Open Weather
Map. The WSP provides the weather information according to a location parameter. For the request to
the WSP, the user needs to input the query parameter on the IoT client for the location. In the service
accessing page, the IoT client shows the OCF resource information for the VR that bridges to the WSP.
The information presents VR’s URI, and other OCF resource properties. For accessing the weather
service, the parameters q and APPID are required. The parameter q requires a location, and Jeju is
inputted. The parameter APPID is API access key, and the key is got from Open Weather Map for
accessing APIs from the provider. Once the REQUEST button is clicked, the request message shall be
delivered to the WSP, and the response message shall be returned to the client. Then the client shall
display the result as shown in the page.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 21

Figure 15 presents the implementation result of accessing the outdoor service from the WSP. The

outdoor service is a service that provides weather information including temperature, wind speed,

humidity, etc. The service is provided by the WSP that is the free weather provider—Open Weather

Map. The WSP provides the weather information according to a location parameter. For the request

to the WSP, the user needs to input the query parameter on the IoT client for the location. In the

service accessing page, the IoT client shows the OCF resource information for the VR that bridges to

the WSP. The information presents VR’s URI, and other OCF resource properties. For accessing the

weather service, the parameters q and APPID are required. The parameter q requires a location, and

Jeju is inputted. The parameter APPID is API access key, and the key is got from Open Weather Map

for accessing APIs from the provider. Once the REQUEST button is clicked, the request message shall

be delivered to the WSP, and the response message shall be returned to the client. Then the client

shall display the result as shown in the page.

Figure 15. Fragment of RAML definition for registering WSP.

5.2. Performance Evaluation

Figure 16 shows the network monitoring for accessing services of the IoT device and the WSP.

For collecting data to compare the size of data packets and round trip time (RTT) in the

communications with elements of the IoT proxy based OCF network, four types of service accessing

interactions are presented and each interaction is executed five times. The presented interactions are

introduced as follows.

(a) (b)

IoT Proxy

Access

Outdoor

Service

WSP

IoT Client

Forward

Request

Figure 15. Fragment of RAML definition for registering WSP.

5.2. Performance Evaluation

Figure 16 shows the network monitoring for accessing services of the IoT device and the WSP.
For collecting data to compare the size of data packets and round trip time (RTT) in the communications
with elements of the IoT proxy based OCF network, four types of service accessing interactions are
presented and each interaction is executed five times. The presented interactions are introduced
as follows.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 21

Figure 15 presents the implementation result of accessing the outdoor service from the WSP. The

outdoor service is a service that provides weather information including temperature, wind speed,

humidity, etc. The service is provided by the WSP that is the free weather provider—Open Weather

Map. The WSP provides the weather information according to a location parameter. For the request

to the WSP, the user needs to input the query parameter on the IoT client for the location. In the

service accessing page, the IoT client shows the OCF resource information for the VR that bridges to

the WSP. The information presents VR’s URI, and other OCF resource properties. For accessing the

weather service, the parameters q and APPID are required. The parameter q requires a location, and

Jeju is inputted. The parameter APPID is API access key, and the key is got from Open Weather Map

for accessing APIs from the provider. Once the REQUEST button is clicked, the request message shall

be delivered to the WSP, and the response message shall be returned to the client. Then the client

shall display the result as shown in the page.

Figure 15. Fragment of RAML definition for registering WSP.

5.2. Performance Evaluation

Figure 16 shows the network monitoring for accessing services of the IoT device and the WSP.

For collecting data to compare the size of data packets and round trip time (RTT) in the

communications with elements of the IoT proxy based OCF network, four types of service accessing

interactions are presented and each interaction is executed five times. The presented interactions are

introduced as follows.

(a) (b)

IoT Proxy

Access

Outdoor

Service

WSP

IoT Client

Forward

Request

Figure 16. Cont.

Sensors 2018, 18, 1721 16 of 21

Sensors 2018, 18, x FOR PEER REVIEW 16 of 21

(c) (d)

Figure 16. Network monitoring for accessing services. (a) Interaction A; (b) Interaction B;

(c) Interaction C; (d) Interaction D.

Interaction A: This interaction presents accessing the WSP’s service using the IoT client through

the IoT proxy: This interaction is between the IoT client and the WSP through the IoT proxy which

works on the OCF network between the IoT client and the IoT proxy, on the Internet between the IoT

proxy and the WSP. The figure of Interaction A is captured from network monitor of the IoT client

which shows the communication specification of the request from the IoT client to the IoT proxy. The

maximum network speed of request message transmission is 250 B/s approximately and the

maximum network speed of response message transmission is 1.5 KB/s approximately, and the range

of RTTs are between 979 ms to 1324 ms.

Interaction B: This interaction presents accessing the temperature sensing service of IoT device

using the IoT client: This interaction is between the IoT client and the IoT device directly which works

on the OCF network between the IoT client and the IoT device. The figure of Interaction B is captured

from network monitor of the IoT client which shows the communication specification of the request

from the IoT client to the IoT device. The maximum network speed of request message transmission

is 200 B/s approximately and the maximum network speed of response message transmission is 250 B/s

approximately, and the range of RTTs are between 632 ms and 686 ms.

Interaction C: This interaction presents accessing the LED controlling service of the IoT device

using the IoT client. This interaction is same as Interaction B except for the API specification and the

figure of Interaction B is also captured by the same way with Interaction B. The maximum network

speed of request message transmission is 200 B/s approximately and the maximum network speed of

response message transmission is 200 B/s approximately, and the range of RTTs are between 685 ms

to 649 ms.

Interaction D: This interaction presents accessing the WSP service using the web browser. This

interaction is between the IoT client and the WSP directly which works on the Internet between the

web browser and the WSP. The figure of Interaction D is captured from network monitor of the web

browser which shows the communication specification of the request from the web browser to the

WSP. The response message size is 814 B and it depends on the data which is delivered by the service

of the WSP. Therefore, for accessing the service, the response message sizes are same. The range of

RTTs is between 113 ms to 116 ms.

Interactions A, B, and C are monitored by Android Device Monitor of Android Studio 3.0.1. The

monitored information shows network speed, transmission time, and packet size of RX (receive) and

TX (transmit).

Interaction D is monitored from the development tool of Firefox. The monitored information

shows transmission time, packet size of response message, and other network elements of HTTP

communication.

Figure 17 shows the comparison of RTTs for accessing services via Interaction A, B, C, and D.

The average RTT of Interaction A is 1243 ms which is the highest of them because it is comprised of

two request/response processes via the OCF network and the Internet. The average RTT of Interaction

D is 114 ms which is the lowest of them. The average RTT of Interaction B is 653.8 ms and Interaction

C is 660.6 ms, which are almost same because those interactions work on the same network

environment and the processes of temperature sensing and the LED controlling in the IoT device

proceed almost immediately.

Figure 16. Network monitoring for accessing services. (a) Interaction A; (b) Interaction B; (c) Interaction
C; (d) Interaction D.

Interaction A: This interaction presents accessing the WSP’s service using the IoT client through
the IoT proxy: This interaction is between the IoT client and the WSP through the IoT proxy which
works on the OCF network between the IoT client and the IoT proxy, on the Internet between the IoT
proxy and the WSP. The figure of Interaction A is captured from network monitor of the IoT client
which shows the communication specification of the request from the IoT client to the IoT proxy.
The maximum network speed of request message transmission is 250 B/s approximately and the
maximum network speed of response message transmission is 1.5 KB/s approximately, and the range
of RTTs are between 979 ms to 1324 ms.

Interaction B: This interaction presents accessing the temperature sensing service of IoT device
using the IoT client: This interaction is between the IoT client and the IoT device directly which works
on the OCF network between the IoT client and the IoT device. The figure of Interaction B is captured
from network monitor of the IoT client which shows the communication specification of the request
from the IoT client to the IoT device. The maximum network speed of request message transmission is
200 B/s approximately and the maximum network speed of response message transmission is 250 B/s
approximately, and the range of RTTs are between 632 ms and 686 ms.

Interaction C: This interaction presents accessing the LED controlling service of the IoT device
using the IoT client. This interaction is same as Interaction B except for the API specification and the
figure of Interaction B is also captured by the same way with Interaction B. The maximum network
speed of request message transmission is 200 B/s approximately and the maximum network speed of
response message transmission is 200 B/s approximately, and the range of RTTs are between 685 ms to
649 ms.

Interaction D: This interaction presents accessing the WSP service using the web browser.
This interaction is between the IoT client and the WSP directly which works on the Internet between
the web browser and the WSP. The figure of Interaction D is captured from network monitor of the
web browser which shows the communication specification of the request from the web browser to the
WSP. The response message size is 814 B and it depends on the data which is delivered by the service
of the WSP. Therefore, for accessing the service, the response message sizes are same. The range of
RTTs is between 113 ms to 116 ms.

Interactions A, B, and C are monitored by Android Device Monitor of Android Studio 3.0.1.
The monitored information shows network speed, transmission time, and packet size of RX (receive)
and TX (transmit).

Interaction D is monitored from the development tool of Firefox. The monitored information
shows transmission time, packet size of response message, and other network elements of
HTTP communication.

Figure 17 shows the comparison of RTTs for accessing services via Interaction A, B, C, and D.
The average RTT of Interaction A is 1243 ms which is the highest of them because it is comprised
of two request/response processes via the OCF network and the Internet. The average RTT of
Interaction D is 114 ms which is the lowest of them. The average RTT of Interaction B is 653.8 ms

Sensors 2018, 18, 1721 17 of 21

and Interaction C is 660.6 ms, which are almost same because those interactions work on the same
network environment and the processes of temperature sensing and the LED controlling in the IoT
device proceed almost immediately.

Sensors 2018, 18, x FOR PEER REVIEW 17 of 21

Interaction D is monitored from the development tool of Firefox. The monitored information

shows transmission time, packet size of response message, and other network elements of HTTP

communication.

Figure 17. Comparison of RTTs for accessing services.

Table 2 shows the network packet sizes of Interaction A, B, C, and D. For Interaction A, the IoT

proxy totally receives 975 B from the IoT client and the WSP, transmits 834 B to the IoT client and the

WSP. Only for the interaction of the IoT proxy and the WSP in Interaction A, the IoT proxy receives

866 B from the WSP, transmits 335 to the WSP. The IoT client receives 499 B from the IoT proxy,

transmits 109 B to the IoT proxy for Interaction A. So, the request message size from the IoT client to

the IoT proxy is 109 B and the response message size is 499 B for accessing the service of the WSP.

However, the IoT proxy receives 866 B from the WSP because the IoT proxy converts the HTTP

message to the OCF message. For Interaction D, the web browser receives 814 B, and only for content

is 456 B. Therefore, the interaction using the IoT proxy saves 415 B for accessing the service of the

WSP from the IoT client.

Table 2. Network packet sizes of interactions

Element Interaction RX Size TX Size

IoT Proxy Interaction A 975 B 834 B

Bridge Handler Interaction A 866 B 335 B

IoT Client Interaction A 499 B 109 B

IoT Client Interaction B 88 B 64 B

IoT Client Interaction C 64 B 73 B

Web Browser Interaction D 814 B -

Content Interaction D 456 B -

Figure 18 shows the status of the IoT proxy for accessing the WSP service through the IoT proxy.

The status is monitored for CPU usage, memory usage, and network speed by the tool of Android

Studio 3.0.1. At the moment of accessing the service of the WSP from the IoT client, the handler of the

VR in the IoT proxy is triggered to process the task. In this task which is monitored, the maximum CPU

usage is 19.75%, maximum memory usage is 30.75 MB, and maximum network speed is 6.16 KB/s.

1243

653.8 660.6

114

0

200

400

600

800

1000

1200

1400

Interaction A Interaction B Interaction C Interaction D

R
TT

 (
m

s)

Average

Figure 17. Comparison of RTTs for accessing services.

Interaction D is monitored from the development tool of Firefox. The monitored information
shows transmission time, packet size of response message, and other network elements of
HTTP communication.

Table 2 shows the network packet sizes of Interaction A, B, C, and D. For Interaction A, the IoT
proxy totally receives 975 B from the IoT client and the WSP, transmits 834 B to the IoT client and the
WSP. Only for the interaction of the IoT proxy and the WSP in Interaction A, the IoT proxy receives
866 B from the WSP, transmits 335 to the WSP. The IoT client receives 499 B from the IoT proxy,
transmits 109 B to the IoT proxy for Interaction A. So, the request message size from the IoT client
to the IoT proxy is 109 B and the response message size is 499 B for accessing the service of the WSP.
However, the IoT proxy receives 866 B from the WSP because the IoT proxy converts the HTTP message
to the OCF message. For Interaction D, the web browser receives 814 B, and only for content is 456 B.
Therefore, the interaction using the IoT proxy saves 415 B for accessing the service of the WSP from the
IoT client.

Table 2. Network packet sizes of interactions

Element Interaction RX Size TX Size

IoT Proxy Interaction A 975 B 834 B
Bridge Handler Interaction A 866 B 335 B

IoT Client Interaction A 499 B 109 B
IoT Client Interaction B 88 B 64 B
IoT Client Interaction C 64 B 73 B

Web Browser Interaction D 814 B -
Content Interaction D 456 B -

Figure 18 shows the status of the IoT proxy for accessing the WSP service through the IoT proxy.
The status is monitored for CPU usage, memory usage, and network speed by the tool of Android
Studio 3.0.1. At the moment of accessing the service of the WSP from the IoT client, the handler of the
VR in the IoT proxy is triggered to process the task. In this task which is monitored, the maximum CPU
usage is 19.75%, maximum memory usage is 30.75 MB, and maximum network speed is 6.16 KB/s.

Sensors 2018, 18, 1721 18 of 21

Sensors 2018, 18, x FOR PEER REVIEW 18 of 21

Figure 18. Status of IoT proxy for accessing a WSP service through IoT proxy.

Figure 19 shows the usage of CPU and memory in the IoT proxy for registering the WSP

information. We had deployed the RAML files in the IoT proxy for registering the WSP information.

The experiment proceeded by deploying 1 to 10 RAML files in the IoT proxy. The registering of the

WSP information using 1, 4, 6, 9 RAML files was selected to be shown, and the differences are

obviously displayed for the usage of CPU and memory. In each monitoring figure, the top half is the

usage CPU and the bottom half is the usage of memory. The IoT proxy application consumes the CPU

in the process of registering the WSP information and the usage of memory is increased until the

registration is finished. After the registration process is finished, the usage of CPU becomes 0% and

the usage of memory become 25~30MB approximately, except for outliers. As shown in the

differences of the figures, the cost of CPU and memory are increased with the number of the

registered WSP information.

Figure 19. CPU and memory monitoring for registering WSP information. (a) Register 1 WSP

Information; (b) Register 4 WSP Information; (c) Register 6 WSP Information; (d) Register 9 WSP

Information

The initial memory usages are approximately same for each process and the range of sizes are

between 6.64 MB and 10.47 MB in this experiment. The registering process runs on the start of the

application, and the initial memory usages can illustrate the total size for external files, configuration

files, resource files, and class instances from the Android application. The maximum memory usages

and the registering times are increased with the number of the registered WSP information. The

RAML parser in the Android application of IoT proxy may lock the thread of the process. Because

the process runs on a thread, it means the Android application proceeds processes in same time for

each registering of the WSP information. However, the registering times are still increased, and it is

(a)

(c)

(b)

(d)

Figure 18. Status of IoT proxy for accessing a WSP service through IoT proxy.

Figure 19 shows the usage of CPU and memory in the IoT proxy for registering the WSP
information. We had deployed the RAML files in the IoT proxy for registering the WSP information.
The experiment proceeded by deploying 1 to 10 RAML files in the IoT proxy. The registering of the
WSP information using 1, 4, 6, 9 RAML files was selected to be shown, and the differences are obviously
displayed for the usage of CPU and memory. In each monitoring figure, the top half is the usage CPU
and the bottom half is the usage of memory. The IoT proxy application consumes the CPU in the
process of registering the WSP information and the usage of memory is increased until the registration
is finished. After the registration process is finished, the usage of CPU becomes 0% and the usage
of memory become 25~30MB approximately, except for outliers. As shown in the differences of the
figures, the cost of CPU and memory are increased with the number of the registered WSP information.

Sensors 2018, 18, x FOR PEER REVIEW 18 of 21

Figure 18. Status of IoT proxy for accessing a WSP service through IoT proxy.

Figure 19 shows the usage of CPU and memory in the IoT proxy for registering the WSP

information. We had deployed the RAML files in the IoT proxy for registering the WSP information.

The experiment proceeded by deploying 1 to 10 RAML files in the IoT proxy. The registering of the

WSP information using 1, 4, 6, 9 RAML files was selected to be shown, and the differences are

obviously displayed for the usage of CPU and memory. In each monitoring figure, the top half is the

usage CPU and the bottom half is the usage of memory. The IoT proxy application consumes the CPU

in the process of registering the WSP information and the usage of memory is increased until the

registration is finished. After the registration process is finished, the usage of CPU becomes 0% and

the usage of memory become 25~30MB approximately, except for outliers. As shown in the

differences of the figures, the cost of CPU and memory are increased with the number of the

registered WSP information.

Figure 19. CPU and memory monitoring for registering WSP information. (a) Register 1 WSP

Information; (b) Register 4 WSP Information; (c) Register 6 WSP Information; (d) Register 9 WSP

Information

The initial memory usages are approximately same for each process and the range of sizes are

between 6.64 MB and 10.47 MB in this experiment. The registering process runs on the start of the

application, and the initial memory usages can illustrate the total size for external files, configuration

files, resource files, and class instances from the Android application. The maximum memory usages

and the registering times are increased with the number of the registered WSP information. The

RAML parser in the Android application of IoT proxy may lock the thread of the process. Because

the process runs on a thread, it means the Android application proceeds processes in same time for

each registering of the WSP information. However, the registering times are still increased, and it is

(a)

(c)

(b)

(d)

Figure 19. CPU and memory monitoring for registering WSP information. (a) Register 1 WSP Information;
(b) Register 4 WSP Information; (c) Register 6 WSP Information; (d) Register 9 WSP Information

The initial memory usages are approximately same for each process and the range of sizes are
between 6.64 MB and 10.47 MB in this experiment. The registering process runs on the start of the
application, and the initial memory usages can illustrate the total size for external files, configuration
files, resource files, and class instances from the Android application. The maximum memory usages
and the registering times are increased with the number of the registered WSP information. The RAML
parser in the Android application of IoT proxy may lock the thread of the process. Because the process
runs on a thread, it means the Android application proceeds processes in same time for each registering
of the WSP information. However, the registering times are still increased, and it is supposed because

Sensors 2018, 18, 1721 19 of 21

of the RAML parser. Therefore, if the RAML parser can run for multi-threads then the registering
times are possibly not increased.

6. Conclusions

In this paper, the IoT proxy has been presented using VRs to bridge WSPs from the Internet to
the OCF network. The proposed IoT proxy enables the IoT client having the transparent access to IoT
devices and WSPs through the consistent service accessing scheme. Moreover, the VRs and resources
of IoT devices are discovered together by the client as OCF resources through the discovery service
that is provided IoT proxy. For the proposal of proxy based scheme, the architecture of IoT network
and message translating methodology have been presented for the interworking of heterogeneous
protocols. For developing the proposed IoT proxy in the OCF network, the scenarios of registration,
discovery, and accessing of services, and presented the implementation details have been presented
for indoor and outdoor services using the IoT device and the concrete web service that is provided
via the OWM through the open API. Moreover, according to the evaluation results, the IoT proxy can
reduce the size of the message for the delivered service from the Internet to the IoT client. The payload
of response message is provided by the HTTP server to the IoT client through the IoT proxy. Therefore,
the message translator of IoT proxy gets the JSON based payload data from HTTP response message
to generate the OCF response for the client in the IoT network.

Author Contributions: W.J. and D.K. designed the overall system. W.J. implemented the overall system and
performed experiments. W.J. and D.K. wrote this paper.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2017-2016-0-00313) supervised by the IITP
(Institute for Information & communications Technology Promotion), and this research was supported by Basic
Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2015R1D1A1A01060493)). Any correspondence related to this paper should
be addressed to DoHyeun Kim; kimdh@jejunu.ac.kr.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Evans, D. The internet of things: How the next evolution of the internet is changing everything.
CISCO White Pap. 2011, 1, 1–11.

2. Shelke, M.; Malhotra, A.; Mahalle, P.N. Congestion-Aware Opportunistic Routing Protocol in Wireless
Sensor Networks. In Smart Computing and Informatics; Springer: Singapore, 2018; pp. 63–72.

3. Sethi, P.; Sarangi, S.R. Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng.
2017, 2017, 9324035. [CrossRef]

4. Jin, W.; Kim, D.H. Design and Implementation of e-Health System Based on Semantic Sensor Network Using
IETF YANG. Sensors 2018, 18, 629. [CrossRef] [PubMed]

5. Want, R.; Schilit, B.N.; Jenson, S. Enabling the internet of things. Computer 2015, 48, 28–35. [CrossRef]
6. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for internet of things: A survey.

IEEE Internet Things J. 2016, 3, 70–95. [CrossRef]
7. Karagiannis, V.; Chatzimisios, P.; Vazquez-Gallego, F.; Alonso-Zarate, J. A survey on application layer

protocols for the internet of things. Trans. IoT Cloud Comput. 2015, 3, 11–17.
8. Zhu, Q.; Wang, R.; Chen, Q.; Liu, Y.; Qin, W. IoT gateway: Bridging wireless sensor networks into internet of

things. In Proceedings of the 2010 IEEE/IFIP 8th International Conference on Embedded and Ubiquitous
Computing (EUC), Hong Kong, China, 11–13 December 2010.

9. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey
on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.
[CrossRef]

10. Zhong, C.-L.; Zhu, Z.; Huang, R. Study on the IOT architecture and gateway technology. In Proceedings of
the 14th International Symposium on Distributed Computing and Applications for Business Engineering
and Science (DCABES), Guiyang, China, 18–24 August 2015.

http://dx.doi.org/10.1155/2017/9324035
http://dx.doi.org/10.3390/s18020629
http://www.ncbi.nlm.nih.gov/pubmed/29461493
http://dx.doi.org/10.1109/MC.2015.12
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://dx.doi.org/10.1109/COMST.2015.2444095

Sensors 2018, 18, 1721 20 of 21

11. Chen, H.; Jia, X.; Li, H. A brief introduction to IoT gateway. In Proceedings of the IET International Conference
on Communication Technology and Application (ICCTA 2011), Beijing, China, 14–16 October 2011.

12. Jin, W.; Kim, D. A Sleep-Awake Scheme Based on CoAP for Energy-Efficiency in Internet of Things. Int. J.
Inform. Vis. 2017, 1, 110–114. [CrossRef]

13. Djamaa, B.; Yachir, A.; Richardson, M. Hybrid CoAP-based resource discovery for the Internet of Things.
J. Ambient Intell. Humaniz. Comput. 2017, 8, 357–372. [CrossRef]

14. Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243.
15. OCF Core Specification. Available online: https://openconnectivity.org/specs/OCF_Core_Specification_v1.

3.1.pdf (accessed on 6 April 2018).
16. Park, S. OCF: A New Open IoT Consortium. In Proceedings of the 31st International Conference

on IEEE Advanced Information Networking and Applications Workshops (WAINA), Taipei, Taiwan,
27–29 March 2017.

17. Castro, M.; Jara, A.J.; Skarmeta, A.F. Enabling end-to-end CoAP-based communications for the Web of Things.
J. Netw. Comput. Appl. 2016, 59, 230–236. [CrossRef]

18. Pautasso, C. RESTful web services: Principles, patterns, emerging technologies. In Web Services Foundations;
Springer: New York, NY, USA, 2014; pp. 31–51.

19. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); Internet Engineering Task
Force (IETF): Fremont, CA, USA, 2014.

20. Dijk, E.; Castellani, A.; Loreto, S.; Rahman, A.; Fossati, T. Guidelines for HTTP-CoAP Mapping Implementations;
CoRE Working Group: Fremont, CA, USA, 2016.

21. Datta, S.K.; Bonnet, C.; Nikaein, N. An IoT gateway centric architecture to provide novel M2M services.
In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014.

22. Jin, W.; Kim, D. A Sleep Scheme Based on MQ Broker Using Subscribe/Publish in IoT Network. Int. J. Adv.
Sci. Eng. Inf. Technol. 2018, 8, 539–545. [CrossRef]

23. Han, S.N.; Park, S.; Lee, G.M.; Crespi, N. Extending the devices profile for web services standard using a
REST proxy. IEEE Internet Comput. 2015, 19, 10–17. [CrossRef]

24. MQTT. Available online: http://mqtt.org/ (accessed on 10 May 2018).
25. Koster, M.; Keranen, A.; Jimenez, J. Message Queueing in the Constrained Application Protocol (CoAP);

Internet-Draft, draft-koster-core-coapmq-00; CoRE Working Group: Fremont, CA, USA, 2014.
26. Castellani, A.P.; Fossati, T.; Loreto, S. HTTP-CoAP cross protocol proxy: an implementation viewpoint.

In Proceedings of the 9th IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS),
Las Vegas, NV, USA, 8–11 October 2012.

27. Lerche, C.; Laum, N.; Golatowski, F.; Timmermann, D.; Niedermeier, C. Connecting the web with the
web of things: Lessons learned from implementing a CoAP-HTTP proxy. In Proceedings of the 9th
IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), Las Vegas, NV, USA,
8–11 October 2012.

28. OCF Bridge Specification. Available online: https://openconnectivity.org/specs/drafts/OCF_Bridging_
Specification_IPR_Candidate_v1.3.0.pdf (accessed on 11 April 2018).

29. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer
platform: Introduction to oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26. [CrossRef]

30. Park, H.; Kim, H.; Joo, H.; Song, J.S. Recent advancements in the Internet-of-Things related standards:
A oneM2M perspective. ICT Express 2016, 2, 126–129. [CrossRef]

31. Esquiagola, J.; Costa, L.; Calcina, P.; Zuffo, M. Enabling CoAP into the swarm: A transparent interception
CoAP-HTTP proxy for the Internet of Things. In Proceedings of the 2017 Global Internet of Things Summit
(GIoTS), Geneva, Switzerland, 6–9 June 2017.

32. Ludovici, A.; Calveras, A. A proxy design to leverage the interconnection of coap wireless sensor networks
with web applications. Sensors 2015, 15, 1217–1244. [CrossRef] [PubMed]

33. Jazayeri, M.A.; Liang, S.H.; Huang, C.Y. Implementation and evaluation of four interoperable open standards
for the internet of things. Sensors 2015, 15, 24343–24373. [CrossRef] [PubMed]

34. Open Weather Map. Available online: https://openweathermap.org (accessed on 10 April 2018).
35. Surwase, V. REST API Modeling Languages—A Developer’s Perspective. Int. J. Sci. Technol. Eng. 2016, 2,

634–637.

http://dx.doi.org/10.30630/joiv.1.4.37
http://dx.doi.org/10.1007/s12652-017-0450-3
https://openconnectivity.org/specs/OCF_Core_Specification_v1.3.1.pdf
https://openconnectivity.org/specs/OCF_Core_Specification_v1.3.1.pdf
http://dx.doi.org/10.1016/j.jnca.2014.09.019
http://dx.doi.org/10.18517/ijaseit.8.2.3099
http://dx.doi.org/10.1109/MIC.2014.44
http://mqtt.org/
https://openconnectivity.org/specs/drafts/OCF_Bridging_Specification_IPR_Candidate_v1.3.0.pdf
https://openconnectivity.org/specs/drafts/OCF_Bridging_Specification_IPR_Candidate_v1.3.0.pdf
http://dx.doi.org/10.1109/MWC.2014.6845045
http://dx.doi.org/10.1016/j.icte.2016.08.009
http://dx.doi.org/10.3390/s150101217
http://www.ncbi.nlm.nih.gov/pubmed/25585107
http://dx.doi.org/10.3390/s150924343
http://www.ncbi.nlm.nih.gov/pubmed/26402683
https://openweathermap.org

Sensors 2018, 18, 1721 21 of 21

36. Verborgh, R.; Harth, A.; Maleshkova, M.; Stadtmuller, S.; Steiner, T.; Taheriyan, M. Survey of semantic
description of REST APIs. In REST: Advanced Research Topics and Practical Applications; Springer: New York,
NY, USA, 2014; pp. 69–89.

37. ONEIOTA. Available online: https://oneiota.org (accessed on 11 May 2018).
38. De, S.; Barnaghi, P.; Bauer, M.; Meissner, S. Service modelling for the Internet of Things. In Proceedings of

the 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland,
18–21 September 2011.

39. Mashal, I.; Alsaryrah, O.; Chung, T.-Y.; Yang, C.-Z.; Kuo, W.-H.; Agrawal, D.P. Choices for interaction with
things on Internet and underlying issues. Ad Hoc Netw. 2015, 28, 68–90. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://oneiota.org
http://dx.doi.org/10.1016/j.adhoc.2014.12.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proxy-Based IoT Architecture
	IoT Architecture Based on IoT Proxy in OCF Network
	IoT Proxy Based on VR
	Message Translator in IoT Proxy

	Registration, Discovery, Service Accessing of Web Service, and IoT Service
	Performance Analysis
	Implementation of IoT Network Based on Proxy
	Performance Evaluation

	Conclusions
	References

