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The gold standard for an empirical science is the replicability of its research results.
But the estimated average replicability rate of key-effects that top-tier psychology
journals report falls between 36 and 39% (objective vs. subjective rate; Open Science
Collaboration, 2015). So the standard mode of applying null-hypothesis significance
testing (NHST) fails to adequately separate stable from random effects. Therefore, NHST
does not fully convince as a statistical inference strategy. We argue that the replicability
crisis is “home-made” because more sophisticated strategies can deliver results the
successful replication of which is sufficiently probable. Thus, we can overcome the
replicability crisis by integrating empirical results into genuine research programs.
Instead of continuing to narrowly evaluate only the stability of data against random
fluctuations (discovery context), such programs evaluate rival hypotheses against stable
data (justification context).

Keywords: confirmation, knowledge accumulation, meta-analysis, psi-hypothesis, replicability crisis, research
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INTRODUCTION

Empirical psychology and the social sciences at large remain in crisis today, because (too)
many key-results cannot be replicated (Baker, 2015; Open Science Collaboration, 2015; Etz
and Vandekerckhove, 2016). Having diagnosed a disciplinary crisis as early as Willy (1889),
psychologists did so most recently in a special issue of Perspectives on Psychological Science (Witte,
1996a; Pashler and Wagenmakers, 2012; Spellman, 2012; Sturm and Mülberger, 2012). Particularly
the crisis of significance-testing is about as old as the test itself (Witte, 1980; Cowles, 1989;
Harlow et al., 1997). Setting the current crisis apart is the insight that null-hypothesis significance
testing (NHST) has broadly failed to deliver the stable effects that should characterize empirical
knowledge. Many researchers are therefore (rightly) concerned that all published effects are under
doubt. The perhaps most pressing question today is how our field might regain trust.1

In our view, the ongoing replicability crisis reflects a goal-conflict between publishing
statistically significant results as an individual researcher and increasing the trustworthiness of
scientific knowledge as a community (Bakker et al., 2012; Nosek et al., 2012; Ioannidis, 2014).

1In fact, OSC reported an average replicability-rate of some 36%. Worse still, a Bayesian approach finds clear and consistent
results in merely 11% of 72 reanalyzed datasets (Etz and Vandekerckhove, 2016). Though Gilbert et al. (2016, p. 1037-a)
submit that “[i]f OSC (Open Science Collaboration) had limited their analyses to endorsed studies, they would have found
59.7% [95% confidence interval: 47.5, 70.9%] were replicated successfully,” it is clear that even 59.7% is insufficient to regain
trust.
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Acknowledging that we can separate the corresponding research
activities only analytically, we map both goals onto the terms
‘discovery’ and ‘justification’ (aka ‘DJ-distinction’). Since the
status quo favors “making discoveries,” we submit, the balance
between these goals must be redressed. As regards variously
proposed “minimally invasive” remedies, however, we find that
such “soft” measures are insufficient to regain trust.2

We rest our case on the observation that psychologists
typically deploy statistical inference methods in underpowered
studies (Maxwell, 2004). This praxis generates theoretically
disconnected “one-off” discoveries whose replication is
improbable. But such results should not be trusted, because
they are insufficiently stable to justify, or corroborate, a
theoretical hypothesis (Rosnow and Rosenthal, 1989). By
contrast, corroboration is possible within a research program. To
overcome the crisis, therefore, our community should come to
coordinate itself on joint long-term research endeavors.

FROM DISCOVERY TO JUSTIFICATION

Overview
Constructing a psychological theory begins with discovering
non-random relations between antecedent variables and
their (causal) consequences, aka stable effects. Relying on a
probabilistic version of the lean DJ-distinction, this section
contrasts the discovery and the justification context, explains the
replicability of empirical results, and shows why underpowered
discoveries cannot be trusted. We then define two key concepts:
induction quality of data and corroboration quality of hypotheses,
and formulate a brief upshot.

Stable Effects
As late 19th-century psychologists transformed their field into
an empirical science, the guiding idea was to base empirical
hypotheses on stable non-random effects. Indeed, only stable
effects guide researchers toward the explananda. Otherwise,
explanation would be pointless—for what should be explained?
This pedestrian insight makes the discovery of a stable
effect as necessary as the managing of random influences
is regularly unavoidable (e.g., in measurement, sampling, or
situation-construction). We therefore discover an effect but in a
probabilistic sense.

As we thus evaluate our chances of having made a discovery,
we must gauge the effect’s deviation from random against a
statistical significance threshold. Of course, if we cannot discover
an effect with certainty, then it follows by parity of reasoning that
we cannot falsify it with certainty either. We must therefore ever
invest some trust that the effect in fact surpasses potential random
influences.

2As a recent survey indicates, psychologists are open to milder changes (Fuchs
et al., 2012). The accepted rules of best research practice, for instance, shall not
be turned into binding publication conditions. Moreover, 84% among respondents
find that reviewers should be more tolerant of imperfections in what their peers
submit for publication (ibid., p. 640). Additional proposals include intensifying
communication, pre-registering hypotheses, and exchanging data- and design-
characteristics (e.g., Nosek and Bar-Anan, 2012; Nosek et al., 2015).

Also known as ‘stable observations,’ such effects register as
highly probable deviations from a content-free random or null-
hypothesis (H0). But even a stable effect (in this probabilistic
sense) may be subsumed under distinct explanatory hypotheses.
We must therefore corroborate such diverging explanations via a
theory that predicts the effect’s probabilistic signature from initial
and boundary conditions.

If we base hypothesis construction and validation on
uncertain observation, then hypothesis corroboration likewise
entails the probabilistic comparison of a hypotheses pair.
Pace efforts by the likes of Rudolf Carnap and Karl Popper,
this is an immediate consequence of recognizing that
uncontrollable random influences are relevant to theory
acceptance. As we now show, it is this interplay between an
effect’s probabilistic discovery and its probabilistic corroboration
that connects the discovery and the justification contexts (aka
DJ-distinction).

The Lean DJ-Distinction
Discovery and justification are fairly self-evident concepts.
The dominant mode of deploying statistical inference methods
nevertheless reflects them inadequately. Indeed, a review of
the textbook literature would show that the NHST approach
largely ignores the DJ-distinction. To set this right, we rely on
a probabilistic model to make a non-controversial version of
the DJ-distinction precise.3 Hoyningen-Huene (2006) calls it the
‘lean DJ-distinction’ to denote “an abstract distinction between
the factual [. . .] and the normative or evaluative [. . .]” (ibid.,
p. 128).

In adapting this distinction, ‘discovery’ refers to research
activities in the data space that employ probabilities, while
‘justification’ denotes activities in the hypotheses space that
employ likelihoods. Unlike a measure of the probability, P, of
data given a hypothesis [where 0 ≤ P(D,H) ≤ 1], likelihoods, L,
aka ‘inverse probabilities,’ are a sort of probability measure for
hypotheses given data [where 0 < L(H|D) < ∞]. ‘Data space’
and ‘hypotheses space’ are analytical constructs, respectively
denoting the collection of stable data and their subsumption
under hypotheses.

Of course, research activities alternate between both spaces,
witness metaphorical ideas, and such practices as data-
“torturing” or inventing ad hoc hypotheses, etc. Similar heuristics
are fine, but they do not amount to a hypothesis test. After
all, discovery context activities focus on phenomena we are
yet to discover. So a probabilistic model defines a discovery
as a (theory-laden) observation of a non-random effect. This
yields as relevant elements the H0-hypothesis and the actual data
distribution. If data have a low probability given the H0 (aka
the effect’s p-value; see Fisher, 1956), this is called a ‘discovered
effect.’

But when we next evaluate the trustworthiness of data, the
crucial question is this: if we treat the data distribution that

3Introduced by Reichenbach (1938), the DJ-distinction has been contended from
diverse perspectives, notably since the reception of Kuhn (1970). Extant discussion
of the distinction’s multiple versions questions the separability of both contexts
on temporal, methodological, goal- or question-related criteria. See Schickore and
Steinle (2006) and references provided there.
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had been obtained in a given test-condition as a theoretical
parameter, and moreover hold constant the p-value and the
number of observations, what is the probability of obtaining the
same distribution given the H0 in a subsequent instance of this
test-condition?4 So to assess the trustworthiness of data is to
measure the probability of replicating a non-random effect. This
leads us to consider test-power.

Test-Power and Statistical Significance
vs. Theoretical Importance
Cohen (1962) had suggested that empirical studies in the
social sciences tend to be underpowered. This entails a low
probability of successfully replicating a non-random effect. His
guiding assumption was that the true amount of influence
from independent onto dependent variables be of medium size
(d = 0.50).

Provided a typical sample size around n1 = n2 = 30,
if we assume d = 0.50 and a two-sided α-error = 0.05,
then average test-power comes to 1–β-error = 0.46. Some
25 years later, Sedlmeier and Gigerenzer (1989) arrived at a
similar value. (The α-error denotes the chance of obtaining a
false positive test-result, the β-error the chance of obtaining a
false negative result; both errors are normally non-zero, and
should be small for data to be trustworthy.) Test-power = 0.46
implies that samples are typically too small to expect a stable
effect. Therefore, empirical results obtained with similar test-
power may at best issue invitations to more closely study such
“discoveries.”

In psychology as elsewhere in the social sciences, however,
researchers tend to over-report such underpowered results as
hypothesis confirmations. Already some 50 years ago, this praxis
was identified as a cause of publication bias (Sterling, 1959).
To more fully appreciate why this overstates the capabilities
of the method applied, consider that NHST does normally
not specify the H1. One thus fails to assign precise semantic
content to it. By contrast, the (random) H0 does tend to be
well-specified.5

If data now display a sufficiently large deviation from
random, this is (erroneously) interpreted as a discovery of
theoretical importance. But on the reasonable assumption
that theoretically important discoveries are stable rather than
random, a necessary condition in order to meaningfully
speak of a theoretically important discovery is to have

4The inferential strategy generating this question entails an inductive transition.
After all, by formulating a specific non-random hypothesis the probability model,
as it were, transforms “observational” data into a quasi-theoretical hypothesis. So
we run into the unsolved issue of justifying induction as a valid inference (see
below).
5This praxis is not restricted to NHST but also implicates proponents of Bayes-
factor testing. Verhagen and Wagenmakers (2014, p. 1461), for instance, state that
“[t]he problem with this analysis [likelihood-testing] is that the exact alternative
effect size δa is never known beforehand. In Bayesian statistics, this uncertainty
about δ is addressed by assigning it a prior distribution.” Indeed, “[t]he major
drawback of this procedure is that it is based on a point estimate, thereby ignoring
the precision with which the effect size is estimated” (ibid., p. 1463). Similarly, “[w]e
assumed that the alternative was at a single point. This assumption, however, is too
restrictive to be practical” (Rouder et al., 2009, p. 229).

properly employed a reproducibility measure such as test-
power. This in turn presupposes a specified effect size, which
the standard mode of deploying NHST, however, cannot
offer. So NHST cannot warrant an immediate transition
from ‘statistically significant effect’ to ‘theoretically important
discovery.’

Many researchers appear to be satisfied knowing that test-
power is maximal, but fail to check its exact value. So they do
not properly deploy a reproducibility measure. The one “good”
reason for this is their failure to specify the H1, because only
its specification renders test-power quantifiable. This failure
contributes to the confidence loss in our research results.
Understandably so, too, for some 50 years after Cohen had hinted
at d = 0.46, test-power typically registers even lower, at d = 0.35.
So most studies are underpowered (Bakker et al., 2012; Baker,
2015).

Against the background of our probabilistic model, we
proceed to explain why so many empirical results should not be
trusted.

Trustworthy Discoveries
In his influential textbook Cohen had recommended that “[w]hen
the investigator has no other basis for setting the desired power
value, the value [1–β-error = 0.80] is used” (Cohen, 1977, p. 56).
This set a widely accepted standard. Together with α = 0.05,
it implies a weighing of epistemological values that makes the
preliminarily discovery of an effect four times more important
than its stable replication. (This alone goes some way toward
explaining 1–β-error = 0.35.) Similarly-powered “discoveries”
thus are typically instable.

It follows that few effects which arise in the discovery context
are known to deserve a theoretical explanation. Hence, the
unsophisticated application of NHST as a discovery method
regularly fails to inform the evaluation of hypotheses in the
justification context. Since justification contexts activities aim at
developing the comparatively best-corroborated hypotheses into
theories, it can hardly surprise that psychology offers so few
genuine theories (we return to this in Section “Precise Theoretical
Constructs?”).

To set this right, discovery context activities must establish
non-random effects that also feature a high replication
probability, i.e., stable effects. Yet, the current research-
and publication-praxis does not fully reflect that insight. For
instance, though “mere” replications do serve to evaluate whether
an effect is stable, until recently one could not publish such work
in a top-tier journal (see Holcombe, 2016 on Perspectives on
Psychological Science’s new replication section).

In summary, we can quantify the replication probability
of data only if we specify two point hypotheses (H0, H1).
To improve the trustworthiness of empirical knowledge, we
must therefore increase the precision of theoretical assumptions
(Klein, 2014). For only this yields knowledge of test-power,
and only then has the comparative corroboration of the
H1 by a data-set D (as compared to a rival H0) not
been indirectly deduced from our estimation of D given
the H0.

This puts us in a position to offer two central definitions.
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Induction Quality of Data, Corroboration
Quality of Hypotheses
Our probabilified version of the lean DJ-distinction suggests that
two analytically distinct activities govern the research process.
Roughly, one first creates an empirical set-up serving as a test-
condition to obtain data of sufficient induction quality (discovery
context). Next, one tests point-hypotheses against such data
(justification context).

In more detail, discovery context activities evaluate data
by means of descriptive and inferential statistics given fixed
hypotheses. Since this gauges induction quality of data, we
perform an evaluation in the data space. (In fact, we proceed
hypothetically, effectively assessing if data would be sufficiently
trustworthy if they were obtained.) Exactly this is expressed
by ‘gauging the probability that data are replicable given two
point-hypotheses.’

Proceeding to the justification context, we now evaluate point-
hypotheses in order to gauge corroboration quality of hypotheses
given data. So we perform an evaluation in the hypotheses space.
Crucially, only if we in fact obtain data of sufficient induction
quality can we properly quantify the inductive support that actual
data lend to a hypothesis. So ‘gauging corroboration quality’
refers to evaluating the degree to which probably replicable data
support one hypothesis more than another.

Before, we apply these distinctions in the next section, we can
define as follows:

Def. induction quality: A measure of the sensitivity of an
empirical set-up (given two specified point-hypotheses and
a fixed sample size) that is stated as α- and β-error. Though
a set-up’s acceptability rests on convention, equating both
errors (α = β) avoids a bias pro detection (α-error) and con
replicability (β-error). Currently, α= β= 0.05 or α= β= 0.01
are common standards. Based on Neyman–Pearson theory,
this measure is restricted to the discovery context; it qualifies
the test-condition itself. Since we can gauge induction quality
without actual data, this has nothing to do with a hypothesis
test.

Def. corroboration quality: A comparative measure of the
inductive support that data lend to hypotheses, stated as the
likelihood-ratio (aka ‘Bayes-factor’) of two point-hypotheses
given data of sufficient induction quality. The support
threshold is the ratio (1–β-error)/α-error, and so depends on
induction quality of data. For instance, setting α = β = 0.05
yields a threshold of 19 (or log 19 = 1.28), and α = β = 0.01
yields 99 (log 99 = 2.00), etc. Based on Wald’s non-sequential
testing theory the measure tests hypotheses against actual data
in the justification context (Azzalini, 1996; Royall, 1997).

Of course, the final letter in NHST continues to abbreviate
the term ‘test.’ After all, NHST does test the probability of data
given a hypothesis, P(D,H). But our definitions imply that data of
low replication probability are insufficient to test a hypothesis in
the sense of gauging its likelihood, L(H|D). This is because a low-
powered “discovery” of effect E in test-condition C (as indicated
by a large β-error) entails the improbability of redetecting E in

subsequent instances of C. So even in view of a confirmatory
likelihood-ratio, data of insufficient induction quality may well-
initially support a hypothesis. But similar support need not arise
in new data of sufficient induction quality. So a given hypothesis
may subsequently fail to be corroborated.

Upshot
On this background, the ongoing debates between statistical
“schools” seem to be academic ones. After all, most extant
estimation procedures for statistical significance operate squarely
in the data space (Royall, 1997; Gelman, 2011; Wetzels et al.,
2011). But if future theoretical developments must come to
rely on coordinated activities that integrate the data with
the hypotheses space, then the current crisis of empirical
psychology would (at least partially) have arisen as a consequence
of a methodologically unsound transition from discovery to
justification. A sound version thereof, as we saw, leads from stable
effects to trustworthy discoveries and on to acceptable forms of
hypothesis corroboration.

As we also saw, integrating both spaces presupposes that we
specify the expected empirical observation as a point-value. This
states a theoretically sound minimum effect size (whether derived
from a theory, or not); in uncertain cases it states a two-point
interval placed around that value. By contrast, all alternative
strategies simply let data have the “last word” on how we should
construct a data-saving hypothesis. But this runs directly into the
unmet challenge of validating induction.

Indeed, the risk of being “perfectly wrong” should be accepted
even for precise theoretical assumptions. After all, being “broadly
right” under merely vague assumptions is to accept virtually all
non-random data-saving hypotheses. But that obviously fails to
inform theoretical knowledge.

CASE STUDY: PSI-RESEARCH

Overview
To clarify the relation between hypothesis corroboration and
data replication, we exemplify our distinctions with a fairly
controversial effect, treat its size, point to future research needs,
and summarize the main insight.

Replicating Bem’s Psi-hypothesis
Bem’s (2011) infamous results on precognition allegedly support
the hypothesis that future expectations influence present
behavior (aka ‘psi-hypothesis’). Seeking to replicate Bem’s data,
Wagenmakers et al. (2012) claimed to pursue a confirmatory
research agenda. They could stop inquiry after 200 sessions with
100 subjects (see their Figure 2; ibid., p. 636). For by then their
data had lent 6.2 times more support to the H0 (read: no influence
from future expectations) than to the H1 (read: influence). This
is considered substantial evidence for the H0 (Jeffrey, 1961;
Wagenmakers et al., 2011). Since Wagenmakers and colleagues
base their inquiry on Wald’s (1947) sequential analysis, however,
we see reasons to treat their result with caution.

Rather than in order to evaluate theoretical hypotheses,
Wald (1947) had developed sequential testing during WWII
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as a quality-control method in ammunition production. Its
immediate purpose was to estimate how many shells in a lot
deviate from a margin of error, M. While any deviation exceeding
M provides a sufficient reason to discard the whole lot, measuring
large deviations from M is of course less cumbersome than
measuring small ones. So it saves effort to infer probable but
unobserved small deviations from large observed deviations.

Wald’s sequential testing strategy provides a rather brilliant
solution to the classical problem of inducing properties of the
whole from its parts. But it cannot generalize to additional lots.
Nor was it intended to induce over abstract categories, but rather
over material objects. Applied to the case of Wagenmakers and
colleagues testing the specified hypotheses p= 0.50 vs. p= 0.531
(based on Bem’s 2011 first experiment), this means that neither
the α- nor the β-error were known. After all, the number of
observations keeps varying with the observed result. Without at
least stipulating both errors, however, we cannot quantify the
replicability of their result. So we should rather not trust it.

To explain, our previous section had shown that hypothesis
testing requires trustworthy data. To more fully appreciate that
trustworthiness is largely owed to knowledge of errors (Mayo,
1996, 2011), recall that induction quality and corroboration
quality are related: if induction quality is unknown, then
corroboration quality remains diffuse, and so can at best facilitate
a vague form of justification. After all, even if a new and
larger sample includes “old” data, a subsequent sample may
nevertheless lead to a contrary decision as to whether a hypothesis
is confirmed, or not.

As Rouder’s (2014) discussion of the stopping rule shows
(nicely), it is for this reason that Bayesians recommend that we
keep adjusting our confidence level as data come in. Indeed,
Bayesian inference puts the “focus on the [current] degree of
belief for considered models [here: H1 and H0], which need
not and should not be calibrated relative to some hypothetical
truth” (ibid., p. 308). Hence, the authors could reject Bem’s
hypothesis (H1), and instead accept the H0 at a confidence level
of (1–α-error)/β-error= 1.64, where 1–α= 0.95 and β= 0.58.

But the matter is more intricate yet. After all, corroboration
quality would change if we altered the presumed distribution
of possible data (aka ‘the priors’), for instance from a Cauchy-
to a normal-distribution (Bem et al., 2011). Consequently, the
same actual data would now rather support the alternative
hypothesis. In general, which hypothesis it is that data confirm
can be manipulated—intentionally or not—by suitably selecting
the distribution of possible data. So “that different priors result
in different Bayes factors should [indeed] not come as a surprise”
(Ly et al., 2016, p. 12).

The selected type of prior distribution, however, is logically
independent of the hypothesis we wish to test, ever entails
weighing one hypothesis against another, and ultimately reflects
a subjective decision. This provides reasons against giving Bayes-
factors alone the final say in hypothesis corroboration. By
contrast, to point-specify the hypothesis one does test eliminates
this caveat by avoiding the priors, and no other method does.
In the absence of a specified H1, then, whether a test-condition
suffices for a clear justification of the H0 depends on it featuring
acceptably low α- and β-errors.

It follows that, had Wagenmakers and colleagues stopped
their test after a mere 38 sessions, the same sequential testing-
strategy should have led them to accept the H1 on the basis of
nearly substantial evidence (a likelihood-ratio of 3). This would
have “confirmed” Bem’s result by replicating his data. (See the
curve in Figure 2 of Wagenmakers et al., 2012, p. 636; Simmons
et al., 2011 also illustrate this issue.) Given the small effect size
g = 3.1% as a theoretical specification of prior results (50%
against 53.1%, according to Bem, 2011, p. 409, experiment 1), one
should therefore construct a sufficiently strong test-condition to
obtain data of sufficient induction quality.6

Neyman–Pearson theory defines the necessary sample size (or
number of observations, subjects, sessions, etc.) to firmly decide
between two hypotheses with a difference of g = 3.1%. Since this
is a test against the H1, we should treat both errors equally, for
instance by setting α = β = 0.05. It follows that, for the H0 to
be accepted, it must be 19 times (0.95/0.05) more probable than
the H1. The necessary sample size (for a proportion difference
measured against a theoretical constant of 0.50) then comes to
n = 2829 (see Cohen, 1977, p. 169). Comparing this tall figure to
the n = 200 that Wagenmakers et al. (2012) report should make
clear why one cannot trust their result.

A well-suited approximation of the necessary sample size,
n, given specified errors and a postulated effect size of mean
differences, d, is (2(z(1−α)+ z(1−β))2)/d2

= n, where z(1−α) and
z(1−β) increase provided α and β decrease, with z taking values
greater than 1, and d mostly remaining below 1. Given acceptable
errors, a very small d (or g) thus generates a large n. So to achieve
reasonable certainty under specified errors, we may incur an
extremely large number of data points.

The main reason for the large n is the small difference between
the two rivaling hypotheses and our rigor in controlling both
errors. Therefore, it does not suffice to publish the testing-strategy
before and a stopping-rule after data inspection (Nosek and
Bar-Anan, 2012; Nosek et al., 2012, 2015). Similarly, though
sequential testing is a less problematic way of inflating the α-error
than “double-dipping” (Kriegeskorte et al., 2009), it necessarily
inflates the β-error, given that we hold effects constant. So it
increases the chance of not detecting a true difference, making
it improbable to replicate data in independent studies.

Gauging the Psi-effect
In the case of replicating the psi-hypothesis, the β-error was at
least β= 0.58, given n= 200, α= 0.05 (one-sided), and g = 0.05.
Though this is a slightly higher value than was in fact observed,
it still qualifies as a small effect (see Cohen, 1977, p. 155). In
fact, G∗Power software (Faul et al., 2007) estimates an even
larger error of β = 0.64. At any rate, the large β-error renders
Wagenmakers and colleagues’ test-condition unacceptable.

Based on extant psi-studies, Bem had formulated a H1 of
d = 0.25. (Bem prefers t-tests and more “classical” effect size
measures over a binomial test; though results are stated in

6We use ‘g’ to express the effect size as the difference between a stipulated
proportion of 0.50 and an observed proportion, using the sign test; ‘d’ denotes a
difference between numerical means (Cohen, 1977). Notice that when errors and
likelihoods are calculated via a normal curve approximation of the effect size, the
model remains constant under different proof distributions.
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percentages, the output of both kinds of tests is equivalent.)
Having specified d, we can thus calculate the error probabilities:
for α = 0.05 (one-sided), d = 0.25 and n = 100, we find
β-error = 0.18. Now setting α = β = 0.05, the necessary sample
is n = 175, smaller than immediately above because d now is
comparably large. (n = 175 is about half the sample the above
formula approximates, since a difference between a constant and
an empirical mean is evaluated.)7 The Bayes-factor thus registers
some 22 times in favor of a H1 postulating d = 0.25. On a
Bayesian view, this is a clear corroboration of the H1 over the H0.

Though the critical value (1–β-error)/α-error = 0.80/
0.05 = 16 has now been surpassed, upon inspecting induction
quality it transpires that the result is insufficiently stable. To
explain, some of Bem’s trials sought to induce arousal by
displaying erotic and non-erotic pictures in random order,
measured the degree of arousal before displaying a picture-type,
and interpreted heightened arousal before showing an erotic
picture as evidence of precognition. (This suffices to interpret the
set-up as including a control group of sorts.) The observed effect
was d= 0.19 with n= 100 in both samples (erotic vs. non-erotic).
Comparing this with the hypotheses d = 0.00 and d = 0.25,
however, a Bayes-factor of 2.18 is now too low. So Bem’s first
experiment indeed “discovers” a deviation from random (given
α = 0.05, one-sided, and 1–β = 0.82). But the effect isn’t stable
(i.e., its reproducibility is insufficiently probable), particularly
given that both hypotheses had been specified by recourse to
meta-analytical results.

This goes to show that a Bayes-factor may well be extremely
large although the effect is not trustworthy. Indeed, if we interpret
data from the display of non-erotic pictures as a control group—
as we should, because data from the display of erotic pictures did
not significantly deviate from random—then a likelihood-ratio of
2.18 (i.e., a logarithm of 0.34) is hardly any evidence for a psi-
effect, even if we ignore its low replication probability. Rather, a
firm decision under sufficient induction quality requires another
sample of n= 75 (see below).

Meta-analyses of Additional Replication
Attempts
Bem’s (2011) thought-provoking research has meanwhile
initiated something like a research program. But we cannot
elucidate its contradictory results by relying on either frequentist
or Bayesian approaches to statistical inference. It should
therefore be of interest to clarify the psi-debate by integrating
both approaches.

Galak et al. (2012) and Bem et al. (2016) have conducted two
independent meta-analyses of psi-studies. Their combination in
fact yields the necessary sample size. The first study concludes
negatively:

“Across seven experiments (N = 3,298), we replicate the
procedure of experiments 8 and 9 from Bem (2011), which
had originally demonstrated retroactive facilitation of recall.

7Here restricting the focus to a two sample (Neyman–Pearson) t-test with α- and
β-errors, a draft on the one sample t-test and the negative consequences of various
“saving-strategies” to reduce the sample size can be obtained from the authors.

We failed to replicate that finding. We further conduct a meta-
analysis of all replication attempts of these experiments and
find that the average effect size (d = 0.04) is not different from
0” (Galak et al., 2012, p. 933; italics added).

But the second meta-analysis arrives at a quite different result:

“We here report a meta-analysis of 90 experiments from
33 laboratories in 14 countries which yielded an overall
effect greater than six sigma, z = 6.40, p = 1.2 × 10−10

with an effect size (Hedges’ g) of 0.09. A Bayesian analysis
yielded a Bayes Factor [BF] of 5.1 × 109, greatly exceeding
the criterion value of 100 for ‘decisive evidence’ in support
of the experimental hypothesis. When Bem’s experiments
are excluded the combined effect size for replications by
independent investigators is 0.06, z = 4.16, p = 1.1 × 10−5,
and the BF value is 3.853, again exceeding the criterion
of ‘decisive evidence.’ [. . .] P-curve analysis, a recently
introduced statistical technique, estimates the true effect size
of the experiments to be 0.20 for the complete database and
0.24 for the independent replications” (Bem et al., 2016, p. 1).

To prepare for a critical discussion, consider that both
meta-analyses sought to discover a non-random effect, but
neither tested the psi-hypothesis in the sense of gauging L(H|D);
effect sizes are heterogeneous, suggesting that uncontrolled
influences are at play; Bem’s own studies report larger effects
than their independent replications, suggesting a self-fulfilling
prophecy; Bayes-t-tests, as we saw, depend on the prior
distribution and different priors can lead to contradictory results;
most studies included in these meta-analyses are individually
underpowered.

Of course, to simply aggregate various underpowered studies
will not yield a trustworthy inductive basis. After all, almost all
mean differences become statistically significant if we arbitrarily
divide a sufficiently large sample (n≥ 60.000) into two subgroups
(Bakan, 1966). So provided that only the H0 is specified, we
can almost always obtain a non-random result by increasing
the sample. [This contrasts with the methodology of physics
(Meehl, 1967), for instance, where a theoretical parameter is
fixed and increasing the sample size eventually disproves a
theory.]

In view of the more than 90 psi-studies that both meta-
analyses reviewed, researchers did particularly consider the
point-hypotheses d = 0.00 (random, H0) and d = 0.25
(specified, H1). (Bem assumed the latter d-value to plan
studies with power = 0.80, after “predicting” d = 0.24 by
analyzing independent replications; see Bem et al., 2016.) Since
this “research program” requires amendment before it can
successfully address the challenges the replicability crisis has
made apparent, we now exemplify the inference strategy a
genuine psi-research program would pursue.

Among the 90 psi-studies, we consider most trustworthy
those that arose independently of Bem’s research group, that are
classified as exact replications, and that are peer-reviewed (These
admittedly rigorous criteria leave but nine of the studies listed in
Table A1 in Bem et al., 2016, p. 7, Dataset S1).
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Our first critical question must pertain to induction quality:
given α = β = 0.05 and d = 0.25 (see above), the necessary
sample is n = 175. The total sample from the nine studies
comes to n = 520. Since this far exceeds our requirements, we
can in fact assess corroboration quality more severely. Given
α = β and n = 520, the critical value to corroborate the H1 now
is (1–β-error)/α-error = 0.998/0.002 = 499 (or log 2.70), and
correspondingly for the H0, i.e., (1 − α-error)/β-error. Adding
the log-likelihood-ratios for the H0 and subtracting those for the
H1 then yields 5.13. This value is much higher than 2.70, making
it 135,000 times more probable that data inductively support the
H0, rather than a psi-effect of size d = 0.25.

When we gauge the average effect size of our nine studies
(weighed by the sample size), moreover, maximum likelihood
estimation yields d = 0.07 as a psi-effect that is 3.64 times
more probable than a random effect. Rather than a final
verdict on the true hypothesis, of course, this provides but
a relative corroboration of one hypothesis against another.
A maximum likelihood estimate that registers so close to the
hypothetical parameter, however, fails to provide any hint for
further research.

The H0 is now much better corroborated than the psi-
hypothesis. Of course, this does not falsify a psi-hypothesis
postulating a yet smaller effect. It is nevertheless reasonable to
reject the psi hypothesis. After all, to theoretically explain an
effect only becomes more difficult the smaller it is. But again, one
cannot be certain.8

Summary
Our discussion shows that a firm and transparent decision
between two specified hypotheses requires knowing the effect size
and selecting tolerable α- and β-errors. We also saw how this
determines the necessary sample size. Specifically, the smaller an
effect is the larger is the necessary sample. Theories that predict
small effects should therefore be confronted with much larger
samples than is typical. Conversely, the small effects and samples
that top-tier journals often report let few published effects count
as probably replicable. Indeed, the average test-power reported
in Bakker et al. (2012) “predicts” the lower bound (36%) of the
average replication rate reported by Open Science Collaboration
(2015).

Since many studies avoid specifying the alternative hypothesis,
researchers may at best hope to find a significant effect
among their results. This partially explains why they sometimes
“torture” data until significance is achieved. As we saw, such
results frequently surface as allegedly important effects, that
is, as genuine discoveries (see Fanelli and Glänzel, 2013; Witte
and Strohmeier, 2013). Predictably, top-tier journals regularly

8It is natural to object that very few people may in fact command psi-abilities. This
might seem to explain why Bem can measure only a small effect. However, this
explanation-sketch presupposes that we could (somehow) aggregate effect sizes
from individually underpowered studies into a “pooled” effect size. Instead, what
we can safely aggregate are log-likelihoods (see Witte and Zenker, 2016a,b, 2017).
The explanation-sketch might nevertheless lead to a new hypothesis, namely: can
we reliably separate subjects into those who command and those who lack psi-
abilities? If so, we should next test among the former group if the psi-effect is stable.
At any rate, research addressing such hypotheses qualifies as a discovery context
activity.

publish studies that fail to report probably replicable discoveries,
namely when their test-power is too low (<0.80 or <0.95)
to safely reject the H0 (Bakker et al., 2012; Francis, 2012;
Open Science Collaboration, 2015; Etz and Vandekerckhove,
2016).

With these insufficiently designed studies as evidence for a
goal-conflict between psychologists and their field (Witte, 2005;
Eriksson and Simpson, 2013), we go on to show how research
programs improve the status quo.

RESEARCH PROGRAMS

Four Developmental Steps
This section outlines the four steps a progressive research
program takes in order to improve empirical knowledge
(Hacking, 1978; Lakatos, 1978; Larvor, 1998; Motterlini, 2002).
Adopting such programs is a natural consequence of recognizing
the precisification of hypotheses as a necessary condition to
obtain trustworthy results, and of accepting that prior (fallible)
knowledge informs future research.

Step One: Ideas without Controlled
Observation
The first step involves an idea or intuition, perhaps acquired
in what C.S. Peirce called retroduction. Interesting in itself,
having that intuition is less relevant for developing a scientific
construct. Though an intuition is by definition not based
on conscious observation, to be further explored it must
nonetheless sufficiently impress us. For instance, we might
seek hints in subjective experience, theoretical observation,
or collegial discussion. Once we are convinced that the idea
is relevant, we can engage with it systematically, perhaps
moving from material at hand to thought-experiments, computer
simulations, or an “idea-paper” (sans significance tests, etc.).
Importantly, such activities are possible without collecting
data.

Step Two: Devising an Empirical Set-up
The second step establishes our idea with a method, so
that it may potentially count as a genuine discovery. This
requires controlling an empirical set-up in order to “observe”
the phenomenon. But we saw that observations may mislead
because of random effects and sampling- or measurement-error.
So for a discovery to be established, the phenomenon must
significantly deviate from random. After all, random variation
lacks specific semantic content and so does not explain anything
but itself.

We also saw that proofs under probabilistic variation are
based on inferential statistics that consider the observation’s
p-value given the H0. The classical claim ascribed to Fisher is
that a small p-value reflects a rare enough event in a random
model. (At this step, we cannot properly call the search for
small p-values ‘p-hacking,’ an often observed strategy after having
obtained data.) As a consequence, a “large p” (p > 0.05) signals
our failure to measure a significant deviation from random.
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This prima facie suggests complicity with a random model. But
a large p is expected, of course, if the set-up is insufficiently
sensitive to detect an effect that nevertheless is present. So it
would be naïve to treat the absence of a statistically significant
deviation from random as conclusive evidence for the effect’s
absence.

This sensitivity caveat calls on us to adjust our logic of
decision-making. After all, statistically insignificant deviations
from random may still signal epistemic value. Historically,
that insight led Neyman-Pearson-test-theory to provide us also
with an estimate of the β-error. This should be sufficiently
small for the chance of not detecting a true effect to be low.
In other words, the set-up’s sensitivity should be sufficiently
high.

A set-up will generally be optimal if evidence features the
smallest possible p-value given the random model, on one hand,
and the largest probability of registering each true deviation
from random using a minimum number of observations, on
the other. Moreover, an optimal test should be unbiased, so
that we can almost certainly detect a true effect as we increase
the number of observations. In short, we should select the
most powerful test-condition. Test-power considerations thus
inform how we gauge the relative inductive support that data
provide for a content-free H0, compared to the support that the
same data provided for a (one- or two-sided) H1 of substantial
content.

At this point, however, rather than manage a point-
hypothesis, we still deal with a vague H1. Moreover, we
know induction quality of data but partially as long as
we merely hold the α-error constant, but not the β-error.
As a consequence, data may now seem to corroborate
or falsify a hypothesis, but they may not be replicable.
Lastly, corroboration and falsification equally depend on the
distribution of possible data. So corroboration quality is at best
diffuse.

Even if data should now “eliminate” the H0, as it were, a
genuine bundle of substantial alternative H1-hypotheses remains
to be eliminated. Since each such H1-hypothesis postulates a
distinct effect size, the whole bundle provides mutually exclusive
explanatory candidates. Each such H1 therefore associates to
a distinct likelihood-ratio as its corroboration measure. So the
unsolved problem of validating induction merely let data hint
at the correct theoretical parameter, but data alone cannot
determine it. Instead, it is our having further specified this
parameter that eventually lets data decide firmly between any two
such point-hypotheses.

Step Three: Replication and
Meta-analysis
As we achieve replication-success several times, we can give
a better size-estimate of a significant effect. But this estimate
will be unbiased only if we also base it on (often unpublished)
statistically non-significant results (Sterling, 1959; Scargle, 2000;
Schonemann and Scargle, 2008; Ferguson and Heene, 2012).
Moreover, an effect size that has remained heterogeneous
across several studies should eventually be differentiated from

its test-condition. In fact, this is the genuine purpose of a
meta-analysis. But extant analyses are heavily biased toward
published results. Despite various bias detection-tools, such
analyses therefore often present a skewed picture of all available
data, and hence exaggerate the true effect size (Francis,
2012).

When we reproduce an effect, we should therefore correct a
plain induction over prior findings by more theoretical strategies
(see, e.g., Witte, 1994, 1996b, 2005). This includes data-inspection
and -reconstruction by means of a theory with a mathematical
core that predicts quantitative results while retaining an adequate
connection to data. Data reconstruction thus becomes a stepping
stone to formulating point-hypotheses.

The forgoing exhausts the relevant discovery context activities.
Subsequent work should be guided by specifying effect sizes as
point-hypotheses, and by testing them against new data that arise
as retrodictions or predictions.

Step Four: Precisification of Effect Sizes
and Theoretical Construction
As we saw, we can quantitatively assess the quality of an
empirical set-up only after a point-hypothesis is available.
Subsequently, a set-up’s induction quality can serve as a criterion
to probabilistically corroborate, or falsify, a theoretical construct.
So the fourth step directly concerns formulating precise point-
hypotheses.

A clear indicator that we have reached the justification context
is to inspect likelihoods of hypotheses given data, L(H|D), rather
than probabilities of data given hypotheses, P(D,H). Whether
precision-gains then arise from a parameter-estimation or by
combining significant results (Witte and Zenker, 2016a,b, 2017),
here we either induce over empirical results, or we perform a
quantitative reanalysis. This marks the onset of an explanatory
construction (Witte, 1996b; Witte and Heitkamp, 2006). As a rule,
if we have corroborated an effect size, we should next provide a
theoretical (semantic) explanation.

Generating such explanations takes time, of course, and often
incurs unforeseen problems. Indeed, it need not succeed. With
Lakatos (1978), we consider a research program progressive
as long as a theoretical construction or its core-preserving
modification generate predictions that are at least partially
corroborated by new data of sufficient induction quality. Any
such construction may therefore lead to further discoveries, e.g.,
in the form of observations that deviate from random. So it
remains overly simple to treat theory-development as a linear
process (see Figure 1). But that scientific progress grounds
in fallible knowledge of an original phenomenon deserves
acceptance.

A basic principle is to continue the precisification of
hypotheses, since this improves both induction quality (from
unknown to known to be probably reproducible) as well as
corroboration quality (from diffuse to precise). A progressive
research program thus shifts the focus, away from vague
justification against the H0, toward precise justification of a
point-specified H1. That said, HARKing and double dipping
(Kerr, 1998; Kriegeskorte et al., 2009; Simmons et al., 2011)
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FIGURE 1 | Only stable data (“phenomena”) can be meaningfully subsumed
under empirical hypotheses (bottom arrow); such hypotheses can be
systematized into theories (left arrow) that retrodict old and predict new data;
this may lead to constructing empirical set-ups (top arrow) for new
phenomena (right arrow), which potentially improve extant theories.

remain non-cogent justifications because each so generated result
must lead to a confirmation.

MOVE OVER, PLEASE!

Statistical inference is a tool to corroborate theoretical
assumptions rather than a machinery to generate theoretically
grounded empirical knowledge—which an empirical science
must justify with trustworthy data. Therefore, a loose discovery
under vague hypotheses (based on sample-estimations) can
never lead to a firmly corroborated theoretical assumption. In
fact, to even only disconfirm a precise assumption is already far
more informative than to never achieve adequate precision.

Considering the scarcity of similarly well-hardened knowledge
in current psychological research, the field’s progress demands
justification context-activities (Ioannidis, 2012). Indeed, as long
as the field as a whole remains in the discovery context,
it is doubtful that lenient reviewers, full data disclosure, or
removing the publication-bottleneck, etc. even address the
true challenges. Instead, we would presumably see meta-
analyses lead to meta-meta-analyses, which however cannot
serve a progressive research program (Schmidt et al., 2009;
Cafri et al., 2010; Stegenga, 2011; Chan and Arvey, 2012;
Ferguson and Heene, 2012; Mitchell, 2012). Rather, if a meta-
analysis discovers an effect, one should seek to confirm a
precisified version thereof by successfully predicting it in new
data.9

The likelihood ratio, as we saw, is the measure of
corroboration quality. For a tolerable error-range, reasonable
certainty that a H1 is justified thus requires that its likelihood-
ratio exceeds a conventional threshold. We can compare the
error terms from Neyman-Pearson-theory to Jeffrey’s (1961)

9Such research clearly differs from parameter-estimation because it can bury
“undead” theories. But this is impossible given how standard methods are mostly
used today (Ferguson and Heene, 2012; Eriksson and Simpson, 2013).

qualitative classification: α= β= 0.05 translates into a likelihood-
ratio of 19 (“strong evidence”) and α = β = 0.01 into a ratio of
99 (“very strong evidence,” “nearly extreme evidence”). Further,
provided that α = β ≤ 0.01, the degree of corroboration for
the supported hypothesis will in the long run approach the
test-power value (Wald, 1947).

As a summary, we now list six increasingly important results
of a research program and their measures. The last result
corroborates a point-hypothesis.

(1) preliminary discovery: α-error or merely a p-value (to
establish that data are non-random)

(2) substantial discovery: α and 1–β-error (to gauge replicability
based on a specific effect size and a particular sample size)

(3) preliminary falsification of the H0: L(dH1 > 0)/L(dH0 = 0)
(to establish a H1 that deviates in one direction from the H0
as more likely than the random parameter d = 0)

(4) substantial falsification of the H0: L(dH1 > 1)/L(dH0 = 0),
where 1 is the theoretical minimum effect size value (to
establish a H1 as non-random and also exceeding 1)

(5) preliminary verification of the H1: L(dH1 = 1)/L(dH0 = 0)
(to corroborate the theoretical parameter 1 against the
random parameter)

(6) substantial verification of the H1: L(demp,

H1)/L(dH2 = 1) < 4, given approximately normally
distributed data, where demp is the empirical effect size10 (to
indirectly corroborate 1 against the maximum-likelihood
estimate of empirical data, demp).

The justification context starts with line (3). So the
unsophisticated application of NHST sees large parts of empirical
psychological research “stuck” with making preliminary or
substantial discoveries. Notice, too, that the laudable proposal
by Benjamin et al. (2017) to drastically lower the α-error merely
addresses what shall count as a preliminary discovery. But it
leaves unaddressed how we establish a substantial discovery as
well as the justification context as a whole.

PRECISE THEORETICAL CONSTRUCTS?

Allow us to briefly speculate why the goal conflict between
generating statistically significant results and generating
trustworthy fallible knowledge has played out in favor of
the former goal. We saw that trustworthy data is primarily
relevant toward developing and testing more refined theoretical
constructs. But theory-construction is rarely taught at universities
(Gigerenzer, 2010). So the replicability crisis also showcases our
inability to in fact erect the constructs that statistically significant
effects should lead to (Ellemers, 2013; Klein, 2014).

To give but two examples, the 51 theories collected in a
recent social psychology handbook (van Lange et al., 2012)

10If the likelihood value of the theoretical parameter does not fall outside of
the 95%-interval placed around the maximum-likelihood-estimate, then we view
the theoretical parameter as substantially verified, and thus corroborated. After
all, both the empirical result and the theoretical assumption now lie within an
acceptable interval. The corroboration threshold is given by the ratio of the two
likelihood-values, i.e., the maximum ordinate of the normal curve (0.3989) and the
ordinate at the 95%-interval (0.10). To good approximation, this yields 4.
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FIGURE 2 | Salient results of a research program.

cannot achieve equally precise predictions as those that a random
model offers. But not only should we base a fair decision
between two hypotheses on data that are known to be probably
replicable; we should also require parity of precision (Witte
and Kaufman, 1997). By contrast, a two volume edition on
small group behavior (Witte and Davis, 1996) contains eleven
theories that are sufficiently elaborated to predict precise effects,
while another ten theories make vague predictions. So precise
constructions are possible, yet they are rare. Therefore, calling
the replicability crisis “home-made” does not directly implicate
career aspiration or resource shortage. Rather, ignorance of how
one constructs a theory seems to be an important intermediate
factor.

The crisis will probably seem insurmountable to those who
disbelieve that a developing research program is even possible.
Alas, might one not first ask to show us a failed research
program? Indeed, would not a research program culture need
to have been established, and to have broadly failed, too? If
so, then an urgent challenge is to coordinate our research
away from the individualistically organized but statistically
underpowered short-term efforts that have produced the crises,
toward jointly managed and well-powered long-term research
programs.

Of course, it takes more than writing papers. Indeed, funding-,
career- and incentive-structures may also need to change,
including how empirical psychologists understand their field. It
may even require that larger groups break with what most do
quasi-habitually. This, perhaps, would establish what our paper
only described.

CONCLUSION

The replicability crisis in psychology is in large part a
consequence of applying an unsophisticated version of NHST.
This praxis merely generates theoretically disconnected “one-
off” discoveries—that is, effects which deviate statistically
significantly from a random model. Parallel to it runs the
interpretative or rhetorical praxis of publishing such effects as
scientifically important results, rather than as the parameter
estimations they are. The former praxis fails to maximize the
utility of a sophisticated version of NHST, which nevertheless
remains a useful and elegant approach to gauging P(D,H). The
latter praxis regularly over-reports P(D,H) as L(H|D), which even
the most sophisticated application of NHST, however, cannot
warrant. Both praxes may plausibly have arisen from not fully
understanding the limits of NHST.

The field has thus “discovered” many small effects. But
whenever empirical studies remain underpowered, because they
comprise too few data-points, research efforts remain in the
discovery context. Here, vague effect sizes and vague alternative
hypotheses are normal. But such results fail to convince
as trustworthy effects that deserve theoretical explanation.
By contrast, a clear indicator that research has shifted to
the justification context is a likelihood-ratio-based decision
regarding a precisified effect size that is expectable in new data
of known induction quality (entailing a Bayes-factor for fixed
hypotheses).

This requires a diachronic notion of the research process—
a developing research program—that adapts statistical inference
methods to prior knowledge. Schematically (Figure 2), we start
with p-values (Fisher), move on to an optimal test against
a random-model (Neyman–Pearson with α- and 1−β-error),
accompanied by parameter estimation via meta-analysis, to
achieve—entering the justification context—a corroboration of a
theoretically specified effect size based on stable data of known
induction quality (under tolerable errors), against a random
model or against another point-specified hypothesis.

In particular, we should deduce from a theory a specified effect
size that goes beyond the simple assumption of a minimal effect.
A quantitative specification without theoretical explanation may
well be a first step (assuming known induction quality and precise
corroboration quality). But a successful research program must
derive a prediction from a theoretical model and provide an
explanation of the effect’s magnitude. For instance, psi-research
would only gain from such an explanation.

Since many theories only offer vague predictions, moreover,
the lack of confidence among psychologists might at least
partially result from failed theory-development. But the
replicability crisis itself is narrowly owed to underpowered
studies. Making headway takes researchers who join forces and
resources, who coordinate research efforts under a long-term
perspective, and who adapt statistical inference methods to
prior knowledge. To this end, we have also seen a strategy for
combining data from various studies that avoids the pitfalls of
extant meta-analyses. It is in the integrated long run, then, that
empirical psychology may improve.

AUTHOR CONTRIBUTIONS

Both authors have jointly drafted this manuscript; the conceptual
part of this work originates with EW; FZ supplied additional
explanatory material and edited the manuscript.

Frontiers in Psychology | www.frontiersin.org 10 October 2017 | Volume 8 | Article 1847

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-01847 October 25, 2017 Time: 14:58 # 11

Witte and Zenker From Discovery to Justification

ACKNOWLEDGMENTS

For valuable comments that served to improve earlier versions of
this manuscript, we thank Peter Killeen and Moritz Heene as well
as EB and PB for their reviews. Thanks also to HF for overseeing
the peer review process. All values were calculated using
G∗Power, V3.1.9.2 (Faul et al., 2007). FZ acknowledges funding

from the Ragnar Söderberg Foundation, an “Understanding
China”-Fellowship from the Confucius Institute (HANBAN), as
well as funding through the European Union’s FP 7 framework
program (No. 1225/02/03) and the Volkswagen Foundation (No.
90/531). Finally, thanks to Frontiers for a partial fee waiver, and
to Lund University’s Library and the Department of Philosophy
for providing open access funding.

REFERENCES
Azzalini, A. (1996). Statistical Inference. Based on the Likelihood. London:

Chapman & Hall.
Bakan, D. (1966). The test of significance in psychological research. Psychol. Bull.

66, 423–437. doi: 10.1037/h0020412
Baker, M. (2015). First results from psychology’s largest reproducibility test. Nat.

News. doi: 10.1038/nature.2015.17433
Bakker, M., van Dijk, A., and Wicherts, J. M. (2012). The rules of the game

called psychological science. Perspect. Psychol. Sci. 7, 543–554. doi: 10.1177/
1745691612459060

Bem, D., Tressoldi, P., Rabeyron, T. H., and Duggan, M. (2016). Feeling the
future: a meta-analysis of 90 experiments on the anticipation of random future
events [version 2; referees: 2 approved]. F1000 Res. 4, 1188. doi: 10.12688/
f1000research.7177.2

Bem, D. J. (2011). Feeling the future: experimental evidence for anomalous
retroactive influences on cognition and affect. J. Pers. Soc. Psychol. 100, 407–425.
doi: 10.1037/a0021524

Bem, D. J., Utts, J., and Johnson, W. O. (2011). Reply. Must psychologists change
the way they analyze their data? J. Pers. Soc. Psychol. 101, 716–719. doi: 10.1037/
a0024777

Benjamin, D. J., Berger, J., Johannesson, M., Nosek, B. A., Wagenmakers,
E. -J., Berk, R., et al. (2017). Redefine Statistical Significance. Available at:
psyarxiv.com/mky9j

Cafri, G., Kromrey, J. D., and Brannick, M. T. (2010). A meta-meta-analysis:
empirical review of statistical power, type I error rates, effect sizes, and model
selection of meta-analyses published in psychology. Multivariate Behav. Res. 45,
239–270. doi: 10.1080/00273171003680187

Chan, M.-L. E., and Arvey, R. D. (2012). Meta-analysis and the development of
knowledge. Perspect. Psychol. Sci. 7, 79–92. doi: 10.1177/1745691611429355

Cohen, J. (1962). The statistical power analysis for the behavioral sciences: a review.
J. Abnorm. Soc. Psychol. 65, 145–153.

Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences (Rev. ed.).
London: Academic Press.

Cowles, M. (1989). Statistics in Psychology. An Historical Perspective. Hillsdale:
Erlbaum.

Ellemers, N. (2013). Connecting the dots: mobilizing theory to reveal the big
picture in social psychology (and why we should do this). Eur. J. Soc. Psychol.
43, 1–8. doi: 10.1002/ejsp.1932

Eriksson, K., and Simpson, B. (2013). Editorial decisions may perpetuate belief
in invalid research findings. PLOS ONE 8:e73364. doi: 10.1371/journal.pone.
0073364

Etz, A., and Vandekerckhove, J. (2016). A Bayesian perspective on the
reproducibility project: psychology. PLOS ONE 11:0149794. doi: 10.1371/
journal.pone.0149794

Fanelli, D., and Glänzel, W. (2013). Bibliometric evidence for a hierarchy of the
sciences. PLOS ONE 8:e66938. doi: 10.1371/journal.pone.0066938

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G∗Power 3: a flexible
statistical power analysis program for the social, behavioral, and biomedical
sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146

Ferguson, C. J., and Heene, M. (2012). A vast graveyard of undead theories:
publication bias and psychological science’s aversion to the null. Perspect.
Psychol. Sci. 7, 555–561. doi: 10.1177/1745691612459059

Fisher, R. A. (1956). Statistical Methods and Scientific Inference. New York, NY:
Hafner.

Francis, G. (2012). The psychology of replication and replication in psychology.
Perspect. Psychol. Sci. 7, 585–594. doi: 10.1177/1745691612459520

Fuchs, H. M., Jenny, M., and Fiedler, S. (2012). Psychologists are open to change, yet
wary of rules. Perspect. Psychol. Sci. 7, 639–642. doi: 10.1177/1745691612459521

Galak, J., LeBoeuf, R. A., Nelson, L. D., and Simmons, J. P. (2012). Correcting the
past: failures to replicate Psi. J. Pers. Soc. Psychol. 103, 933–948. doi: 10.1037/
a0029709

Gelman, A. (2011). Induction and deduction in Bayesian data analysis. Ration.
Mark. Morals 2, 67–78.

Gigerenzer, G. (2010). Personal reflections on theory and psychology. Theory
Psychol. 20, 733–743. doi: 10.1177/0959354310378184

Gilbert, D. T., King, G., Pettigrew, S., and Wilson, T. D. (2016). Comment on
“Estimating the reproducibility of psychological science. Science 351, 1037.
doi: 10.1126/science.aad7243

Hacking, I. (1978). Imre Lakatos’s philosophy of science. Br. J. Philos. Sci. 30,
381–410. doi: 10.1093/bjps/30.4.381

Harlow, L. L., Mulaik, S. A., and Steiger, J. H. (eds) (1997). What If There Were No
Significance Tests? Mahwah: Erlbaum.

Holcombe, A. O. (2016). Introduction to a registered replication report on ego
depletion. Perspect. Psychol. Sci. 11, 545. doi: 10.1177/1745691616652871

Hoyningen-Huene, P. (2006). “Context of discovery vs. context of justification and
Thomas Kuhn,” in Revisiting Discovery and Justification, eds J. Schickore and F.
Steinle (Dordrecht: Springer), 119–131.

Ioannidis, J. P. A. (2012). Why science is not necessarily self-correcting. Perspect.
Psychol. Sci. 7, 645–654. doi: 10.1177/1745691612464056

Ioannidis, J. P. A. (2014). How to make more published research true. PLOS Med.
11:e1001747. doi: 10.1371/journal.pmed.1001747

Jeffrey, H. (1961). The Theory of Probability. Oxford: Oxford University Press.
Kerr, N. L. (1998). HARKing: hypothesizing after the results are known. Pers. Soc.

Psychol. Rev. 2, 196–217. doi: 10.1207/s15327957pspr0203_4
Klein, S. B. (2014). What can recent replication failures tell us about the theoretical

commitments of psychology? Theory Psychol. 24, 326–338. doi: 10.1177/
0959354314529616

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., and Baker, C. I. (2009).
Circular analysis in systems neuroscience: the dangers of double dipping. Nat.
Neurosci. 12, 535–540. doi: 10.1038/nn.2303

Kuhn, T. S. (1970). The Structure of Scientific Revolutions, 2nd Edn. Chicago:
University of Chicago Press.

Lakatos, I. (1978). The Methodology of Scientific Research Programs. Cambridge:
Cambridge University Press.

Larvor, B. (1998). Lakatos: An Introduction. London: Routledge.
Ly, A., Verhagen, J., and Wagenmakers, E.-J. (2016). Harold Jeffrey’s default Bayes

factor hypothesis tests: explanation, extension, and application in psychology.
J. Math. Psychol. 72, 19–32. doi: 10.1016/j.jmp.2015.06.004

Maxwell, S. E. (2004). The persistence of underpowered studies in psychological
research: causes, consequences, and remedies. Psychol. Methods 9, 147–163.
doi: 10.1037/1082-989X.9.2.147

Mayo, D. G. (1996). Error and the Growth of Experimental Knowledge. Chicago:
University of Chicago Press. doi: 10.7208/chicago/9780226511993.001.0001

Mayo, D. G. (2011). Statistical science and philosophy of science: where do/should
they meet in 2011 (and beyond)? Ration. Mark. Morals 2, 79–102.

Meehl, P. E. (1967). Theory testing in psychology and physics: a methodological
paradox. Philos. Sci. 34, 103–115. doi: 10.1086/288135

Mitchell, G. (2012). Revisiting truth or triviality: the external validity of research
in the psychological laboratory. Perspect. Psychol. Sci. 7, 109–117. doi: 10.1177/
1745691611432343

Motterlini, M. (2002). Reconstructing Lakatos: a reassessment of Lakatos’
epistemological project in the light of the Lakatos Archive. Stud. Hist. Philos.
Sci. 33, 487–509. doi: 10.1016/S0039-3681(02)00024-9

Frontiers in Psychology | www.frontiersin.org 11 October 2017 | Volume 8 | Article 1847

https://doi.org/10.1037/h0020412
https://doi.org/10.1038/nature.2015.17433
https://doi.org/10.1177/1745691612459060
https://doi.org/10.1177/1745691612459060
https://doi.org/10.12688/f1000research.7177.2
https://doi.org/10.12688/f1000research.7177.2
https://doi.org/10.1037/a0021524
https://doi.org/10.1037/a0024777
https://doi.org/10.1037/a0024777
https://psyarxiv.com/mky9j
https://doi.org/10.1080/00273171003680187
https://doi.org/10.1177/1745691611429355
https://doi.org/10.1002/ejsp.1932
https://doi.org/10.1371/journal.pone.0073364
https://doi.org/10.1371/journal.pone.0073364
https://doi.org/10.1371/journal.pone.0149794
https://doi.org/10.1371/journal.pone.0149794
https://doi.org/10.1371/journal.pone.0066938
https://doi.org/10.3758/BF03193146
https://doi.org/10.1177/1745691612459059
https://doi.org/10.1177/1745691612459520
https://doi.org/10.1177/1745691612459521
https://doi.org/10.1037/a0029709
https://doi.org/10.1037/a0029709
https://doi.org/10.1177/0959354310378184
https://doi.org/10.1126/science.aad7243
https://doi.org/10.1093/bjps/30.4.381
https://doi.org/10.1177/1745691616652871
https://doi.org/10.1177/1745691612464056
https://doi.org/10.1371/journal.pmed.1001747
https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1177/0959354314529616
https://doi.org/10.1177/0959354314529616
https://doi.org/10.1038/nn.2303
https://doi.org/10.1016/j.jmp.2015.06.004
https://doi.org/10.1037/1082-989X.9.2.147
https://doi.org/10.7208/chicago/9780226511993.001.0001
https://doi.org/10.1086/288135
https://doi.org/10.1177/1745691611432343
https://doi.org/10.1177/1745691611432343
https://doi.org/10.1016/S0039-3681(02)00024-9
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-01847 October 25, 2017 Time: 14:58 # 12

Witte and Zenker From Discovery to Justification

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler,
S. J., et al. (2015). Promoting an open research culture. Science 348, 1422–1425.
doi: 10.1126/science.aab2374

Nosek, B. A., and Bar-Anan, Y. (2012). Scientific utopia: I. Opening scientific
communication. Psychol. Inq. 23, 217–243. doi: 10.1080/1047840X.2012.692215

Nosek, B. A., Spies, J. R., and Motyl, M. (2012). Scientific utopia: II. Restructuring
incentives and practices to promote truth over publishability. Perspect. Psychol.
Sci. 7, 615–631. doi: 10.1177/1745691612459058

Open Science Collaboration. (2015). Estimating the reproducibility of
psychological science. Science 349:acc4716. doi: 10.1126/science.aac4716

Pashler, H., and Wagenmakers, E.-J. (2012). Editors’ introduction to the special
section on replicability in psychological science: a crisis of confidence? Perspect.
Psychol. Sci. 7, 528–530. doi: 10.1177/1745691612465253

Reichenbach, H. (1938). Experience and Prediction. Chicago: The University of
Chicago Press.

Rosnow, R., and Rosenthal, R. (1989). Statistical procedures and the justification of
knowledge in psychological science. Am. Psychol. 44, 1276–1284. doi: 10.1037/
0003-066X.44.10.1276

Rouder, J. N. (2014). Optional stopping: no problem for Bayesians. Psychon. Bull.
Rev. 21, 301–308. doi: 10.3758/s13423-014-0595-4

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., and Iverson, G. (2009).
Baysian t-tests for accepting and rejecting the null hypothesis. Psychon. Bull.
Rev. 16, 225–237. doi: 10.3758/PBR.16.2.225

Royall, R. (1997). Statistical Evidence. A Likelihood Paradigm. London: Chapman &
Hall.

Scargle, J. D. (2000). Publication bias: the “file-drawer” problem in scientific
inference. J. Sci. Explor. 14, 91–106.

Schickore, J., and Steinle, F. (eds) (2006). Revisiting Discovery and Justification:
Historical and Philosophical Perspectives on the Contest Distinction. Dordrecht:
Springer.

Schmidt, F. L., Oh, I., and Hayes, T. L. (2009). Fixed versus random-effect models in
meta-analysis: model properties and an empirical comparison of differences in
results. Br. J. Math. Stat. Psychol. 62, 97–128. doi: 10.1348/000711007X255327

Schonemann, P. H., and Scargle, J. D. (2008). A generalized publication bias model.
Chin. J. Psychol. 50, 21–29.

Sedlmeier, P., and Gigerenzer, G. (1989). Do studies of statistical power have an
effect on the power of studies? Psychol. Bull. 105, 309–316. doi: 10.1037/0033-
2909.105.2.309

Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2011). False-positive psychology.
Psychol. Sci. 22, 1359–1366. doi: 10.1177/0956797611417632

Spellman, B. A. (2012). Introduction to the special section on research practices.
Perspect. Psychol. Sci. 7, 655–656. doi: 10.1177/1745691612465075

Stegenga, J. (2011). Is meta-analysis the platinum standard of evidence? Stud. Hist.
Philos. Biol. Sci. 42, 497–507. doi: 10.1016/j.shpsc.2011.07.003

Sterling, T. D. (1959). Publication decisions and their possible effects on inferences
drawn from tests of significance—or vice versa. J. Am. Stat. Assoc. 54, 30–34.

Sturm, T. H., and Mülberger, A. (2012). Crisis discussions in psychology: new
historical and philosophical perspectives. Stud. Hist. Philos. Biol. Sci. 43,
425–433. doi: 10.1016/j.shpsc.2011.11.001

van Lange, P. A. M., Kruglanski, A. W., and Higgins, E. T. (2012). Handbook of
Theories of Social Psychology, Vol. 1+2. London: Sage Publications.

Verhagen, A. J., and Wagenmakers, E.-J. (2014). Bayesian tests to quantify
the result of a replication attempt. J. Exp. Psychol. Gen. 143, 1457–1475.
doi: 10.1037/a0036731

Wagenmakers, E.-J., Wetzels, R., Borsboom, D., and van der Maas, H. L. J. (2011).
Why psychologists must change the way they analyze their data: the psi case:
comment on Bem (2011). J. Pers. Soc. Psychol. 100, 426–432. doi: 10.1037/
a0022790

Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, H. L. J., and Kievit,
R. A. (2012). An agenda for purely confirmatory research. Perspect. Psychol. Sci.
7, 632–638. doi: 10.1177/1745691612463078

Wald, A. (1947). Sequential Analysis. New York: Wiley.
Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers,

E.-J. (2011). Statistical evidence in experimental psychology: an empirical
comparison using 855 t-tests. Perspect. Psychol. Sci. 6, 291–298. doi: 10.1177/
1745691611406923

Willy, R. (1889). Die Krisis in der Psychologie. Leipzig: Reisland.
Witte, E. H. (1980). Signifikanztest und statistische Inferenz. Analysen, Probleme,

Alternativen [Significance test and statistical inference: Analyses, problems,
alternatives]. Stuttgart: Enke.

Witte, E. H. (1994). “Minority influences and innovations: the search for an
integrated explanation of psychological and sociological models,” in Minority
Influence, eds S. Moscovici, A. Mucchi-Faina, and A. Maass (Chicago: Nelson-
Hall), 67–93.

Witte, E. H. (1996a). “Small-group research and the crisis of social psychology: an
introduction,” in Understanding Group Behavior, Vol. 2, eds E. H. Witte and
J. H. Davis (Mahwah: Erlbaum), 1–8.

Witte, E. H. (1996b). “The extended group situation theory (EGST): explaining the
amount of change,” in Understanding Group Behavior, Vol. 1, eds E. H. Witte
and J. H. Davis (Mahwah: Erlbaum), 253–291.

Witte, E. H. (2005). “Theorienentwicklung und -konstruktion in der
Sozialpsychologie [Theory development and theory construction in social
psychology],” in Entwicklungsperspektiven der Sozialpsychologie [Developmental
Perspectives of Social Psychology], ed. E. H. Witte (Lengerich: Pabst),
172–188.

Witte, E. H., and Davis, J. H. (eds) (1996). Understanding Group Behavior, Vol. 1
and 2. Mahwah: Erlbaum.

Witte, E. H., and Heitkamp, I. (2006). Quantitative rekonstruktionen
(retrognosen) als instrument der theorienbildung und theorienprüfung
in der sozialpsychologie [Quantitative reconstructions (retrognoses) as
an instrument for theory construction and theory assessment in social
psychology]. Z. Sozialpsychol. 37, 205–214. doi: 10.1024/0044-3514.37.
3.205

Witte, E. H., and Kaufman, J. (1997). The Stepwise Hybrid Statistical
Inference Strategy: FOSTIS. HAFOS, 18. Available at: http://psydok.sulb.
uni-saarland.de/frontdoor.php?source_opus=2286&la=de [accessed February
22, 2017].

Witte, E. H., and Strohmeier, C. E. (2013). Forschung in der psychologie. Ihre
disziplinäre matrix im vergleich zu physik, biologie und sozialwissenschaft
[Research in psychology. Its disciplinary matrix as compared to physics,
biology, and the social sciences]. Psychol. Rundsch. 64, 16–24. doi: 10.1026/
0033-3042/a0000145

Witte, E. H., and Zenker, F. (2016a). Beyond schools—reply to Marsman, Ly &
Wagenmakers. Basic Appl. Soc. Psychol. 38, 313–317. doi: 10.1080/01973533.
2016.1227710

Witte, E. H., and Zenker, F. (2016b). Reconstructing recent work on macro-social
stress as a research program. Basic Appl. Soc. Psychol. 38, 301–307. doi: 10.1080/
01973533.2016.1207077

Witte, E. H., and Zenker, F. (2017). Extending a multilab preregistered replication
of the ego-depletion effect to a research program. Basic Appl. Soc. Psychol. 39,
74–80. doi: 10.1080/01973533.2016.1269286

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Witte and Zenker. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 12 October 2017 | Volume 8 | Article 1847

https://doi.org/10.1126/science.aab2374
https://doi.org/10.1080/1047840X.2012.692215
https://doi.org/10.1177/1745691612459058
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1177/1745691612465253
https://doi.org/10.1037/0003-066X.44.10.1276
https://doi.org/10.1037/0003-066X.44.10.1276
https://doi.org/10.3758/s13423-014-0595-4
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.1348/000711007X255327
https://doi.org/10.1037/0033-2909.105.2.309
https://doi.org/10.1037/0033-2909.105.2.309
https://doi.org/10.1177/0956797611417632
https://doi.org/10.1177/1745691612465075
https://doi.org/10.1016/j.shpsc.2011.07.003
https://doi.org/10.1016/j.shpsc.2011.11.001
https://doi.org/10.1037/a0036731
https://doi.org/10.1037/a0022790
https://doi.org/10.1037/a0022790
https://doi.org/10.1177/1745691612463078
https://doi.org/10.1177/1745691611406923
https://doi.org/10.1177/1745691611406923
https://doi.org/10.1024/0044-3514.37.3.205
https://doi.org/10.1024/0044-3514.37.3.205
http://psydok.sulb.uni-saarland.de/frontdoor.php?source_opus=2286&la=de
http://psydok.sulb.uni-saarland.de/frontdoor.php?source_opus=2286&la=de
https://doi.org/10.1026/0033-3042/a0000145
https://doi.org/10.1026/0033-3042/a0000145
https://doi.org/10.1080/01973533.2016.1227710
https://doi.org/10.1080/01973533.2016.1227710
https://doi.org/10.1080/01973533.2016.1207077
https://doi.org/10.1080/01973533.2016.1207077
https://doi.org/10.1080/01973533.2016.1269286
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	From Discovery to Justification: Outline of an Ideal Research Program in Empirical Psychology
	Introduction
	From Discovery To Justification
	Overview
	Stable Effects
	The Lean DJ-Distinction
	Test-Power and Statistical Significance vs. Theoretical Importance
	Trustworthy Discoveries
	Induction Quality of Data, Corroboration Quality of Hypotheses
	Upshot

	Case Study: Psi-Research
	Overview
	Replicating Bem's Psi-hypothesis
	Gauging the Psi-effect
	Meta-analyses of Additional Replication Attempts
	Summary

	Research Programs
	Four Developmental Steps
	Step One: Ideas without Controlled Observation
	Step Two: Devising an Empirical Set-up
	Step Three: Replication and Meta-analysis
	Step Four: Precisification of Effect Sizes and Theoretical Construction

	Move Over, Please!
	Precise Theoretical Constructs?
	Conclusion
	Author Contributions
	Acknowledgments
	References


