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Moderate-severe traumatic brain injury (TBI) may result in difficulty with emotion

recognition, which has negative implications for social functioning. As aspects of social

cognition have been linked to resting-state functional connectivity (RSFC) in the default

mode network (DMN), we sought to determine whether DMN connectivity strength

predicts emotion recognition and level of social integration in TBI. To this end, we

examined emotion recognition ability of 21 individuals with TBI and 27 healthy controls

in relation to RSFC between DMN regions. Across all participants, decreased emotion

recognition ability was related to increased connectivity between dorsomedial prefrontal

cortex (dmPFC) and temporal regions (temporal pole and parahippocampal gyrus).

Furthermore, within the TBI group, connectivity between dmPFC and parahippocampal

gyrus predicted level of social integration on the Community Integration Questionnaire, an

important index of post-injury social functioning in TBI. This finding was not explained by

emotion recognition ability, indicating that DMN connectivity predicts social functioning

independent of emotion recognition. These results advance our understanding of the

neural underpinnings of emotional and social processes in both healthy and injured

brains, and suggest that RSFC may be an important marker of social outcomes in

individuals with TBI.

Keywords: traumatic brain injury, emotion recognition, resting state functional connectivity, defaultmode network,

community integration, TBI, DMN

INTRODUCTION

Our ability to perceive and understand the emotions of others is crucial to successfully navigating
social interactions and living in a social milieu. Because emotion recognition is a core social
cognitive process, those with deficits in this ability—for instance, due to psychiatric condition
or disease status—tend to have poorer outcomes in many domains of social functioning, such as
successfully communicating with others (1), maintaining occupation (2), and participating in the
community (3). Similarly, there exists a spectrum of emotion recognition ability within the healthy
neurotypical population whereby greater recognition ability is associated with social competence
and maintaining peer relationships (4, 5).

Deficits in emotion recognition are a pervasive yet under acknowledged aspect of traumatic
brain injury (TBI). It is estimated that up to 39% of individuals with moderate-severe TBI suffer
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from significant emotion recognition deficits, with the degree of
impairment approximating a standard deviation difference from
the performance of healthy individuals (6). In TBI, these emotion
recognition impairments predict a number of social, cognitive,
and behavioral issues such as deficits in self-awareness, behavioral
inhibition and emotion regulation (7, 8), social communication
(9), and social competence (7).

As the nature of injury in individuals with TBI is diffuse
and heterogeneous (10), the specific neurobiological substrates
of social cognitive deficits in TBI are still being identified.
While some have examined these deficits using task-based
fMRI experiments (11), and structural studies (12–14), there
is growing interest in using the brain’s intrinsic functional
connectivity to explain deficits in TBI (15, 16). For instance,
resting state functional connectivity (RSFC) can be used to
predict cognitive and behavioral outcomes for individuals
with TBI who do not have detectable anomalies in brain
structure (17).

Of particular interest is the default mode network (DMN),
a functional network that captured scientific interest when it
was found to be robustly activated during periods of rest (18,
19). Aberrant functional connectivity within the DMN has been
demonstrated in TBI, predicting impairments in cognition (20–
22), and functional outcomes like depression and fatigue (22).
Furthermore, the DMN is particularly relevant to social cognition
as the regions comprising the DMN are also engaged during
social and emotional processes (23, 24). It has been argued
that DMN RSFC may represent a neuromarker of individual
differences in social abilities, predicting mentalizing ability in
neurotypicals (25), predicting autistic traits in neurotypicals
and people with autism (26), and predicting social network
size in macaques (23) and humans (27). While DMN RSFC
is an important and flexible tool for investigating social
cognition and behavior, it is currently unclear how it relates
specifically to the component process of emotion recognition
ability. Although the regions comprising the DMN have been
linked to emotion recognition in task-based paradigms (28),
there is little work examining individual differences in emotion
recognition using DMNRSFC. It is unknown how RSFC patterns
within the DMN are related to emotion recognition ability
in healthy neurotypicals, how these relationships may differ
in TBI, and whether they are predictive of socially-relevant
functional outcomes.

To address these gaps in the literature, the current work
investigated RSFC within the DMN (hereafter referred to as
“DMN connectivity”) in relation to emotion recognition in
healthy individuals and those with moderate-severe TBI. We
hypothesized that DMN connectivity would be associated with
individual differences in emotion recognition ability, and further
examined whether these relationships were altered in the context
of TBI. We also sought to test the hypothesis that emotion
recognition deficits contribute to social functioning problems
after TBI by examining the extent to which emotion recognition
ability predict a real-world measure of post-injury community
integration. Furthermore, as prior work has suggested that RSFC
may be independently related to social functioning (29, 30), we
will test whether DMN connectivity is a stronger predictor of

community integration than emotion recognition ability—this
finding would suggest that DMN connectivity could be used
within rehabilitation research as a predictive tool or as a
treatment target.

METHODS

Participants
A total of 53 people participated in the current research (25
TBI and 28 healthy controls [HC]). Participants with TBI were
identified through our participant database, which comprises
individuals recruited originally from local hospitals and the
general community. Eligible participants sustained a single,
closed-head moderate or severe TBI. The severity of the TBI
was determined using the Mayo Classification System criteria
(31), which for the current study were any of the following:
(1) loss of consciousness for 30min or more, (2) post-traumatic
anterograde amnesia for 24 h or more, (3) lowest Glasgow Coma
Score in the first 24 h ≤ 12, or (4) evidence of significant
neurological injury on CT/MRI (e.g., subdural hematoma,
cerebral contusion, subarachnoid hemorrhage). Injury severity
was confirmed from medical records when possible; in the
absence of medical records, severity was determined family
member attestations of the length of loss of consciousness/coma.
Participants were deemed eligible for the study if they were at
least 12 months post injury. Injury characteristics for participants
with TBI are presented in Table 1. HC participants were
recruited from the general community and had no history
of head trauma or neurological disorder. Four participants
(1 HC and 3 TBI) were excluded due to excessive head
motion, and one TBI participant was excluded due to an
outlying low score on the emotion recognition task (more
than three standard deviations from the mean), leaving a
final sample of 21 TBI and 27 HC. Participant groups did
not significantly differ on mean age or education, or sex
distribution as seen in Table 2. Participants completed behavioral
measures (neuropsychological testing, social cognitive tasks,
and self-report questionnaires) in an initial testing session and
were scanned ∼1 week later at an adjacent imaging facility
[M = 8.44 (10.61) days]. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the Kessler Foundation Institutional
Review Board.

Assessment of Emotion Recognition
We employed a measure that has previously been validated
for use in the TBI population, The Awareness of Social
Inference Test [TASIT; (32)], which includes multiple subtests
that tap into different aspects of social cognitive ability. In
the current study, we examined the TASIT Emotion Evaluation
Task, which assesses emotion recognition ability via a sequence
of short (15–60 s) videotaped vignettes featuring interactions
among trained actors. Participants were instructed to view each
vignette and identify which emotion was being conveyed by
the actor from a choice of seven basic emotions (neutral,
surprised, anxious, sad, angry, revolted, and happy). Four
instances of each emotion were presented in vignettes in
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TABLE 1 | Injury characteristics for TBI participants.

Nature of injury GCS

score

PTA LOC Neuroradiological findings

Fall 8 Epidural hematoma

MVA 13 Cerebral contusion

Unknown >30min

Fall 5 Subarachnoid hemorrhage,

cerebral contusion

MVA 6 Hemorrhagic contusion,

subarachnoid hemorrhage

Fall 9 Subdural hematoma,

intracerebral hemorrhage,

subarachnoid hemorrhage

MVA 6 weeks

MVA 4

Assault >30min

Fall 14 ∼36 h

MVA 13 Epidural hematoma; subdural

hematoma, subarachnoid

hemorrhage

MVA 3

MVA Diffuse axonal injury

motorcycle

accident

>30min

MVA 11 Cerebral contusion

Fall Epidural hematoma

Fall 15 Subarachnoid hemorrhage

Fall 15 Subarachnoid hemorrhage,

multiple contusions

MVA 35 days

Struck by vehicle Intracerebral hemorrhage,

subdural hemorrhage

MVA 3 Subdural hemorrhage,

intracerebral hemorrhage

GCS, Glasgow Coma Scale; PTA, post-traumatic amnesia; LOC, loss of consciousness;

MVA, motor vehicle accident.

a pseudorandomized sequence; this presentation order was
consistent across all participants. A sum of correct responses
for all trials was computed with a maximum attainable
score of 28.

Neuropsychological Assessment
Participants completed a battery of neuropsychological tests
sensitive to the primary neurocognitive deficits seen in TBI,
including processing speed, attention, and executive functioning.
These cognitive domains also have been shown to influence
aspects of social cognition across various clinical disorders
[e.g., (33–35)]. Therefore, we examined the potential influence
of neuropsychological performance on emotion recognition
analyses with a cognitive composite score, which was obtained
by averaging z-scored performances on tests of processing
speed, working memory, and executive functioning. Constituent
tests included Block Design from the Wechsler Abbreviated
Scale of Intelligence-II (36), Trail Making- Number-Letter
Switching Condition and Color-Word Interference- Inhibition

TABLE 2 | Demographic and performance information for study participants.

TBI HC t p

Mean (SD) Mean (SD)

Demographics

Age 41.71 (15.22) 38.00 (13.66) 0.89 0.379

Education 14.64 (1.92) 15.48 (1.93) −1.50 0.141

Months since injury 112.47 (97.95) – – –

x2 p

Gender 3F/18M 9F/18M 2.29 0.185

Performance

TASIT performance 22.52 (2.60) 24.78 (1.72) −3.61 0.001

Cognitive composite score 0.30 (0.76) −0.38 (0.78) −3.00 0.004

Condition from the Delis-Kaplan Executive Function System
(37), and the Symbol Digit Modalities Test (38). This cognitive
composite score was entered as a covariate in functional
connectivity analyses.

Measurement of Community Integration
The Community Integration Questionnaire [CIQ; (39)]
was designed for use with individuals with TBI to assess
social integration, a fundamental component of recovery
and rehabilitation that contributes importantly to positive
post-injury outcome, including mental and physical health
(40) and quality of life (41). This self-report questionnaire
comprises three subscales, which index integration in home
activities, productivity (employment or volunteer activities),
and social activities. A widely used measure, the CIQ has
demonstrated good validity and reliability within the TBI
population (39, 42).

Image Acquisition
Imaging data were acquired using a Siemens Magneton 3T
Skyra scanner (Siemens Corporation, Erlangen, Germany). Echo-
planar imaging (EPI) was used to image the resting state, during
which participants were instructed to lay still with eyes closed.
EPI data were acquired over the course of 6min, with 32
images of 3mm thickness aligned AC-PC (180 volumes, TR =

2,000ms, TE = 30ms, flip angle = 70◦, voxel size = 2.3 ×

2.3 × 3mm). Additionally, a high-resolution anatomical image
was acquired for ∼5min, with 176 slices of 1mm thickness
(TR = 2,100ms, TE = 3.43ms, flip angle = 9◦, voxel size = 1
mm isotropic).

fMRI Pre-processing
Imaging data were pre-processed using Statistical Parametric
Mapping software, SPM8 (Wellcome Department of Cognitive
Neurology, London, UK). Functional images were pre-processed
using a standard pipeline, including slice-timing correction for
interleaved slice acquisition, realignment of the image series
to the first functional image, coregistration of functional, and
structural images, tissue segmentation, and normalization of
images to standard Montreal Neurological Institute (MNI)
space using 12-parameter affine transformations and non-linear
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registration. Images were smoothed using a 6mm FWHM
Gaussian kernel to improve the ratio of signal-to-noise. Motion
correction was then applied (see below), and noise signals were
estimated and removed using linear detrending, a bandpass
filter of 0.01–0.12Hz, and the aCompCor procedure (43) as
implemented in the CONN toolbox (44). This method removes
effects of white matter (WM) and cerebrospinal fluid (CSF)
on the BOLD signal using the participant-specific WM and
CSF masks, while avoiding the augmentation of negative
correlations between voxels associated with global mean signal
regression (45).

Default Mode Network (DMN) Connectivity
Functional connectivity analyses were performed with the
CONN toolbox (44) using DMN regions of interest (ROIs)
defined a priori from Power et al.’s cortical atlas (46). The DMN
in this atlas comprises 58 ROIs in medial pre-frontal, posterior
cingulate/precuneus, and bilateral temporal and temporoparietal
regions. ROIs were defined as non-overlapping spheres of
10mm diameter. In first-level analyses, BOLD timeseries were
averaged across all voxels of each ROI and correlated with the
remaining ROIs, such that for each participant, we obtained a
DMN ROI-ROI correlation matrix. First-level correlations were
then Fisher-transformed and subjected to second-level tests of
ROI-to-ROI connectivity within the DMN, including (1) group
differences (HC > TBI and TBI > HC) in connectivity and
(2) correlation between emotion recognition ability and DMN
connectivity across groups. All connectivity analyses employed
FDR-correction (α = 0.05) to control for multiple comparisons.
Additionally, we extracted first-level connectivity values for
connections showing significant relationships with emotion
recognition at the group level. Using SPSS, we entered these
values into regression analyses predicting community integration
in individuals with TBI [analyses were constrained to individuals
with TBI as a reduction in community integration is a common
sequela of TBI; (47)].

Motion Artifacts
To correct for head movement, we used the ArtRepair toolbox
(48), which addresses both multivolume and smaller motion
perturbations. Following realignment, large amplitude motion
correction was applied using trigonometric form adjustment.
Rapid scan-to-scanmotion was adjusted following normalization
and smoothing. Volumes with more than 1mm scan-to-scan
movement (translation and rotation) were treated as artifacts
and replaced with interpolated signal from adjacent, unaffected
volumes. Participants with more than 20% artifactual volumes

(four participants) were excluded from further analyses. In the
remaining sample, TBI and HC groups did not differ on the
number of artifactual volumes, MTBI = 5.86 (9.33), MHC = 2.63
(6.70), t(46) = 1.42, p= 0.16.

RESULTS

Group Differences in Emotion Recognition
Ability, Cognition, and Connectivity
Compared to HCs, the TBI group demonstrated significantly
reduced emotion recognition ability as measured by the TASIT,
t(46) = 3.61, p = 0.001, and cognitive performance, t(46) =

3.00, p = 0.004. However, there were no significant group
differences in DMN connectivity metrics examined at the second
level (p-FDR > 0.05).

Emotion Recognition Ability and DMN
Connectivity
Across all participants, emotion recognition was inversely
associated with connectivity between an ROI in dmPFC
and three temporal lobe ROIs: two in left parahippocampal
gyrus (parahipp) and one in right temporal pole (Table 3).
Relationships between connection strength and emotion
recognition scores are illustrated in Figure 1. There were
no significant interactions between emotion recognition
performance and group membership on DMN connectivity (all
p-FDR values > 0.05).

Influence of Potential Confounding
Variables on the Emotion
Recognition-Connectivity Relationships
Emotion recognition ability was significantly correlated with
general cognitive performance, r(46) = 0.44, p = 0.002, age,
r(46) = −0.51, p < 0.001, months since injury, r(19) = −0.45,
p = 0.039, and was marginally associated with gender such
that female participants had slightly higher recognition ability
than males, β = −0.27, t(46) = −1.96, p = 0.061. Level of
education was not associated with emotion recognition ability,
r(46) = 0.19, p= 0.188. To ensure that demographic variables and
group status did not unduly influence the relationship between
emotion recognition and DMN connectivity metrics, we tested
these covariates in linear regression analyses with each of the
three connectivity metrics as dependent variables. We found
that controlling for the influence of these covariates did not
change the associations between emotion recognition and DMN

TABLE 3 | ROI-to-ROI connectivity associated with emotion recognition.

Connection ROI 1 ROI 2 t p-FDR

1 dmPFC; xyz = [−2, 38, 36] parahippocampal gyrus; xyz = [−13, −40, 1] −3.53 0.027

2 parahippocampal gyrus/fusiform gyrus; xyz = [−26, −40, −8] −3.56 0.027

3 temporal pole; xyz = [46, 16,−30] −3.34 0.032

ROI, region of interest, dmPFC, dorsomedial prefrontal cortex, xyz, coordinates of the centroid voxel of each ROI reported in Montreal Neurological Institute (MNI) stereotaxic space.
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FIGURE 1 | Negative relationship between emotion recognition ability and frontal-temporal connectivity strength. Z-normalized TASIT scores are plotted again first level

fisher-transformed correlation coefficients denoting the strength of functional connectivity between regions described in Table 3. Parahipp = parahippocampal gyrus.

connectivity. Results of these analyses are described further in
Supplementary Table 1.

Connectivity Metrics and Community
Integration
Finally, we were interested in whether the DMN connectivity
metrics which we identified in the previous analysis could
independently explain social functioning in TBI, over and above
the influence of emotion recognition. To this end, we examined
the relationships between the three DMN connections and TBI
participants’ level of community integration, controlling for
emotion recognition. Indeed, within the TBI group, the first
functional connectivity metric from Table 3 (dmPFC-parahipp)
was significantly inversely associated with total CIQ score, r(18)
= −0.60, p = 0.005 (the second and third connectivity metrics
did not significantly correlate with CIQ, both ps > 0.18).
Further, consistent with our previously reported finding (49),
emotion recognition ability in the TBI sample was related to
better community integration (total CIQ score), r(18) = 0.44,
p = 0.051. Thus, in order to test the incremental predictive
value of the first DMN connectivity metric on community
integration, controlling for participants’ emotion recognition
ability, we conducted a hierarchical multiple regression (see
Table 4). Potential confounds such as gender (β =−0.26, t(18) =
−1.12, p= 0.276), education [r(18) = 0.135, p= 0.572], cognitive
ability [r(18) = 0.06, p = 0.798], and months since injury [r(18) =
−0.03, p = 0.914] were not related to total CIQ score. However,
age was a significant predictor of community integration [r(18) =
−0.45, p= 0.045] and is thus treated as a covariate in the analysis.
In the first model, we entered emotion recognition ability (TASIT
performance) as a predictor and participant age as a covariate;
the model was marginally significant, F(2,17) = 3.09, p = 0.07. In
the second model, in addition to TASIT and age, we added the
first DMN connectivity metric (dmPFC-parahipp) as a predictor
and found that the overall model was significant, F(3,16) = 4.32,
p = 0.021, that DMN connectivity was a significant predictor of
CIQ, β = −0.47, t(16) = −2.29, p = 0.036, and explained an

additional 18% of the variance. Furthermore, we examined the
subscales of the CIQ and determined that this effect was being
driven primarily by the Social Integration subscale, which was
strongly associated with dmPFC-parahipp connectivity, r(18) =
−0.58, p = 0.008 (neither Home Integration nor Productivity
were significantly related to functional connectivity, ps > 0.65).
Together these data suggest that participants’ frontal-temporal
DMN connectivity at rest is predictive of the social aspects of
community integration in TBI, and is a stronger predictor than
their emotion recognition ability.

DISCUSSION

Impaired emotion recognition is prevalent in TBI and has
deleterious social consequences, yet the neurobiological
correlates of this impairment remain poorly understood. The
current study examined DMN connectivity in relation to
emotion recognition and social functioning in a sample of
individuals with TBI and HCs. We found that while there were
no significant group differences in DMN connectivity, there
was a relationship between emotion recognition ability and
frontal-temporal connectivity strength across groups. Moreover,
frontal-temporal connectivity was predictive of social integration
in the TBI group, even more robustly than their emotion
recognition scores.

Across both groups, we found that greater frontal-temporal
DMN connectivity (specifically dmPFC-parahipp and dmPFC-
temporal pole) was associated with worse performance on an
ecologically valid measure of emotion recognition, the Emotion
Evaluation subtest of the TASIT (32). This result is consistent
with a recent study in healthy individuals that found greater
connectivity (specifically between the posterior DMN—inclusive
of dmPFC—and regions including parahippocampal gyrus and
temporal pole) was associated with worse performance on a test
of emotion intelligence incorporating emotion recognition (50).
The extension of these findings in the current study to include
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TABLE 4 | Hierarchical linear regression testing associations between emotion recognition performance, DMN connectivity, and community integration.

Model statistics Model change Predictors

Models Predictors F p R2 R2 change F change p β t p

1 3.09 0.072 0.27 0.27 3.09 0.072

Age −0.31 −1.28 0.216

TASIT performance 0.29 1.19 0.249

2 4.32 0.021 0.45 0.18 5.25 0.036

Age −0.20 −0.89 0.387

TASIT performance 0.18 0.82 0.426

dmPFC-parahipp connectivity −0.47 −2.29 0.036

The dependent variable is total score on the CIQ.

individuals with neurologic compromise suggests that the injury-
related pathophysiology contributing to emotion recognition
deficits in TBI may lie at one end of the physiological continuum
that also characterizes individual differences in healthy controls.

Altered DMN connectivity in relation to emotion recognition
is also consistent with a larger literature describing dysregulation
within and between DMN subsystems in a variety of mental
health disorders involving social cognitive deficits (29, 51–54).
Importantly, cognitive neuroscience studies have identifiedDMN
subsystems, anchored in part by distinct portions of the mPFC,
that are involved in social processing (55). A dorsal mPFC
subsystem—which shows strong connectivity with lateral cortex
such as inferior frontal gyrus and temporoparietal junction—is
involved in abstract social processing and mentalizing, whereas
a ventral mPFC subsystem—tightly coupled with hippocampus
and limbic regions—is involved in introspective thought driven
by motivational and emotional states (56–58). These subsystems
are believed to interact dynamically during successful social
cognitive processing (57), and thus reductions in their interplay
should be detrimental to social functioning. Moreover, the
greater the positive (or weaker the negative) correlation between
brain regions/networks has often been interpreted as reflecting
a loss of network interplay [for a broader account of this
functional “dedifferentiation” see, e.g., (59)]. Therefore, our
findings may reflect emotion recognition failures associated
with less differentiated activity of dorsal and ventral mPFC
DMN subsystems, represented in our study by the dMPFC and
parahippocampal cortex, respectively.

While a relationship between increased connectivity
and reduced behavioral performance may at first seem
counterintuitive, we highlight that such “hyperconnectivity”
—particularly within the DMN—has been reported in several
previous studies of moderate-severe TBI (60–65) as well as other
neurologic disorders (66), although its functional significance
has remained unclear. For example, it has been proposed
that increased connectivity arises as an indirect response to
structural disruption (61, 67), reflecting neural communication
through alternative (and less efficient) pathways due to degraded
direct connections [(68, 69); see (70), for review]. In this light,
increased within-DMN connectivity may reflect a neural (but
not necessarily behavioral) compensation for reduced structural

integrity, arising from injury or from natural variation in white
matter (14, 71, 72).

Lending further credence to the functional relevance of
DMN RSFC to social processing, we noted that within-DMN
connectivity was predictive of social integration of individuals
with TBI. This complements recent schizophrenia research
that demonstrates RSFC between DMN nodes is predictive
of social functioning and competence (29, 30). Importantly,
these relationships are not mediated by social or cognitive
deficits, indicating that RSFC metrics may be more powerful
predictors of social functioning outcomes than behavioral
measures. These results suggest that DMN connectivity metrics
may ultimately hold some promise as biomarkers relevant to
clinical management and rehabilitation of TBI. Several studies
have shown that functional connectivity has prognostic value in
predicting recovery from brain injury (20, 73–76). Neuroimaging
metrics can also be used to predict response to rehabilitative
efforts: for instance, Arnemann et al. (77) found that functional
network organization of individuals with acquired brain injury
predicted their degree of improvement from a cognitive training
intervention, implying that baseline neuroimaging could be used
to identify individuals who are most appropriate for treatment.
Furthermore, while still nascent in its clinical application—
there is accumulating evidence that these neuroimaging metrics
could themselves be the target of intervention, as demonstrated
by the use of neurofeedback in EEG and real-time fMRI to
rehabilitate brain injury (78, 79). The findings from the current
study could thus have emergent clinical relevance in guiding
treatment for TBI, particularly as it applies to social functioning
and integration. Given the critical need for improving social
functioning in TBI and the growing number of interventionist
approaches which target social cognitive deficits (80, 81), results
of the current study could inform this important subset of brain
injury rehabilitation research: DMN connectivity could serve
either as a predictor of treatment response to interventions, or
as the treatment outcome itself.

The current study should be interpreted in the context
of certain limitations. First, in contrast to many studies
characterizing RSFC disruptions in TBI (82), we did not find
significant connectivity differences between groups (as illustrated
in Figure 1, the TBI group trended toward showing increased
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frontal-temporal connectivity, but this was not significant). It
is unclear whether this is attributable to the low power due to
modest sample size (21 TBI), or to the difficulty in surviving
multiple corrections due to the large number of regions in
the DMN atlas we used for this study. However, in studies
like ours which examine both group differences and individual
differences, the regions that differ between TBI and HC are
often not the same regions that covary with individual difference
variables (e.g., 16, 66). Thus, the lack of significant group
differences does not necessarily affect the interpretation of our
individual difference findings. Another limitation from this
study concerns its scope. Analyses from the current study were
constrained to a single, theoretically motivated resting state
network—the DMN. However, as the brain regions facilitating
emotion recognition are not entirely limited to those found
within the DMN (28), it is likely that our results would be
more complex had we also examined other networks. For
instance, Rigon et al. examined RSFC within a network of
regions identified meta-analytically and found a distributed
network (including intra- and inter-hemispheric connections)
of frontal and temporal regions associated with emotion
recognition ability in participants with TBI (16). Thus, while our
results are not an exhaustive RSFC characterization of emotion
recognition ability in healthy individuals or those with TBI,
they provide a concise and theoretically informed illustration of
the RSFC substrates of emotion recognition ability, and further
demonstrate that these substrates can be used to predict social
functioning in TBI.

CONCLUSION

We present the first evidence of RSFC correlates of
emotion recognition within the DMN, and show that
these metrics can be used to predict social functioning
in individuals with moderate-severe TBI. These findings

highlight the importance of examining intrinsic functional
networks and their contributions to complex social processes
and behavior.
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