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Abstract

Motivation: The effective representation of proteins is a crucial task that directly affects the per-

formance of many bioinformatics problems. Related proteins usually bind to similar ligands.

Chemical characteristics of ligands are known to capture the functional and mechanistic properties

of proteins suggesting that a ligand-based approach can be utilized in protein representation. In

this study, we propose SMILESVec, a Simplified molecular input line entry system (SMILES)-based

method to represent ligands and a novel method to compute similarity of proteins by describing

them based on their ligands. The proteins are defined utilizing the word-embeddings of the

SMILES strings of their ligands. The performance of the proposed protein description method is

evaluated in protein clustering task using TransClust and MCL algorithms. Two other protein repre-

sentation methods that utilize protein sequence, Basic local alignment tool and ProtVec, and two

compound fingerprint-based protein representation methods are compared.

Results: We showed that ligand-based protein representation, which uses only SMILES strings of

the ligands that proteins bind to, performs as well as protein sequence-based representation

methods in protein clustering. The results suggest that ligand-based protein description can be an

alternative to the traditional sequence or structure-based representation of proteins and this novel

approach can be applied to different bioinformatics problems such as prediction of new protein–

ligand interactions and protein function annotation.

Availability and implementation: https://github.com/hkmztrk/SMILESVecProteinRepresentation

Contact: elif.ozkirimli@boun.edu.tr or arzucan.ozgur@boun.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The aging population is putting drug design studies under pressure

as we see an increase in the incidence of complex diseases. Multiple

proteins from different protein families or protein networks are usu-

ally implicated in these complex diseases such as cancer, cardiovas-

cular, immune and neurodegenerative diseases (Hu et al., 2016;

Poornima et al., 2016; Santiago and Potashkin, 2014). Reliable rep-

resentation of proteins plays a crucial role in the performance of

many bioinformatics tasks such as protein family classification and

clustering, prediction of protein functions and prediction of the

interactions between protein–protein and protein–ligand pairs.

Proteins are usually represented based on their sequences (Cai et al.,

2003; Chou, 2001; Iqbal et al., 2013). A recent study adapted

Word2Vec (Mikolov et al., 2013), which is a widely used word-

embeddings model in natural language processing (NLP) tasks, into

the genomic space to describe proteins as real-valued continuous

vectors using their sequences, and utilized these vectors to classify

proteins (Asgari and Mofrad, 2015). However, even though the

structure of a protein is determined by its sequence, sequence alone

is usually not adequate to completely understand its mechanism.

Furthermore, the relationship between fold or architecture and func-

tion was shown to be weak, while a strong correlation was reported

for architecture and bound ligand (Martin et al., 1998). Semantic

features such as functional categories and annotations and gene

ontology classes (Cao and Cheng, 2016; Frasca and Cesa-Bianchi,

2017; Nascimento et al., 2016; Shi et al., 2015) have been suggested

to support the functional understanding of proteins, nevertheless

these features are usually described in the form of binary vectors pre-

venting the direct use of the provided information. Therefore, a

novel approach that defines proteins by integrating functional
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characterizations can provide important information toward under-

standing and predicting protein structure, function and mechanism.

Ligand-centric approaches are based on the chemical similarity of

compounds that interact with similar proteins (Peón et al., 2016)

and have been successfully adopted for tasks such as target fishing,

off-target effect prediction and protein-clustering (Chiu et al., 2014;

Schenone et al., 2013) following the pioneering works that proposed

to measure protein similarity using their ligands (Hert et al., 2008;

Keiser et al., 2007). The use of chemical similarity of the interacting

ligands of proteins to group them resulted in both biologically and

functionally related protein clusters (Keiser et al., 2007; Öztürk

et al., 2015). Motivated by these results, we propose to describe pro-

teins using their interacting ligands.

In order to define a protein with a ligand-centric approach, the de-

scription of the ligands is critical. Ligands can be represented in many

different forms including knowledge-based fingerprints, graphs, or

strings. Simplified molecular input line entry system (SMILES), which

is a character-based representation of ligands, has been used for

QSAR studies (Cao et al., 2012; Schwartz et al., 2013) and protein–

ligand interaction prediction (Jastrzębski et al., 2016; Öztürk et al.,

2016). Even though it is a string-based representation form, use of

SMILES performed as well as powerful graph-based representation

methods in protein–ligand interaction prediction and has been proven

to be computationally less expensive (Öztürk et al., 2016). A recent

study that employed recurrent neural networks-based model to de-

scribe compound properties also used SMILES to predict chemical

properties. However, such deep-learning-based approaches require

more computational power.

An advantage of SMILES is that it provides a promising environ-

ment for the adoption of NLP approaches because it is character

based. Distributed word representation models have been widely

used in recent studies of NLP tasks, especially with the introduction

of Word2Vec (Mikolov et al., 2013). The model requires a large

amount of text data to learn the representations of words to describe

them in low-dimensional space as real-valued vectors. These vectors

comprise the syntactic and semantic features of the words, e.g. the

vectors of words with similar meanings are also similar. A recent

study, Mol2Vec (Jaeger et al., 2018), adopts Word2vec to learn rep-

resentations for compounds and uses these to predict their properties

such as toxicity and mutagenicity. Rather than representing the

compounds with their SMILES strings directly, Mol2Vec represents

them with the identifiers of the corresponding atoms obtained by

using the Morgan Algorithm (Rogers and Hahn, 2010).

In this study, we introduce SMILESVec, in which we adopted the

word-embeddings approach to define ligands by utilizing their

SMILES strings. Ligands are represented by learning features from a

large SMILES corpus via Word2Vec (Mikolov et al., 2013), instead

of using manually constructed ligand features. We then describe each

protein using the average of its interacting ligand vectors that are built

by SMILESVec. We followed a similar pipeline for evaluation that is

presented in (Bernardes et al., 2015), in which the authors compared

the performances of different clustering algorithms on the task of

detecting remote homologous protein families. We measured how

well SMILESVec-based protein representation describes proteins

within a protein clustering task by using two state-of-the-art cluster-

ing algorithms; transitive clustering (TransClust) (Wittkop et al.,

2010) and Markov clustering algorithm (MCL) (Enright et al., 2002).

The performance of clustering using SMILESVec-based protein

representation was compared with that using the traditional basic

local alignment tool (BLAST), MACCS-based (Willighagen et al.,

2017) and extended-connectivity fingerprint (ECFP)-based protein

representations as well as the recently proposed distributed protein

vector representation, which is called ProtVec (Asgari and Mofrad,

2015). ASTRAL dataset (A-50) of structural classification of protein

(SCOP) database was used as benchmark (Chandonia et al., 2017;

Murzin et al., 1995).

The results showed that the representation of proteins with their

ligands is a promising method with competitive F-scores in the protein

clustering task, even though no sequence or structure information is

used. SMILESVec can be an alternative approach to binary-vector-

based fingerprint models for ligand-representation. The ligand-based

protein representation might be useful in different bioinformatics

tasks such as identifying new protein–ligand interactions and protein

function annotations.

2 Materials and methods

2.1 Dataset
The ASTRAL datasets are part of SCOPs collection and classified

under folds, families and super-families (Fox et al., 2014). A family

denotes a group of proteins with typically distinct functionalities but

also with high sequence similarities, whereas a super-family is a group

of protein families with structural and functional similarities amongst

families. The ASTRAL datasets are named based on the minimum

sequence similarity of the proteins that they comprise. For instance,

A-50 dataset includes proteins with at most 50% sequence similarity

(http://scop.berkeley.edu/astral/subsets/ver¼1.75&seqOption¼1). In

this study, we used A-50 dataset from SCOP 1.75 version to demon-

strate the performance of the protein representation methods and con-

sidered clustering into families and super-families for evaluation.

Families and super-families with single protein were removed while

preparing the data (Bernardes et al., 2015). We used the same protein

pairs that Bernardes et al. (2015) used for A-50 to compute similarity

scores (http://www.lcqb.upmc.fr/julianab/software/cluster/).

2.2 Collection of protein–ligand interactions
First, the corresponding UniProt identifiers were extracted for each

protein in A-50 dataset using Bioservices Python package (Cokelaer

et al., 2013). Then, the interacting ligands with their corresponding ca-

nonical SMILES were retrieved from ChEMBL (Gaulton et al., 2011)

using ChEMBL web services (Davies et al., 2015) (Data collected on

December 30, 2017). The workflow of protein-ligand interaction ex-

traction is illustrated in Figure 1. The collected interactions were used

to build the proposed SMILESVec-based protein representations.

2.3 Distributed representation of proteins and ligands
The Word2Vec model, which is based on feed-forward neural net-

works, has been previously adopted to represent proteins using their

Fig. 1. Extraction of protein–ligand interactions. As an example protein,

Cardiac Myosin Binding Protein C is provided as input with its corresponding

SCOP ID: d1gxea_
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sequences (Asgari and Mofrad, 2015). The approach that we will

refer to as ProtVec throughout the article, improved the perform-

ance for the protein classification problem. In this study, we used

the Word2Vec model with the Skip-gram approach to consider the

order of the surrounding words. In the biological context, we can

use the string representations of proteins/ligands (e.g. FASTA se-

quence for proteins and SMILES for ligands) in textual format and

define words as sub-sequences of these representations.

Figure 2 illustrates a sample protein sequence and its sequence list

(biological words) as well as a sample ligand SMILES and its corre-

sponding sub-sequences (chemical words). The biological words which

are referred to as sequence-lists are created with a set of three charac-

ters of non-overlapping sub-sequences for each list that starts from the

character indices 1, 2 and 3, respectively, therefore leading to three se-

quence lists (Asgari and Mofrad, 2015). The chemical words were cre-

ated as eight-character long overlapping substrings of SMILES with

sliding window approach. As shown in Figure 2, the SMILES string

‘C(C1CCCCC1)N2CCCC2’ is divided into the following chemical

words: ‘C(C1CCCC’, ‘(C1CCCCC’, ‘C1CCCCC1’, ‘1CCCCC1)’,

‘CCCCC1)N’, ‘CCCC1)N2’, . . ., ’)N2CCCC2’. We performed several

experiments in which word size varied in the range of 4–12 characters

and eight-charactered chemical words obtained the best results.

With the use of the Word2Vec model we were able to describe

complex structures using their simplified representations. For each

subsequence (word) that was extracted from protein sequence/ligand

SMILES, Word2Vec produced a real-valued vector that is learned

from a large training set. The vector learning is based on the context

of each subsequence (e.g. its surrounding subsequences) and can de-

tect some important subsequences that usually occur in the same con-

texts. Therefore, with the help of the neural-network-based nature of

Word2Vec, every subsequence of a protein sequence/ligand SMILES

was described in a semantically meaningful way. The Word2Vec

model defined a vector representation for each of the three-residue

subsequences of the proteins. Protein vectors were constructed as the

average of these subsequence vectors as described in Equation (1),

where vector subsequencekð Þ refers to the 100D real-valued vector for

the kth subsequence and m is equal to the total number of sub-

sequences that can be extracted from a protein sequence. For proteins,

550 K protein sequences from UniProt were used for training.

ProtVec ¼ vector proteinð Þ ¼
Pm

k¼1 vector subsequencekð Þ
m

(1)

Similarly, the Word2Vec model produced a real-valued vector

for each SMILES word and the corresponding ligand vector is

constructed as the average of the SMILES word vectors as described in

Equation (2). Vector subsequencekð Þ represents the Word2Vec output

for the eight-character long kth subsequence of the SMILES string and

n indicates the total number of these SMILES subsequences (words).

We will refer to ligand vectors as SMILESVec throughout the article.

For learning, 1.7 M canonical SMILES from CHEMBL database (ftp.

ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_23) were

retrieved. We used the Gensim implementation (�Rehů�rek and Sojka,

2010) of Word2Vec and the size of the vectors was set to the default

value of 100. The Skip-Gram approach was employed.

SMILESVec ¼ vector ligandð Þ ¼
Pn

k¼1 vector subsequencekð Þ
n

(2)

We also used the Word2Vec model to learn embeddings for the

characters in the SMILES alphabet. Therefore instead of word-level,

we created char-level embeddings for the unique characters that ap-

pear in SMILES in ChEMBL23 dataset (58 chars). Equation (3)

describes SMILESVecchar where n in this case represents the total

number of the characters in a SMILES.

SMILESVecchar ¼ vector ligandð Þ ¼
Pn

k¼1 vector charkð Þ
n

(3)

We further investigated an important aspect when working with

SMILES representation, since there are several valid SMILES for a

single molecule. Canonicalization algorithms were coined for the pur-

pose of generating an unique SMILES for a molecule; however,

couldn’t prevent the diversity that came with different canonicaliza-

tion algorithms. Thus, it is not that surprising that canonical SMILES

definition can differ from database to database. ChEMBL uses

Accelrys’s Pipeline Pilot that uses an algorithm derived from

Daylight’s (Papadatos and Overington, 2014), whereas Pubchem

(Bolton et al., 2008) uses OpenEye software (https://www.eyesopen.

com/) for canonical SMILES generation (Balakin, 2009). The most

evident difference between the canonical SMILES of two databases is

that ChEMBL includes isomeric information, whereas Pubchem does

not. Therefore, even though we collected the SMILES of the interact-

ing ligands from the ChEMBL database, we both experimented learn-

ing chemical words and characters from ChEMBL and Pubchem

canonical SMILES corpora both separately and together (combined).

We can represent a protein/ligand vector as the output of the max-

imum or minimum functions, where m is the total number of the sub-

sequences that are created from the protein/ligand sequence and d is

the dimensionality of the vector (i.e. the number of features). MINi

represents the minimum value of the ith feature among m subsequen-

ces (Equation 4). To obtain a protein vector of minimum, MINi is

selected for each feature as defined in Equation (5). Similarly, MAXi

represents the maximum value of the ith feature among m subsequen-

ces (Equation 6) and protein vector of maximum is created as in

Equation (7) for d number of features. The concatenation of these

minimum and maximum protein vectors results in a vector with twice

the dimensionality of the original vectors (De Boom et al., 2016). The

min/max representation is described in Equation (8).

MINi ¼ min subsequence0i; subsequencemi½ �ð Þ (4)

vectormin proteinð Þ ¼ MIN0MIN1 . . . MINi . . . MINd½ � (5)

MAXi ¼ max subsequence0i; subsequencemi½ �ð Þ (6)

vectormax proteinð Þ ¼ MAX0MAX1 . . . MAXi . . . MAXd½ � (7)

vectorminmax proteinð Þ ¼ vectormin proteinð Þ½ � vectormax proteinð Þ½ �
(8)

2.4 Protein similarity computation
We used BLAST and ProtVec-based methods as baseline to compare

to the ligand-centric protein representation that we proposed.

Fig. 2. Representation of biological and chemical words
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2.4.1 Basic local alignment tool

BLAST reports the similarity between protein sequences using local

alignment (Altschul et al., 1990). For the ASTRAL datasets, we used

both BLAST sequence identity values and BLAST e-values that were

previously obtained (Bernardes et al., 2015) with all-versus-all

BLAST with e-value threshold of 100.

2.4.2 Word frequency-based protein similarity

Word frequency-based protein similarity method uses three-

charactered protein words that are created as explained in Section

2.3. However, instead of a learning process, we simply count the

occurrences of the protein words in a protein sequence. In order to

compute the similarity between two proteins, we used the formula

depicted in Equation (9) (Vidal et al., 2005):

WordFrequencysim L1;L2ð Þ ¼
Pm

i¼1 1� jNP1 ;i
�NP2 ;i

j
jNP1 ;i

þNP2 ;i
j

m
(9)

where m is the total number of unique words created from protein

sequences P1 and P2, NP1 ;i is the frequency of words of type i in pro-

tein P1 and NP2 ;i is the frequency of words of type i in protein P2.

2.4.3 ProtVec-based protein similarity

In ProtVec-based clustering, protein vectors were constructed as

defined in Section 2.3, either with the average or minmax method.

The cosine similarity function was used to compute the similarity

between two protein vectors P1 and P2 as in Equation (10), where d

denotes the size (dimensionality) of the vectors.

cos Sim P1;P2ð Þ ¼
Pd

i¼1 P1iP2i

kP1kkP2k (10)

2.4.4 SMILESVec-based protein similarity

First, the ligand vectors were constructed by the SMILESVec approach

described in Section 2.3. Then, each protein was represented as the

average of the vectors of the ligands they interact with. Equation (11)

describes the construction of a protein vector from its binding ligands,

where SMILESVec represents the ligand vector and nl represents the

total number of ligands that the protein interacts with.

vector proteinð Þ ¼
Pnl

k¼1 vector SMILESVeckð Þ
nl

(11)

Similarly, protein similarity is computed using the cosine similar-

ity function.

2.4.5 Fingerprint-based protein similarity

We used two fingerprint-based compound representation methods

as an alternative to SMILESVec, namely MACCS and ECFP (Rogers

and Hahn, 2010). MACCS is a structural fingerprint where each bit

represents a specific substructure. ECFP, on the other hand, is a

hash-based representation that describes features of substructures

based on the atoms and their circular neighbors within a radius

range (Sawada et al., 2014). MACCS and ECFP are represented

with 166 and 1024 bit vectors, respectively. We used the default set-

tings of chemical development kit (Willighagen et al., 2017) to ob-

tain the MACCS and ECFP representations of the ligands, and for

ECFP we chose the value of 6 as the maximum diameter (ECFP6).

The proteins were represented as described in Equation (12) in

which fingerprints were used to represent each interacting ligand.

vector proteinð Þ ¼
Pnl

k¼1 vector FingerprintMethodkð Þ
nl

(12)

Fingerprints were used in order to compare how competitive a text-

based data-driven approach (SMILESVec) is against the widely

adopted chemical descriptors.

2.4.6 SMILES word frequency-based protein similarity

For each interacting ligand of a protein, eight-character-long

SMILES words were created as explained in Section 2.3. Then, the

similarity between two proteins was computed as in Equation (9)

using the collection of chemical words of their respective interacting

ligands.

2.5 Clustering algorithms
We evaluated the effectiveness of the different protein representation

approaches for the task of protein clustering. TransClust, which has

been shown to produce the best F-measure score amongst several

other algorithms in protein clustering (Bernardes et al., 2015) and

the commonly used MCL were used as the protein clustering

algorithms.

2.5.1 Transitivity clustering

TransClust is a clustering method that is based on the weighted tran-

sitive graph projection problem (Wittkop et al., 2010). The main

idea behind TransClust is to construct transitive graphs by adding or

removing edges from an intransitive graph using a weighted cost

function. The weighted cost function is calculated as the distance be-

tween a user-defined threshold and a pairwise similarity function.

TransClust connects two proteins on the network if their similarity

is greater than the user-defined threshold. The graph is expanded by

adding or removing edges until it becomes a disjoint union of cliques

(Bernardes et al., 2015). TransClust requires a user-defined thresh-

old to identify clusters. Therefore, in order to choose the best thresh-

old value, we computed the F-measure values for similarity

threshold range of [0, 1] with 0.001 step-size for the similarity com-

putation methods that output similarity values in the range of [0, 1].

For BLAST, range of [0, 100] with step-size value of 0.05 was tested

for similarity threshold. We chose the similarity thresholds that gave

the best F-measure for super-family and family to decide the final

clusters.

2.5.2 Markov clustering algorithm

MCL is a network clustering algorithm that considers the weights of

the edges (flows) in the network (Enright et al., 2002). MCL finds

the clusters of a network by first, transforming similarity measures

into probabilities and then, computing the probabilities of random-

walks. The algorithm utilizes expansion and inflation operators to

alternate between set of probabilities (https://micans.org/mcl/index.

html?sec_description1). Inflation decides the granularity of the pre-

dicted clusters whereas expansion is responsible from reducing the

occurrences of higher length paths. We used the default value (2.0)

of inflation the in MCL package which is described as the only par-

ameter that the user might need to change.

2.6 Evaluation
In order to evaluate the performance of the proposed methods, we

utilized the F-measure, precision and recall metrics. These metrics

are widely used in the evaluation of classification methods. To adapt

these metrics for the assessment of the clustering task, we followed

the formulation explained by Bernardes et al. (2015).
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For a dataset of n proteins, let us assume nf represents the

number of proteins that belong to the fth family or class, ng is

the number of proteins that are placed in the gth cluster and nfg

represents the number of proteins that belong to the fth family and

are placed in the gth cluster. Precision of cluster g with respect to the

fth family is computed as precisionfg ¼ nfg=ng, whereas recall is

defined as recallfg ¼ nfg=nf . Finally we can define F-measure as in

Equation (13):

F �measure ¼ 1

n

X

f

nf maxg
2precisionfgrecallfg

precisionfg þ recallfg
(13)

maxg indicates that for each family f, we compute precision and

recall values for each cluster g, and choose the maximum resulting

F-score.

The weighted mean precision and recall are described in

Equations (14) and (15), respectively (Bernardes et al., 2015).

Precision ¼ 1

n

X

f

nf maxgprecisionfg (14)

Recall ¼ 1

n

X

f

nf maxgrecallfg (15)

3 Results

We evaluated the performance of five different protein similarity

computation approaches in clustering of the A-50 dataset. The

similarity approaches were BLAST, ProtVec, SMILESVec, MACCS

and ECFP, the first two of which are protein sequence-based

similarity methods, whereas the latter three utilize the ligands to

which proteins bind. We took word frequency-based protein

similarity methods that use protein sequences and compound

SMILES strings, respectively, as the baseline. Average (avg) and

minimum/maximum (min/max) of the vectors were taken to build

combined vectors for ProtVec and SMILESVec from their subse-

quence vectors.

We performed our experiments on the A-50 dataset using two

different clustering algorithms, TransClust and MCL. The ligand-

based (SMILESVec, MACCS and ECFP) protein representation

approaches require a protein to bind to at least one ligand in order

to define a ligand-based vector for that protein. Therefore, we

removed the proteins with no ligand-binding information from the

dataset. Table 1 provides a summary of the A-50 dataset before and

after filtering.

When the set of proteins that remain in our dataset are exam-

ined, we see that some of the superfamilies/families that were initial-

ly in the top-10 most frequent family and super-family lists are

replaced by others (Supplementary Table S1). Among the superfami-

lies that are no longer in the most frequent list are ‘Winged helix’

DNA-binding domain and thioredoxin-like superfamilies because

the number of known ligands is lower. On the other hand, super-

families and families that weren’t initially in the top-10 list such as

Protein-kinase like (d.144.1) super-family and nuclear-receptor

binding domain (a.123.1) and their respective descendant families

make it to the frequent set of proteins when ligand interactions are

taken into account. Table 2 summarizes the top-10 most frequent

family and super-families with known ligand interactions.

In the filtered dataset in which all proteins have an interacting

ligand, there are 1057 proteins with fewer than 200 ligands (64%

of all proteins) and 101 proteins with single ligands (0.6% of all

proteins). There are 67 proteins with more than 10 000 interacting

ligands (0.4%), thus increasing the mean number of the interacting

ligands to 1791. The protein with the highest number of interact-

ing ligands is d2dpia2 (DNA polymerase iota), a protein involved

in DNA repair (Jain et al., 2017) and implicated in esophageal

squamous cell cancer (Zou et al., 2016) and breast cancer (Yang

et al., 2004), with 115 018 ligands.

We assessed the performance of the clustering algorithms with

F-measure values for two different clustering scenarios, family and

super-family clustering. We also provided Precision and Recall val-

ues for each of the methods. In clustering, high recall indicates that

the method assigns a high number of proteins from the same family/

super-family to the same cluster. High precision, on the other hand,

means the assigned clusters contain high percentage of proteins that

belong to the same family/super-family. Higher precision values in-

dicate that the clusters are more homogeneous, i.e., mostly contain

proteins from the same families/supefamilies.

Tables 3 and 4 report the Precision, Recall and F-measure values

for family and super-family clustering and the number of clusters

that are detected with the TransClust and MCL algorithms, respect-

ively. Between TransClust and MCL, TransClust produced better

F-measure values in all representation methods on the A-50 dataset.

The results obtained by both clustering algorithms were better in

family clustering than in super-family clustering, which was an

expected outcome, since detection of relationships between distantly

related proteins is a much harder task.

Both clustering algorithms relied on similarity scores in order to

group proteins. Among the protein sequence-based similarity meth-

ods, the poorest clustering F-measure performance in super-family/

family (0.350/0.500) belonged to BLAST with e-value, the baseline.

Protein word frequency obtained the best performance on the A-50

dataset in super-family and family clustering (0.686/0.744). The per-

formance of the ProtVec Avg (0.681/0.739) and the ligand-based

protein representation methods followed the best result closely.

Bringing in a semantic aspect with learning through the Word2Vec

model, ProtVec-based similarity (avg and minmax), was outper-

formed by the straightforward word frequency-based approach.

The results also showed that the average-based combination

method (ProtVec avg) was better than the min/max-based combin-

ation method (ProtVec minmax) to build a single protein vector

from subsequence vectors in the protein clustering task. Since min/

max-based combination method did not perform well in sequence-

based protein similarity, we did not test the technique for SMILES-

based protein similarity approaches.

Among the ligand-based representation methods, we examined

the performance of the word-based embeddings and character-based

embeddings as well as the effect of the source of the training dataset

on the embeddings. We collected canonical SMILES from both

ChEMBL (�1.7 M) and Pubchem (�2.3 M) databases. The SMILES

strings of the interacting ligands were only collected from ChEMBL

as explained in Section 2.2. The main difference between these two

databases is that ChEMBL allows the isomeric information of the

molecule to be encoded within SMILES. The results indicated that

the choice of the SMILES corpus in which the word-embeddings are

Table 1. Distribution of families and super-families in A-50 dataset

before and after filtering

Dataset Number of Sequences Super-families Families

Before filtering 10 816 1080 2109

After filtering 1639 425 652
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Table 2. Distribution of the top-10 most frequent super-families and families with known ligand interactions

Super-family No. of prots. Family No. of prots.

1 Protein kinase-like (d.144.1) 47 Protein kinases, catalytic subunit (d.144.1.7) 39

2 P-loop containing nucleoside triphosphate hydrolases (c.37.1) 43 Fibronectin type III (b.1.2.1) 28

3 Immunoglobulin (b.1.1) 41 Eukaryotic proteases (b.47.1.2) 25

4 NAD(P)-binding Rossmann-fold domain (c.2.1) 32 EGF-type module (g.3.11.1) 24

5 Trypsin-like serine proteases (b.47.1) 31 Immunoglobulin I set (b.1.1.4) 23

6 Fibronectin type III (b.1.2) 28 SH2 domain (d.93.1.1) 22

7 EGF/Laminin (g.3.11) 27 Nuclear receptor ligand-binding domain (a.123.1.1) 18

8 SH2 domain (d.93.1) 22 Cyclin (a.74.1.1) 15

9 Cysteine proteinases (d.3.1) 20 Pleckstrin-homology domain (b.55.1.1) 15

10 Nuclear receptor ligand-binding domain (a.123.1) 19 Tyrosine-dependent oxidoreductases (c.2.1.2) 15

Table 3. Performance of the TransClust algorithm in super-family and family clustering for all protein similarity computation methods with

Precision, Recall and F-measure values

Super-family Family

No. Clusters Precision Recall F-measure No. Clusters Precision Recall F-measure

Protein sequence based

Blast (e-value) A-50 1596 0.997 0.261 0.350 1636 1.0 0.399 0.500

Blast (identity) A-50 606 0.861 0.550 0.595 660 0.781 0.668 0.631

Protein Word frequency A-50 708 0.952 0.621 0.686 688 0.844 0.777 0.744

ProtVec Avg (word) A-50 655 0.927 0.620 0.681 704 0.845 0.757 0.739

ProtVec Avg (char) A-50 707 0.940 0.603 0.674 707 0.842 0.746 0.729

ProtVec MinMax (word) A-50 586 0.891 0.623 0.667 704 0.829 0.741 0.718

Ligand based

SMILES Word frequency A-50 801 0.951 0.548 0.624 957 0.934 0.658 0.704

SMILESVec (word, chembl) A-50 621 0.921 0.621 0.677 730 0.855 0.744 0.735

SMILESVec (word, pubchem) A-50 573 0.888 0.627 0.668 692 0.839 0.751 0.730

SMILESVec (word, combined) A-50 617 0.923 0.627 0.675 764 0.873 0.732 0.735

SMILESVec (char, chembl) A-50 636 0.920 0.621 0.678 710 0.844 0.743 0.729

SMILESVec (char, pubchem) A-50 714 0.941 0.600 0.671 715 0.845 0.744 0.729

SMILESVec (char, combined) A-50 712 0.949 0.602 0.675 712 0.850 0.749 0.739

MACCS A-50 589 0.909 0.629 0.679 683 0.839 0.757 0.736

ECFP6 A-50 611 0.917 0.627 0.679 725 0.860 0.746 0.733

Note: The best F-measure values for the Protein sequence- and Ligand-based methods are shown in bold.

Table 4. Performance of the MCL algorithm in super-family and family clustering for all protein similarity computation methods with

Precision, Recall and F-measure values

Super-family Family

No. Clusters Precision Recall F-measure No. Clusters Precision Recall F-measure

Protein sequence based

Blast (e-value) A-50 728 0.792 0.271 0.290 728 0.687 0.406 0.379

Blast (identity) A-50 783 0.882 0.496 0.540 783 0.803 0.622 0.592

Protein Word frequency A-50 411 0.769 0.625 0.590 411 0.643 0.767 0.606

ProtVec avg (word) A-50 1001 0.964 0.514 0.596 1001 0.909 0.639 0.665

ProtVec avg (char) A-50 1017 0.964 0.508 0.590 1017 0.910 0.633 0.662

ProtVec MinMax (word) A-50 1014 0.964 0.508 0.590 1014 0.909 0.634 0.662

Ligand based

SMILES Word frequency A-50 312 0630 0.550 0.470 312 0.497 0.686 0.475

SMILESVec (word, chembl) A-50 867 0.937 0.544 0.608 867 0.870 0.672 0.667

SMILESVec (word, pubchem) A-50 857 0.931 0.544 0.604 857 0.861 0.673 0.664

SMILESVec (word, combined) A-50 894 0.940 0.540 0.607 894 0.877 0.666 0.668

SMILESVec (char, chembl) A-50 999 0.962 0.514 0.596 999 0.908 0.641 0.668

SMILESVec (char, pubchem) A-50 977 0.958 0.514 0.595 977 0.900 0.643 0.667

SMILESVec (char, combined) A-50 1006 0.963 0.514 0.595 1006 0.909 0.641 0.669

MACCS A-50 874 0.936 0.540 0.606 874 0.866 0.668 0.667

ECFP6 A-50 618 0.863 0.582 0.599 618 0.762 0.710 0.631

Note: The best F-measure values for the Protein sequence- and ligand-based methods are shown in bold.
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trained on should be considered carefully, since even slight changes

in the notation of SMILES, affects the formation of the chemical

words directly. In our case, since the SMILES of the interacting

ligands of the A-50 dataset were collected from the ChEMBL data-

base, the performance of SMILESVec in which embeddings were

learned from training with ChEMBL SMILES rather than Pubchem

SMILES was notably better.

We also investigated whether using the combination of the

SMILES corpus of ChEMBL and Pubchem can improve the per-

formance of SMILESVec embeddings. We indeed reported an im-

provement on character-based embedding in family clustering

(0.739 F-measure) whereas word-based embedding produced

F-measure values higher than the Pubchem-based learning and lower

than the ChEMBL-based learning. We can suggest that the increase

in the performance of the character-based learning with the combin-

ation of two different SMILES corpora might be positively corre-

lated with the increase in SMILES samples, while the number of

unique letters that appear in the SMILES did not significantly

change between databases (e.g. absence/presence of the few charac-

ters that represent isometry information). However, with the word-

based learning, we observed that there was significant increase in

the variety of the chemical words, thus the combined SMILES cor-

pus model did not work as well as it did in character-based learning.

This result suggests that the size of the learning corpus may affect

the representation of the embeddings, and a larger SMILES corpus

could lead to better character-based embeddings for SMILESVec.

Considering only ChEMBL trained SMILESVec, word-based ap-

proach was slightly better than character-based SMILESVec in terms

of F-measure in family clustering. In super-family clustering how-

ever, character-based approach performs as well as word-based

SMILESVec. Similarly, ProtVec is also better represented in word-

level rather than character-level.

The ligand-based protein representation methods, SMILESVec

and MACCS-based approach performed almost as well as ProtVec

in family and super-family clustering with TransClust algorithm,

even though no protein sequence information was used. A lower

clustering performance was obtained with MCL than with

TransClust, and both SMILESVec and MACCS-based method

produced slightly better F-measure than ProtVec Avg in both

super-family and family clustering. Since ligand-based protein repre-

sentation methods capture indirect function information through

ligand binding, they were recognizably better at detecting super-

families than families compared with sequence-based ProtVec on a

relatively distant dataset. Furthermore, SMILESVec, a text-based

unsupervised learning model, produced comparable F-measure val-

ues to MACCS and ECFPs, which are binary vectors based on

human-engineered and hash-based feature descriptions, respectively.

Table 5 reports the Pearson correlations (Pearson, 1895) among

the protein similarity computation methods. Comparison with

BLAST e-value resulted in a negative correlation, as expected, since

e-values closer to zero indicate high match (similarity). Ligand-

based protein representation methods had higher correlation values

with BLAST e-value than protein sequence-based methods. We also

observed strong correlation among the ligand-based protein repre-

sentation methods, suggesting that, regardless of the ligand represen-

tation approach, the use of interacting ligands to represent proteins

provides similar information.

We further investigated a case in which similar super-family clus-

ters were produced with SMILESVec-based protein similarity and

ProtVec protein similarity using the TransClust algorithm. We chose

one of the medium-sized clusters for manual inspection. We

observed that Fibronectin Type III proteins (seven proteins) were

clustered together when SMILESVec was used, whereas using

ProtVec placed them into four different clusters; one cluster con-

tained four of those proteins, another cluster contained a single pro-

tein and the other two proteins were part of other clusters. The

protein that was clustered by itself (SCOP ID: d1n26a3, Human

Interleukin-6 Receptor alpha chain) had two interacting ligands

(CHEMBL81; Raloxifene and CHEMBL46740; Bazedoxifene) that

were also shared by a protein (SCOP ID: d1bqua2, Cytokine-

binding region of GP130) clustered separately with ProtVec. Thus,

we can suggest that using information on common interacting

ligands, SMILESVec achieved to combine these seven proteins into a

single cluster, while ProtVec failed to do so with a sequence-based

approach.

We would like to mention that ASTRAL datasets contain

domains rather than full length proteins, while CHEMBL collects

protein–ligand interaction information based on the whole protein

sequence from UniProt. A multidomain protein may have multiple

and diverse chemotypes of ligands binding to each domain and

retrieving ligand information based on the full length protein may

lump this disparate information together, leading to loss of informa-

tion on domain specific ligand interactions. The performance of do-

main sequence-based methods is therefore at an advantage because

family/superfamily assignment in SCOP is also based on domain se-

quence, while the ligand-based approach we use in SMILESVec uses

more noisy data. Despite this disadvantage, ligand-based approach

performs as well as the sequence-based approaches.

Due to the domain-based nature of the ASTRAL datasets, clus-

tering based on the full protein sequence can lead to a reduction in

performance because of the presence of multidomain proteins.

Similarly, we hypothesized that the ligand-based methods might

not show their true performance, since the interactions collected

from ChEMBL are based on protein–ligand interactions and not

domain–ligand interactions. For instance, the domains d2nxyb1

and d2nxyb2 belong to different families, b.1.1.1 and b.1.1.3, re-

spectively. If the ligands that bind to each of these domains were

known, the performance of the ligand-based models might have

improved. However, in our current setting, for each of these

domains, we collected the same interacting ligands from ChEMBL,

since their target identifiers are the same. Therefore, as expected

we observed that these two domains were clustered together with

ligand-based protein representation methods leading to a decrease

in F-measure.

Table 5. Pearson correlation between protein similarity methods

Method Method Pearson

correlation

BLAST (e-value) BLAST (identity) �0.109

BLAST (e-value) Protein word

frequency

�0.250

BLAST (e-value) ProtVec (avg) �0.291

BLAST (e-value) SMILESVec

(word, chembl)

�0.335

BLAST (e-value) SMILESVec

(char, chembl)

�0.207

BLAST (e-value) MACCS �0.336

SMILESVec (word, chembl) MACCS 0.895

SMILESVec (char, pubchem) MACCS 0.590

SMILESVec (word, chembl) SMILESVec

(char, pubchem)

0.682

SMILESVec (word, chembl) ECFP6 0.933

ECFP6 MACCS 0.898
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To test our methodology on single domain proteins of the A-50

dataset, we created a subset that contains only single domains and

another that contains the rest of the sequences. SCOP stable domain

identifier (sid) uses seven-charactered system in which the last char-

acter defines the domains uniquely (e.g. d2sqca1, d2sqca2 for sev-

eral domain or d1n4qb_ when there is no need for domain

specification). The single domain subset comprised sequences with

sid ending with the ‘_’ character. Using the predicted clusters, we

measured how accurately proteins of the single-domain were

assigned by computing the percentage of True positives (TPs) (NTP/

N) where N is the number of the samples in the subset and NTP is

equal to the number of the correctly clustered samples of the subset.

As expected, when only single domains were considered, we

observed that both Protvec and SMILESVec had higher percentage

of TPs. The performance of SMILESVec was increased from 0.743

for all proteins to 0.82 for single domain proteins. ProtVec had a

slightly less pronounced increase from 0.757 to 0.829. On the other

hand, when multidomain proteins were taken into account, the TP

percentage reduced to 0.671 (SMILESVec) and 0.689 (ProtVec).

These results suggest that taking domain information into account

can enhance the performance of these representation methods.

4 Conclusion

In this study, we first propose a ligand-representation method,

SMILESVec, which uses a word-embeddings model. Then, we represent

proteins using their interacting ligands. In this approach, the interacting

ligands of each protein in the dataset are collected. Then, the SMILES

string of each ligand is divided into fixed-length overlapping substrings.

These created substrings are then used to build real-valued vectors with

the Word2vec model and then the vectors are combined into a single

vector to represent the whole SMILES string. Finally, protein vectors

are constructed by taking the average of the vectors of their ligands.

The effectiveness of the proposed method in describing the proteins was

measured by performing clustering on the A-50 dataset from the SCOP

database using two different clustering algorithms, TransClust and

MCL. Both of these clustering algorithms use protein similarity scores

to identify cliques. SMILESVec-based protein representation was com-

pared with other protein representation methods, namely BLAST and

ProtVec, both of which depend on protein sequence to measure protein

similarity, and the MACCS and ECFP binary fingerprint-based ligand-

centric protein representation approaches. The performance of the clus-

tering algorithms, as reported by F-measure, showed that protein word

frequency-based similarity model was a better alternative to BLAST

e-value or sequence identity to measure protein similarity. Furthermore,

ligand-based protein representation methods also produced comparable

F-measure scores to ProtVec.

Using SMILESVec, we were able to define proteins based on

their interacting ligands even in the absence of sequence or struc-

ture information. SMILESVec-based protein representation had

better clustering performance than BLAST and comparable cluster-

ing performance to protein word frequency-based method, both of

which use protein sequences. We should emphasize that SCOP

datasets were constructed based on protein similarity, thus high

performance with the protein sequence-based models in family/

super-family clustering is no surprise. However, the fact that

ligand-based protein representation methods, either learning from

SMILES or represented with binary compound features, perform

as well as protein sequence-based models is quite intriguing and

promising.

SMILESVec, MACCS and ECFP representations performed simi-

larly in the task of protein clustering, suggesting that the word-

embeddings approach that learns representations from a large

SMILES corpus in an unsupervised manner is as accurate as widely

adopted Fingerprint models. We propose that the ligand-based rep-

resentation of proteins might reveal important clues especially in

protein–ligand interaction related tasks like drug specificity or iden-

tification of proteins for drug targeting. The similarity between a

candidate ligand and the SMILESVec for a protein can be used as an

indicator for a possible interaction.

The study we conducted here also showed that SMILES descrip-

tion is sensitive to the database definition conventions; therefore, the

use of SMILES strings requires careful consideration. Since we col-

lected the protein–ligand interaction and ligand SMILES information

from ChEMBL database to represent proteins, building SMILESVec

vectors from the chemical words trained in ChEMBL SMILES corpus

yielded better F-measure than the model in which the Pubchem

SMILES corpus was used for training of the chemical words.

We showed that ligand-centric protein representation performed

at least as well as protein sequence-based representations in the clus-

tering task even in the absence of sequence information. Ligand-

centric protein representation is only available for proteins with at

least one known ligand interaction, while a sequence-based ap-

proach can miss key functional/mechanistic properties of the pro-

tein. The orthogonal information that can be obtained from the two

approaches has been previously recognized (O’meara et al., 2016).

As future work, we will investigate combining both sequence and

ligand information in protein representation. We believe that this

approach will provide a deeper understanding of protein function

and mechanism toward the use of these representations in clustering

and other bioinformatics tasks such as function annotation and pre-

diction of novel protein–drug interactions.
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