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OBJECTIVES: Aedes mosquitoes are responsible for transmitting the dengue virus. The mosquito lifecycle is 
known to be influenced by temperature, rainfall, and relative humidity. This retrospective study was planned to 
investigate whether climatic factors could be used to predict the occurrence of dengue in East Delhi.

METHODS: The number of monthly dengue cases reported over 19 years was obtained from the laboratory 
records of our institution. Monthly data of rainfall, temperature, and humidity collected from a local weather 
station were correlated with the number of monthly reported dengue cases. One-way analysis of variance was 
used to analyse whether the climatic parameters differed significantly among seasons. Four models were de-
veloped using negative binomial generalized linear model analysis. Monthly rainfall, temperature, humidity, 
were used as independent variables, and the number of dengue cases reported monthly was used as the de-
pendent variable. The first model considered data from the same month, while the other three models involved 
incorporating data with a lag phase of 1, 2, and 3 months, respectively.

RESULTS: The greatest number of cases was reported during the post-monsoon period each year. Tempera-
ture, rainfall, and humidity varied significantly across the pre-monsoon, monsoon, and post-monsoon periods. 
The best correlation between these three climatic factors and dengue occurrence was at a time lag of 2 months. 

CONCLUSIONS: This study found that temperature, rainfall, and relative humidity significantly affected den-
gue occurrence in East Delhi. This weather-based dengue empirical model can forecast potential outbreaks 
2-month in advance, providing an early warning system for intensifying dengue control measures.
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INTRODUCTION

The dengue virus (DENV) is an arbovirus belonging to the 
Flaviviridae family, and is a cause of classical dengue fever (DF), 
dengue haemorrhagic fever (DHF), and dengue shock syndrome 

(DSS), which are major public health problems in Delhi, India 
[1-3]. These clinical entities are caused by four DENV serotypes 
(DENV-1, DENV-2, DENV-3, and DENV-4), transmitted to hu-
mans by female Aedes mosquitoes (Aedes aegypti and Aedes 
albopictus) [3,4]. According to the 2014 to 2015 report of the 
National Vector Borne Disease Control Programme, dengue is 
endemic in 35 states and Union territories, including Delhi [5]. 
Dengue is being increasingly reported in urban areas, mainly 
due to deficient water management, including improper water 
storage practices, and inconsistent attention to the elimination 
of vector breeding sites [5].

All four serotypes of DENV circulate in Delhi [6]. Until 2003, 
the predominant serotype in Delhi was DENV-2, but in 2003, 
Delhi became a hyperendemic state with all four DENV sero-
types co-circulating. During the 2004 epidemic of DF, an abrupt 
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shift occurred, leading to the dominance of DENV-3 at the expense 
of the previously circulating serotype DENV-2, followed by the 
complete preponderance of DENV-3 in 2005 and 2006 [6,7]. 
Over the next four years (2007 to 2010), DENV-1 emerged as 
the principal serotype [6,7]. DENV-2 was the preponderant se-
rotype from 2011 to 2014 [8]. In 2015 all four serotypes were 
found to co-circulate, with DENV-2 predominant [9].

The Aedes mosquito is a climate-sensitive vector that predo-
minantly affects tropical countries due to their climatic condi-
tions [1,2]. Dengue cases are influenced by complex interac-
tions of humans, vectors, the environment, and virus-related 
factors [10]. Studies have reported a strong and consistent rela-
tionship between the climate of a particular geographical area 
and the number of dengue cases [11]. Different models have 
been developed to predict dengue outbreaks by correlating den-
gue cases with climatic data [12,13]. Amongst the different cli-
matic parameters, rainfall, temperature, and humidity have been 
reported to be the most important factors influencing DENV 
transmission. Moreover, in geographical regions where mini-
mum thresholds of these climatic variables are adequate to sus-
tain DENV transmission, seasonal fluctuations in these parame-
ters act as essential determinants of the strength and period of 
transmission [14]. In recent years, the accuracy of predicting lo-
cal weather and epidemics has improved due to advances in 
technology [10]. This has helped gain an understanding of the 
interaction between climate and the temporal-spatial distribu-
tion of infectious diseases, as well as encouraging research in-
terest on epidemic prediction modelling [10,15]. Although den-
gue prediction models have been developed in many countries 
across the world, no such study has been reported in India [1, 
12,13]. Thus, the present study was planned to develop an em-
pirical model to predict monthly dengue cases using 19 years’ 
monthly data on the number of dengue cases and three major 
climatic factors (rainfall, temperature, and humidity) at an 1,800-
bed tertiary care hospital in East Delhi. 

MATERIALS AND METHODS 

In the present retrospective study, the number of monthly den-
gue cases reported at Guru Teg Bahadur Hospital, an 1,800-bed 
tertiary-care hospital in East Delhi, for a period of 19 years (from 
January 1997 to December 2015) was obtained. Guru Teg Ba-
hadur Hospital is the largest hospital of the government of the 
National Capital Territory of Delhi in the Trans-Yamuna Area 
(East Delhi), with a capacity of 1,800 beds. Of the population 
of Delhi of 12 million people, 12.07% live in East Delhi. Guru 
Teg Bahadur Hospital is the only Delhi Government tertiary 
care hospital in the Trans-Yamuna (East Delhi) area, catering to 
the population of East Delhi as well as patients from the adja-

cent districts of Noida, Meerut, Loni, Baghpat, and Bulandsha-
har. Hence, this hospital handles the majority of the dengue 
cases in East Delhi, as is reflected in the data from 2015, when 
Guru Teg Bahadur Hospital encountered 1,633 of the 1,737 
dengue cases reported in East Delhi in 2015.

This hospital accepts all cases of suspected DF irrespective of 
severity. In this study, dengue cases were defined and classified 
according to the National Guidelines for Clinical Management 
for DF released by the Government of India in December 2014 
[16]. The guidelines classify dengue into undifferentiated DF 
and severe DF based on clinical manifestations. Non-severe den-
gue cases include DF and DHF grades I and II, while severe den-
gue includes DHF grades III and IV and DSS. The clinical crite-
ria for DF, DHF, and DSS given in the guidelines are as follows:

Clinical features of dengue fever 
An acute febrile illness of two to seven days’ duration with 

two or more of the following manifestations: headache, retro-
orbital pain, myalgia, arthralgia, rash, and haemorrhagic mani-
festations.

Dengue haemorrhagic fever 
A case with the clinical criteria of DF plus haemorrhagic ten-

dencies (evidenced by: positive tourniquet test or petechiae, 
ecchymoses, or purpura, or bleeding from mucosa, gastrointes-
tinal tract, injection sites, or other sites) plus thrombocytopenia 
(<100,000 cells/mm³) plus evidence of plasma leakage due to 
increased vascular permeability (manifested by a rise in average 
haematocrit for age and sex of >20% or a drop of more than 
20% in haematocrit following volume replacement treatment 
compared to baseline or signs of plasma leakage (pleural effu-
sion, ascites, hypoproteinaemia [total serum protein level <6 g/
dL]) ≤  20%

Dengue shock syndrome 
All the above criteria for DHF with evidence of circulatory 

failure manifested by rapid and weak pulse and narrow pulse 
pressure (mmHg) or hypotension for age, cold and clammy skin, 
and restlessness.

The protocol of this study was approved by the University Col-
lege of Medical Sciences Institutional Review Board. Informed 
consent was obtained from the study subjects. A diagnosis of 
dengue was made on the basis of clinical findings and serology. 
Serological confirmation of DF during the study period was car-
ried out using the following tests: 

a)  Panbio (Brisbane, Australia) Dengue Duo Cassette, a rapid 
diagnostic test, was used to detect anti-dengue immuno-
globulin G (IgG) and immunoglobulin M (IgM) antibodies 
from January 1997 to December 2001.

b)  Panbio (Brisbane, Australia) Dengue IgM capture enzyme-
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linked immunosorbent assay (ELISA) was employed from 
January 2002 to August 2006.

c)  IgM dengue capture ELISA (MAC-ELISA) kits supplied by 
the National Institute of Virology, Pune under the aegis of 
the National Vector Borne Disease Control Programme were 
introduced in September 2006 and have been in use since 
then.

d)  SD Bioline Dengue Duo (non-structural protein 1 [NS1] 
and IgG/IgM) (Standard Diagnostics Inc., Seoul, Korea) was 
used from October 6, 2012 to December 31, 2013. The IgM-
positive samples were confirmed by MAC-ELISA.

e)  NS1 antigen capture ELISA from Panbio (Brisbane, Austra-
lia) was introduced on October 4, 2014 and used along with 
MAC-ELISA for the serological confirmation of DF.

Monthly climatic data (rainfall, temperature, and humidity) 
was collected from the Delhi Weather Station, Safdarjung, New 
Delhi (http://www.en.tutiempo.net/climate/ws-421820-html). 
The monthly climate data were correlated with the number of 
monthly reported dengue cases. 

Average monthly rainfall, temperature, and humidity were used 
as independent variables and the number of dengue cases report-
ed monthly was used as the dependent variable. One-way analysis 
of variance (ANOVA) was used to determine whether each of 
the climate variables differed significantly between seasons.

An empirical model was developed using negative binomial 
generalized linear model analysis. A negative binomial model 
with a log-link function in the generalized linear model was 
used to obtain the models for estimating dengue cases based 
on the independent variables of rainfall, temperature, and hu-
midity. Since a significant correlation was present in the vari-
ability of dengue cases across seasons, we included season as a 
covariate and obtained modified models. A negative binomial 
model was used because our outcome variable was measured 
as counts and was over-dispersed; that is, the conditional vari-
ance was quite high compared to the conditional mean.

When several maximum likelihood models are available, one 
can compare the performance of alternative models based on 
several likelihood or goodness of fit measures. Two of the most 
regularly used measures are the Akaike information criterion 
(AIC) and the likelihood ratio chi-square. The model exhibiting 
maximum change in the value of AIC and likelihood ratio chi-
square compared to the previous model was considered to be 
the best-fitting model.

RESULTS 

Over the 19-year period (1997 to 2015), a total of 6,703 in-
patient and outpatient cases of DF, including severe forms of 
the disease such as DHF and DSS, were reported at Guru Teg 

Bahadur Hospital. The number of reported dengue cases varied 
by year (Table 1). Over the study period, the highest number of 
dengue cases was reported in 2015 (n=1,633). Every year, the 
occurrence of dengue cases displayed a particular pattern. Dur-
ing the pre-monsoon season, hardly any cases of dengue were 
reported. Most of the cases were reported during the post-mon-
soon period each year, except in 2010, when the highest num-
ber of cases was reported during the monsoon. The average num-
ber of dengue cases per month (January to December) over the 
19-year period (1997 to 2015) was plotted against the climatic 
factors (rain, temperature, and relative humidity) to assess their 
influence on the occurrence of DF (Figures 1 and 2). Every year, 
a bellwether of cases was reported in the month of July, reach-
ing a peak in September and October, and gradually declining 
at the end of the year (Table 1).

Temperature, rainfall, and humidity varied significantly over 
the pre-monsoon, monsoon, and post-monsoon periods every 
year (Table 2). The average monthly pre-monsoon, monsoon, 
and post-monsoon rainfall amounts were 28.72 mm, 150.69 
mm, and 11.02 mm, respectively, over the 19-year period (1997 
to 2015). The average temperature recorded during the pre-
monsoon, monsoon, and post-monsoon period was 25.53˚C, 
30.80˚C, and 18.20˚C, respectively. The average relative humid-
ity recorded during the pre-monsoon, monsoon, and post-mon-
soon period was 49.87%, 68.68%, and 68.83%, respectively. 
The overall variation in all three climatic variables was statisti-

Table 1. Seasonal variation in the number of dengue cases each 
year

Year Pre-monsoon Monsoon Post-monsoon Total

1997 1 1 14 16
1998 0 0 15 15
1999 0 1 4 5
2000 0 13 34 47
2001 0 5 16 21
2002 0 0 0 0
2003 0 0 571 571
2004 0 5 42 47
2005 0 0 14 14
2006 0 58 621 679
2007 0 0 137 137
2008 0 240 304 544
2009 0 14 277 291
2010 0 603 327 930
2011 0 2 11 13
2012 0 45 159 204
2013 0 513 914 1,427
2014 1 3 106 109
2015 0 769 864 1,633

Pre-monsoon, February, March, April, and May; Monsoon, June, July, Au-
gust, and September; Post-monsoon, October, November, December, and 
January.
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Figure 2. Average number of dengue cases, temperature, and rel-
ative humidity by month from 1997 to 2015.
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Figure 1. Average number of dengue cases and rainfall by month 
from 1997 to 2015.

Table 2. Distribution of climatic parameters by season (1997-2015)

Year
Mean rainfall (mm) Mean temperature (˚C) Mean relative humidity (%)

Pre-monsoon Monsoon Post-monsoon Pre-monsoon Monsoon Post-monsoon Pre-monsoon Monsoon Post-monsoon

1997 20.69 109.90 18.02 23.83 30.15 16.70 48.35 70.98 76.10
1998 13.13 150.51 13.81 25.03 30.70 17.88 50.18 72.10 70.03
1999 3.76 69.24 13.06 25.70 31.03 18.08 44.70 67.45 68.78
2000 16.84 124.73 11.74 25.40 30.20 18.70 50.25 71.78 66.70
2001 33.53 134.63 7.07 24.85 30.48 18.23 53.78 69.73 68.38
2002 37.33 93.35 7.40 26.20 31.48 18.43 45.05 65.35 69.60
2003 9.95 263.20 17.18 25.38 29.35 17.23 46.63 68.25 69.43
2004 35.07 91.00 26.25 26.43 30.95 18.03 47.30 64.00 70.50
2005 22.73 156.68 1.95 25.35 31.10 18.00 45.58 65.78 61.93
2006 21.25 166.30 1.88 26.68 30.70 18.90 47.35 67.53 63.28
2007 52.43 153.48 0.90 25.43 31.03 17.95 53.83 69.80 62.23
2008 51.68 176.23 1.30 25.03 29.80 18.80 50.50 75.70 67.05
2009 20.83 147.00 6.10 25.95 31.63 18.55 47.33 64.05 65.75
2010 8.93 256.98 8.93 27.73 30.73 18.35 47.08 70.90 74.50
2011 22.75 154.00 0.28 25.28 30.48 18.40 54.00 73.18 69.08
2012 13.60 76.10 5.50 25.33 31.65 17.88 45.10 65.28 68.00
2013 11.08 55.65 52.65 25.70 30.65 18.08 42.35 73.40 74.90
2014 41.80 124.30 26.40 24.28 32.05 18.43 58.95 63.25 70.03
2015 63.60 207.68 9.50 25.50 31.08 19.15 58.93 66.50 71.53
Average 28.72 150.69 11.02 25.53 30.80 18.20 49.87 68.68 68.83

cally significant (ANOVA, p<0.001). On applying cross-corre-
lation analysis between the three climatic factors and dengue 
occurrence, the best correlation was found at a time lag of 2-month 
for all three variables. 

Development of an empirical model
The number of dengue cases increased in the post-monsoon 

period, indicating a correlation between dengue infection and 
climatic factors (rainfall, temperature, and relative humidity), as 
well as providing a basis for a possible empirical model of den-
gue. Four models were developed using a negative binomial 

generalized linear model (Table 3). The first model was devel-
oped considering data from the same month. Under the influ-
ence of climatic factors, it takes 7 to 45 days for an adult mos-
quito to develop from an egg [8]. Hence, the influence of cli-
matic factors was expected to manifest with a lag of 1-2 months. 
Therefore, three other models were generated, incorporating a 
lag phase of 1, 2, and 3 months, respectively. It was observed 
that the AIC decreased and the likelihood ratio chi-square incre-
ased from model 1 to model 2, and then from model 2 to mod-
el 3. However, the difference in both parameters was not signif-
icant between model 3 and model 4. Thus, model 3 was chosen 
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as the final model.
Model 3, 2-month time lag: log Dm=rainfallm×0.001+temper-

aturem×0.501+humiditym×0.152-22.037; AIC=856.708, like-
lihood ratio chi-square=849.017.

Another set of models was prepared including season as a 
covariate in addition to rainfall, temperature, and relative hu-
midity (Table 4). It was found that the AIC decreased and the 
likelihood ratio chi-square increased from model 1 to model 2, 
but the difference in the two parameters was minimal between 
model 2 and model 3. Hence, model 2 could be chosen as the 
final model if season was also considered as a covariate.

Model 2, 1-month time lag: log Dm=Rainfallm×0.012+tempe-
raturem×0.314+humiditym×0.058+season×4.794-23.025; AIC 
=1,020.722, likelihood ratio chi-square=956.592.

DISCUSSION 

The growth and development of dengue vectors depends on 
weather conditions. As dengue is a vector-borne disease, the oc-
currence of dengue infections depends on the presence and den-
sity of its vector [1]. Numerous studies conducted worldwide 
have proposed that climatic factors, with temperature, rainfall, 

and humidity being the most important, are the reason for sea-
sonal variation in the presence of both the vector Aedes aegyp-
ti and DENV [1, 3,14,17]. 

In the present study, we found a relationship between dengue 
cases and rainfall. This is consistent with some other studies [1, 
3,17]. Focks & Barrera [17] asserted that vector density incre-
ases due to rainfall, causing an increase in dengue cases, which 
in turn because higher humidity during the rainy season pro-
vides an ideal environment for the growth and survival of 
mosquitoes. However, the few studies in the literature on 
the association between rainfall and dengue have reported 
contradictory findings, since the correlation depends on lo-
cal characteristics [2,18]. 

This study demonstrated a correlation between the inci-
dence of DF and average temperature. Similar findings were 
reported by Karim et al. [1] and Chandy et al. [3], while con-
trasting results were reported in a study by Su [13]. Tempera-

Table 3. Models based on a negative binomial generalized linear 
model relating the monthly number of dengue cases with rainfall, 
temperature, and relative humidity

Variables Estimates Standard error Wald chi-square

Model 1 Constant
Rainfall
Temperature
Humidity

12.553
0.013
0.222
0.171

1.131
0.001
0.022
0.013

123.255
116.645
101.035
173.947

Model 2 Constant
Rainfall
Temperature
Humidity

17.302
0.007
0.373
0.166

1.242
0.001
0.025
0.013

194.201
31.780

229.621
152.400

Model 3 Constant
Rainfall
Temperature
Humidity

22.037
0.001
0.501
0.152

1.665
0.001
0.038
0.013

175.135
0.274

174.895
129.259

Model 4 Constant
Rainfall
Temperature
Humidity

26.331
0.006
0.786
0.071

2.344
0.001
0.062
0.011

126.172
21.306

160.617
37.879

Model 1, no time lag: log Dm=rainfallm×0.013+temperaturem×0.222+humi-
ditym×0.171−12.553; AIC=1,579.652; likelihood ratio chi-square=190.243; 
Model 2, 1-month time lag: log Dm =rainfallm ×0.007+temperaturem ×0.373
+humiditym ×0.166−17.302; AIC=1,260.605; likelihood ratio chi-square= 
472.393; Model 3, 2-month time lag: log Dm =rainfallm ×0.001+temperatur
em ×0.501+humiditym ×0.152−22.037; AIC=856.708; likelihood ratio chi-
square=849.017; Model 4, 3-month time lag: log Dm =rainfallm ×0.006+te
mperaturem ×0.786+humiditym ×0.071−26.331; AIC=855.721; likelihood 
ratio chi-square=849.163; D, number of dengue cases; m, month; AIC, 
Akaike information criterion.

Table 4. Models based on a negative binomial generalized linear 
model relating the monthly number of dengue cases with the rain-
fall, temperature, relative humidity, and season  

Variables Estimates Standard error Wald chi-square

Model 1 Constant
Rainfall
Temperature
Humidity
Season

19.838
0.003
0.382
0.038
4.388

1.683
0.002
0.029
0.016
0.326

138.879
2.627

173.870
5.240

181.208
Model 2 Constant

Rainfall
Temperature
Humidity
Season

23.025
0.012
0.314
0.058
4.794

1.882
0.001
0.032
0.014
0.327

149.706
56.665
98.812
16.749

214.734
Model 3 Constant

Rainfall
Temperature
Humidity
Season

22.265
0.005
0.475
0.106
1.397

1.791
0.001
0.042
0.013
0.260

154.537
11.728

129.371
61.217
28.908

Model 4 Constant
Rainfall
Temperature
Humidity
Season

26.409
0.006
0.843
0.135
2.265

2.036
0.001
0.055
0.015
0.349

168.249
30.127

231.656
77.465
42.173

Model 1, no time lag: log Dm =rainfallm ×0.003+temperaturem ×0.382+hu-
miditym ×0.038+season×4.388−19.838; AIC=1331.447; likelihood ratio 
chi-square=652.496; Model 2, 1-month time lag: log Dm =rainfallm ×0.012
+temperaturem ×0.314 +humiditym ×0.058+season×4.794–23.025; AIC= 
1020.722; likelihood ratio chi-square=956.592; Model 3, 2-month time lag: 
log Dm =rainfallm ×0.005+temperaturem ×0.475 +humiditym ×0.106+seas
on×1.397–22.265; AIC=959.024; likelihood ratio chi-square=1,012.036; 
Model 4, 3-month time lag: log Dm =rainfallm ×0.006+temperaturem ×0.843 
+humiditym ×0.135–Season×2.265–26.409; AIC=932.544; likelihood ratio 
chi-square=1,031.670; D, number of dengue cases; m, month; AIC, Akaike 
information criterion.
Season code, 1: February, March, April, and May (pre-monsoon season); 
2: June, July, August, and September (monsoon season); 3: October, No-
vember, December, and January (post-monsoon season).
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ture is a crucial limiting factor in the maturation of the den-
gue vector. Studies have estimated the threshold survival 
temperature for the dengue virus to be 11.9°C and have dem-
onstrated that Aedes aegypti ceases to feed when the tem-
perature falls below 17°C, along with non-amplification of 
the virus in the vector when the temperature falls below 18°C 
[2]. Therefore, at low temperatures, the mosquito does not live 
long enough to become infectious and transmit the virus, and 
the virus does not develop properly. Viral replication and the 
extrinsic period in the insects are shortened by high tempera-
ture. A reduced viral incubation time increases the probability 
of the vector living long enough to transmit the virus, thereby 
magnifying epidemics. Hence, temperature analysis improves 
our understanding of dengue epidemiology [2]. Increases in 
global temperatures may expand the area of involvement and 
number of cases of vector-borne diseases [1,13], and will in-
crease the proportion of infective mosquitoes, giving rise to an 
exponential increase in dengue cases [1]. It has also been shown 
that a temperature increase from 26˚C-28˚C to 30˚C decreases 
the extrinsic incubation of the dengue virus, which may pro-
mote viral transmission [1,19,20]. 

The present study demonstrated an association between rela-
tive humidity and dengue cases. Relative humidity is influenced 
by a combination of rainfall and temperature. This important 
weather parameter affects the lifespan of mosquitoes and hence, 
viral transmission. Karim et al. [1] and Promprou et al. [21] found 
more dengue cases during the monsoon when the relative hu-
midity is higher. Higher humidity during the rainy season en-
courages the development and propagation of mosquitoes, caus-
ing an increase in the number of infected mosquitoes [1,22]. Bar-
bazan et al. [22] have postulated that an increase in the mos-
quito lifespan disproportionately augments the frequency of 
potential transmissions by as much as five times when the sur-
vival rate rises from 0.80 to 0.95. Hales et al. [23] have also re-
ported that the annual average vapour pressure was the most 
important climatic predictor of global dengue occurrence. 

The cumulative effect of temperature and humidity strongly 
influences the number of mosquito blood meals, survival rate 
of the vector, and the likelihood of a mosquito becoming in-
fected with DENV [14]. According to studies conducted world-
wide, relative humidity and temperature are the most important 
climatic predictors of changes in dengue transmission [14,24,25]. 
Hence, through their effects on the Aedes vector, rainfall, tem-
perature, and relative humidity are essential factors determin-
ing the geographic areas within which dengue transmission can 
be expected to occur [14]. 

In the present study, significant differences were found amongst 
the pre-monsoon, monsoon, and post-monsoon periods in the 
amount of rainfall, relative humidity, and average temperature 
(Table 2). Dengue cases peaked during the post-monsoon peri-

od, with a time lag of 1 and 2-month in models developed in-
cluding and excluding season as a covariate, respectively (Tables 
3 and 4). This could be accounted for by the indirect effect of 
climatic factors on the incidence of dengue through their influ-
ence on the lifecycle of both the vector and virus [14]. Climatic 
factors affect mosquito hatching, larval and pupal development, 
and the emergence of adult mosquitoes, as well as virus ampli-
fication and incubation in humans, finally culminating in a den-
gue outbreak after a cumulative time lag [14,26]. The time lag 
can be explained by the influence of weather conditions on the 
biological development of the mosquito vector, including pro-
longed egg hatching periods and the propensity of Aedes eggs 
to survive without water for many months [10]. Depending on 
the time lag between the biological cycle and the clinical symp-
toms, a lag between climate data and dengue incidence data 
will emerge [14]. Our results agree with those of other studies 
from diverse geographical regions [11,21,27]. A season-specific 
pattern of dengue cases in Southeast Asia has been reported 
[1,28]. A similar lag phase of 2-month for explaining the occur-
rence of dengue cases was reported by Karim et al. [1] in Dha-
ka. Chen et al. [29] reported a significant positive correlation of 
dengue cases with temperature and relative humidity at a lag of 
1-3 months in Thailand. 

In this study, the greatest number of dengue cases was report-
ed in 2015 (n=1,633). As relative humidity and temperature 
have been reported to be the most important climatic predic-
tors of changes in dengue transmission, the most ideal combi-
nation of high relative humidity and high temperature was pres-
ent in 2015 in comparison to all other years in the study peri-
od, thereby resulting in the greatest number of dengue cases. 
Several studies have reported that the climate variable indices 
of the Indian Ocean dipole and El Niño southern oscillation play 
an important role in the interannual variation in dengue trans-
mission [30,31]. Variations in oceanic sea surface temperature 
have also been found to be responsible for interannual varia-
tion in dengue cases [32]. An enhanced case burden is also at-
tributable to a general apathy to civic hygiene, unmonitored 
drain cleaning and silting, stagnation of rain water, highly un-
structured and ill-supervised mosquito control measures, an ex-
cess focus on fogging-based vector control, and the institution 
of remedial measures only after the problem of an epidemic 
surfaces. These are supplemented by an excessive migrant pop-
ulation, an inadequate health-care delivery system in the dis-
tricts adjacent to Delhi, and the excess congregation of ill pa-
tients accompanied by healthy caregivers in healthcare facilities, 
providing a milieu for vector-susceptible contact. 

Studies have reported slight indications of a correlation be-
tween mosquito status and dengue spread that can be employed 
to predict dengue outbreaks [33]. We collected Breteau index 
(BI) data from 2007, 2008, and 2009 from the Municipal Cor-



7

Ramachandran VG et al.: Dengue forecast using temperature, rainfall and humidity

Table 5. Mean Breteau index (BI) before, during, and after dengue 
outbreaks in East Delhi (2007-2009)

Years 

BI

Jun - Aug Sep - Nov Dec - Feb

Case Control Case Control Case Control

2007 0.5 0.6 2.5 1.5 <0.1 <0.1
2008 0.9 0.8 8.1 1.8 0.1 <0.1
2009 0.3 0.5 4.3 1.9 <0.1 0.1

poration of Delhi (Table 5). The mean BI was very low in the 
pre-monsoon season. The mean BI reached its maximum levels 
from September to November, which is consistent with our find-
ing of the peak number of dengue cases in September and Oc-
tober. The mean BI was highest in 2008 among the 3-year, which 
also correlates with the fact that out of those three years, the 
greatest number of dengue cases was reported in 2008.

Since this study suggests that temperature, rainfall, and hu-
midity are significantly associated with DF incidence at a time 
lag of 2-month, mosquito control and dengue surveillance must 
be strengthened during the post-monsoon season. This window 
of opportunity provides enough time to mobilize resources for 
the implementation of interventional measures to minimize the 
impact of the epidemic [34]. It would permit vector control units 
to carry out their operations during the high-risk season, thus 
maximizing limited vector control resources, as well as offering 
local authorities sufficient time to alleviate a probable outbreak 
successfully. It also allows the avoidance of vector control mea-
sures triggered by false alarms. Disease surveillance measures 
enabling public health practitioners to be aware of the scale of 
dengue morbidity and control of mosquitoes are necessary to 
curtail dengue transmission. The creation of diagnostic centres 
is essential for facilitating surveillance and providing an early 
warning of the changes in dengue incidence. Dengue control 
requires the implementation of an integrated approach, incor-
porating environmental management, chemical control, and bi-
ological methods for the control of mosquitoes [13]. 

This study has some limitations. Only monthly data were avail-
able to us. A weekly analysis of incidence data and weather con-
ditions would help explore the true impact of climatic variabili-
ty on dengue incidence. Wind velocity is also known to have a 
positive effect on dengue incidence. However, such data were 
not available. Another limitation is the use of records from a sin-
gle hospital as a surrogate for surveillance in a specific area, rath-
er than using direct surveillance data. 

This study found that climatic parameters can serve as impor-
tant components for generating an uncomplicated, accurate, cost-
effective, and timely dengue forecasting system. The develop-
ment of a weather-based dengue forecasting model could assist 
local vector control, prevention, and surveillance in several ways. 

The model would act as an early warning system for enhancing 
measures of dengue control to reduce the size of an outbreak, 
thereby decreasing disease transmission and possibly the result-
ing mortality, leading to reductions in the healthcare burden 
and operating costs. Nonetheless, the long-term sustainability 
of forecast accuracy remains a potential challenge of the den-
gue forecasting model, since it assumes that a particular distri-
bution pattern will be repeated in the future, while changes of 
dengue epidemiology in the long run are unavoidable as factors 
affecting dengue epidemiology evolve over time. Hence the mod-
el may have to be re-calibrated in the future to maintain long-
term forecast precision by anticipating alterations in factors in-
fluencing dengue transmission and distribution patterns. 
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