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A B S T R A C T

Lay Summary: This review sets out the hypothesis that life history trade-offs in the maternal generation

favour the emergence of similar trade-offs in the offspring generation, mediated by the partitioning of

maternal investment between pregnancy and lactation, and that these trade-offs help explain widely

reported associations between growth trajectories and NCD risk.

Growth patterns in early life predict the risk of non-communicable diseases (NCDs), but adaptive

explanations remain controversial. It is widely assumed that NCDs occur either because of physiological

adjustments to early constraints, or because early ecological cues fail to predict adult environmental

conditions (mismatch). I present an inter-generational perspective on developmental plasticity, based

on the over-arching hypothesis that a key axis of variability in maternal metabolism derives from life

history trade-offs, which influence how individual mothers partition nutritional investment in their off-

spring between pregnancy and lactation. I review evidence for three resulting predictions: (i) Allocating

relatively more energy to growth during development promotes the capacity to invest in offspring during

pregnancy. Relevant mechanisms include greater fat-free mass and metabolic turnover, and a larger

physical space for fetal growth. (ii) Allocating less energy to growth during development constrains fetal

growth of the offspring, but mothers may compensate by a tendency to attain higher adiposity around

puberty, ecological conditions permitting, which promotes nutritional investment during lactation.

(iii) Since the partitioning of maternal investment between pregnancy and lactation impacts the allo-

cation of energy to ‘maintenance’ as well as growth, it is expected to shape offspring NCD risk as well as

adult size and body composition. Overall, this framework predicts that life history trade-offs in the
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maternal generation favour the emergence of similar trade-offs in the offspring generation, mediated by the partitioning of maternal

investment between pregnancy and lactation, and that these trade-offs help explain widely reported associations between growth

trajectories and NCD risk.

K E Y W O R D S : life history strategy; pregnancy; lactation; maternal investment; non-communicable

disease

INTRODUCTION

There is compelling evidence that patterns of nutrition and growth

during early life shape diverse components of adult phenotype, as

recognized in the developmental origins of adult health and dis-

ease (DOHaD) hypothesis [1]. While the public health implica-

tions are increasingly recognized, the evolutionary basis of

developmental plasticity remains more controversial.

Many researchers consider two ‘adaptive’ models of develop-

mental plasticity—either that it reflects developmental adjust-

ments to resolve effects of early constraints on nutritional

supply, or that it adjusts phenotype to current ecological cues in

anticipation of experiencing similar conditions in adulthood [2].

However, I have agued that neither approach adequately empha-

sises maternal phenotype as the initial source of both resources

and information received by the offspring [3, 4].

An alternative approach is to consider early developmental

plasticity as a response to the magnitude and scheduling of

maternal nutritional investment, thus exposing each off-

spring to patterns of investment that maximise maternal fit-

ness [3–5]. Previously, I have argued that maternal phenotype

(conceptualized broadly as ‘maternal capital’) represents the ‘eco-

logical niche’ to which each new generation is exposed, and hence

is the primary influence on early nutrition and developmental tra-

jectory [3–5]. Various dimensions of maternal capital may be

relevant, here I focus on one aspect by proposing the over-arching

hypothesis that variability in maternal investment is shaped by life

history trade-offs that emerged during maternal development.

This may help explain both why certain developmental trajectories

predict adult ill-health, and why profiles of both reproductive

strategy and health may propagate across generations.

NUTRITIONAL INVESTMENT IN EARLY LIFE

Nutrition is the key mechanism through which mothers invest in

offspring in early life. In placental mammals, both pregnancy and

lactation involve the transfer of energy, nutrients, cells, hormones

and immune agents from mother to offspring. Maternal

metabolism underpins both processes, but the limiting factors

differ, and this has major implications for the overall profile of

nutritional investment and its variability between mothers.

In energetic terms, placental nutrition is cheaper than lactation

[6, 7]. Being smaller, the fetus has substantially lower energy re-

quirements than the infant, even after addressing placental costs

[8]. Figure 1 highlights (i) the growth trajectory of the fetus/infant

and placenta [8, 9], and (ii) the average maternal energy costs of

pregnancy and lactation [7].

Beyond energy costs, several physiological constraints on ma-

ternal investment during pregnancy become less relevant after

delivery. As discussed below, these relate to maternal metabolic

turnover, body size and bio-thermodynamics during pregnancy,

whereas they relate primarily to energy balance during lactation.

The relationship between maternal phenotype and the magnitude

of nutritional investment therefore shifts following delivery.

It might seem irrelevant how much investment is received by

each offspring before versus after birth, providing that the sum

total over the combined period is similar. However, the relative

magnitudes of growth achieved before and after birth have major

implications for adult body size, composition and metabolism,

and for long-term health and demographic outcomes [10–12]. The

relative ‘partitioning’ of maternal investment between fetal life

and infancy is therefore a crucial issue both in evolutionary medi-

cine and in public health.

Nutritional investment during pregnancy has unique benefits.

Most rounds of cell division occur before birth [13], hence fetal life

is a critical period for the structural and functional development

of diverse organs and for epigenetic development [14–17].

Collectively, these traits underpin the long-term capacity for hom-

oeostasis, and the magnitude of prenatal growth is a valuable

marker of the intrinsic quality of the body, and hence likely

longevity.

After birth, elevated energy supply can accelerate weight gain,

however this may also generate costs, such as excess fat depos-

ition, oxidative stress and telomere attrition [18, 19]. Rapid growth

can therefore elevate ‘metabolic load’, defined as traits that chal-

lenge homeostasis [16].

Delaying growth to post-natal life therefore has very different

phenotypic effects compared to growth in utero [10], and early

growth patterns are a powerful predictor of later health status

[20]. Both small size at birth and subsequent compensatory

growth, especially during early childhood, are well-established risk

factors for non-communicable diseases (NCDs) in adulthood

[21, 22].

The ‘partitioning’ of maternal investment across successive

periods incorporates a dynamic element. Smaller neonates tend

to undergo a degree of catch-up in early post-natal life while larger

neonates show slower infant growth [23], though there is also

variability. In some settings, such adjustment ‘overcompensates’:
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in a UK cohort, for example, infants growing rapidly tended to be

smaller at birth, but taller and fatter at 5 years, while infants

growing slowly showed the opposite pattern [23] (Fig. 2).

Similar patterns have been observed in first-borns, typically

smaller at birth compared to later-borns [24] but taller in adult-

hood [25]. However, in less affluent populations, post-natal catch-

up is limited and may not fully compensate for small birth

size [26].

DEVELOPMENTAL VARIABILITY RECONSIDERED

From an evolutionary perspective, variability in early growth

patterns can be re-interpreted within an adaptive framework.

Life history theory treats energy as a limited resource, that

must be allocated competitively between maintenance, growth,

reproduction and defence [27]. Relative allocation patterns

then represent a life history strategy, shaping a series of

‘decisions’ such as how fast to grow, when to start reproducing,

how many offspring to produce, and how much to invest in

each [28]. One powerful influence on each individual life

history is extrinsic mortality risk: as the odds of survival decline,

the optimisation of fitness favours diverting energy from

growth and maintenance towards reproduction and immediate

survival [29]. Exactly the same scenario applies to the intrinsic

quality of the body, which likewise shapes fitness and longevity

[30, 31]. Lower birth weight indicates poorer capacity for long-

term maintenance [16], and hence shorter projected lifespan,

and this scenario is exacerbated if compensatory catch-up

occurs.

Most adaptive explanations for developmental plasticity have

focused on individuals, and how they respond to diverse ecolo-

gical factors [2]. However, all ecological factors during pregnancy

Figure 2. Association between infant growth pattern and (a) weight and length z-scores at birth and (b) height and BMI z-scores at 5 years. Data (mean ± standard

error) from ref. [23], reproduced with permission from ref. [17]

Figure 1. (a) Growth in mass of fetus/infant up to 12 months post-partum, and placenta up to term. (b) Energy costs of pregnancy by trimester (T) and of lactation

over the first 8 months post-partum. Data from refs. [7] and [8]
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are transduced by maternal phenotype [3, 32], indicating that

maternal life history strategy is highly relevant to any adaptations

made by the offspring. Paradoxically, maternal dietary intake dur-

ing pregnancy has relatively modest effects on fetal growth [33–

35], although supplementation promotes modest increases

in birth weight among chronically under-nourished mothers

[36–38]. Why, therefore, do mothers vary amongst themselves in

the magnitude of investment in prenatal versus post-natal life?

This review develops the hypothesis that the partitioning of ma-

ternal investment between pregnancy and lactation is both a con-

sequence of the mother’s own life history trajectory, and also a

contributing factor to life history trajectory in the following gen-

eration. This generates three specific predictions:

. Mothers allocating relatively more energy to growth dur-
ing their development are able to promote nutritional
investment in their offspring during pregnancy.

. Mothers allocating relatively less energy to growth during
their development are unable to invest as much in preg-
nancy, and compensate by allocating energy to fat stores,
which promote nutritional investment in their offspring
during lactation.

. These trade-offs affect ‘maintenance’ in both mothers
and offspring, and thereby contribute to variability in
NCD risk in both generations.

MATERNAL INVESTMENT DURING FETAL LIFE

Maternal basal metabolism comprises a key constraint on the

magnitude of growth attainable by the fetus [39]. Across a range

of mammal species, both neonatal mass and gestation length

scale allometrically with maternal weight, though the pattern

varies between species with altricial versus precocial offspring

[40]. Moreover, both neonatal brain mass and maternal basal

metabolic rate (BMR) scale with maternal weight to the power

0.75, indicating an isometric association between maternal

BMR and neonatal brain mass [39]. Overall, these studies indicate

a fundamental role of maternal BMR in determining the magni-

tude of investment during pregnancy. Carbohydrate accounts for

�80% of fetal fuel consumption, the remainder coming from sub-

strates such as amino acids and free fatty acids [41].

As pregnancy progresses, however, maternal metabolism

reaches an inherent limit in its ability to transfer energy to the

fetus, due in part to the high glucose demands of the fetal brain

[42–44]. Human birth is therefore proposed to occur at the time-

point when fetal energy requirements exceed the capacity of

maternal metabolism to meet that demand through placental nu-

trition [42, 44]. In late pregnancy, some maternal skinfold

thicknesses decline, indicating that fetal growth costs exceed

the energy supplied from maternal dietary intake [45, 46]. This

benefits the fetal brain and enables fetal fat deposition, since fatty

acids have limited capacity to cross the placenta [48].

The importance of maternal basal metabolism for fetal growth

is supported by studies in diverse settings: with the exception of

one small Swedish study, maternal fat-free mass (FFM), the pri-

mary site of energy and protein metabolism, is consistently re-

ported to be a stronger predictor of offspring birth weight than

maternal fat mass (Table 1). Above a certain threshold maternal

fat stores may elevate birth weight, for example maternal obesity is

associated with high body fat in the offspring [49], while in one

African population, mothers showed a net loss of fat mass during

pregnancy, indicating the diversion of energy stores to fund fetal

growth [50]. In between these extremes, however, maternal

adiposity appears less important for fetal investment than FFM.

Moreover, maternal body size has several other implications for

the magnitude of investment during pregnancy. First, a larger

FFM increases the energetic efficiency of funding fetal growth.

Figure 3a plots birth weight against maternal FFM in an

Ethiopian cohort, indicating that larger mothers invest more en-

ergy in absolute terms. The association is not strong, with each

additional kg FFM associated with 17 g greater birth weight. In

terms of efficiency, however, reproduction is relatively cheaper for

larger mothers. Figure 3b plots birth weight as a percentage of

maternal FFM against FFM, showing that smaller mothers invest

relatively more in fetal growth. This indicates a constraint of en-

ergy transfer to the fetus in smaller mothers.

Second, ecological factors may also constrain maternal BMR.

For example, BMR is around 4.5% lower in tropical populations,

even after controlling for body size [51]. Lower heat production is

required to maintain optimal body temperature in hotter environ-

ments, but from the opposite perspective this lower energy ex-

penditure may constrain fetal growth [52]. Especially during

physical activity, metabolism requires heat to be dissipated from

the body, and this is promoted by greater surface area relative to

body mass. Across populations, environmental heat stress is

associated with lower adult FFM [53], and with lower birth weight

after controlling for maternal height [54]. Lower maternal FFM and

BMR in heat-adapted populations may therefore contribute to

lower birth weights.

Third, beyond metabolic pathways, maternal height may also

constrain fetal growth. The increased risk of low birth weight off-

spring among mothers of maternal short stature is mediated in

part by reduced intra-uterine volume [55, 56]. Similarly, maternal

height has been positively associated with pelvic dimensions in

several populations [57–59], and there is some indication that this

may impact fetal growth. This might relate in part to physiological

regulatory mechanisms [60], and in part to smaller mothers de-

liberately ‘eating down’ in late pregnancy in order to reduce the

risk of birth complications [61, 62].

In conclusion, larger mothers with greater height, FFM and

skeletal dimensions are able to invest more during pregnancy

than smaller mothers. The association between maternal pheno-

type and the capacity for nutritional investment during lactation,

however, is different.
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Table 1. Associations of (a) maternal body composition with birth weight and (b) maternal adiposity

with lactation

Population N BC Method (a) Relative associations of maternal FFM and FM* with birth weight References

High-income

Ireland 2618 BIA Birth weight increased 19.8 (95%CI 17.0–22.7) g per kg FFM, no

association with FM

[115]

Ireland 254 BIA Birth weight increased 13.7 (95%CI 0.4, 27.1) g per kg FFM, no associ-

ation with FM

[116]

Ireland 184 BIA Birth weight increased 16.3 (SE 5.0) g per kg FFM @ 28 weeks, no asso-

ciation with FM

[117]

Italy 29 BIA Birth weight associated with FFM (r = 0.38, P = 0.035), not with FM

(r = �0.02, P = 0.9)

[118]

USA 200 Deuterium Birth weight increased 34.9 (SE 1.0) g per kg TBW, no association with

FM

[119]

Sweden 23 Deuterium Birth weight associated with FM (r = 0.49, P = 0.017) but not FFM

(r = 0.26, ns)

[120]

Low-/middle-income

India 76 DXA Birth weight associated more strongly with FFM (r = 0.46, P< 0.001) than

FM (r = 0.25, P< 0.05)

[121]

Chile 224 Deuterium Birth weight associated more strongly with FFM (r = 0.38, P< 0.001) than

FM (r = 0.27, P< 0.05)

[122]

Mexico 196 BIA Birth weight increased 19.0 (SE 4.6) g per kg FFM, 9.5 (SE 5.4) g per

kg FM

[123]

Sudan 1000 Anthropometry Birth weight associated with FFM but not with SKF [124]

Bangladesh 350 BIA Birth weight increased 32.0 (95%CI 10.6, 53.5) g per kg TBW @

10 weeks, no association with UAFA

[125]

China 1150 BIA Birth weight associated with FFM in all 3 trimesters, no association with

FM

[126]

Population N BC Method (b) Changes in markers of maternal adiposity during lactation References

High-income

UK 10 Deuterium FM declined 0.59 kg/m from birth to 4 m, then increased 0.11 kg/m

from 4 to 8 m

[127]

USA 21 Skinfolds Declines in supra-iliac and subscapular but not triceps SKF, from birth

to 6 m

[128]

USA 45 Skinfolds Declines in supra-iliac and subscapular but not triceps and biceps SKF,

from birth to 4 m

[129]

Sweden 13 MRI Thigh fat and lower trunk fat declined by 0.26 kg/m from 0.2 to 12 m,

upper trunk fat by 0.07 kg/m

[130]

Low-/middle-income

India 76 Anthropometry Hip circumference fell by 1 cm/m from birth to 6 m, waist circumference

declined only by 0.2 cm/m

[131]

India 35 DXA FM in legs declined by 0.06 kg/m over 12 m from birth, negligible

change in arm or trunk FM

[132]

Mexico 30 Deuterium FM declined 0.70 kg/m from 4 to 6 m [133]

Philippines 40 Skinfolds Estimated FM decreased by 0.13 kg/m from 1.5 to 7 m [134]

Guatemala 18 Skinfolds Following lactation for �6 m at baseline, weight increased 0.35 kg/m

over 2.5 m, highly correlated with SKF

[135]

FFM—fat-free mass; FM—fat mass; TBW—total body water, a proxy for fat-free mass; UAFA—upper arm fat area.
BIA—bio-electrical impedance analysis; DXA—dual-energy X-ray absorptiometry; MRI—Magnetic resonance imaging; SKF—skinfolds.
*Maternal body composition measured at term, unless otherwise specified in weeks of gestational age; m-month.
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MATERNAL INVESTMENT DURING LACTATION

Humans are ‘capital’ breeders, storing energy in advance in order

to fund reproduction regardless of dietary energy availability [63].

Consistent with lactation being more costly than pregnancy

(Fig. 1), the accumulation of fat tissue before/during pregnancy

appears primarily to fund lactation. Breast-milk can transfer

greater levels of lipid to the offspring compared to placental nu-

trition, thus increasing the mother’s overall capacity to meet the

rising energy requirements of the offspring after birth [42, 43].

Approximately 40–50% of breast-milk energy content is provided

by triglycerides, derived directly from the maternal diet, from de

novo synthesis, or from body fat stores [64].

Prior to reproduction, women store fat disproportionately in the

gluteo-femoral region, and even in populations with low average

BMI, around 20–25% of body weight is fat. Additional fat accretion

typically occurs during pregnancy, ranging from <1 kg in energy-

constrained settings �3.5 kg in well-nourished populations, and

up to �0.8 kg per month can be lost during lactation [65], again

disproportionately from the gluteo-femoral region (Table 1).

Among chronically under-nourished populations, both fat gains

during pregnancy and losses during lactation are substantially

lower [66], though successive pregnancies among chronically

under-nourished women can induce cumulative weight loss, a

scenario termed ‘maternal depletion’ [67].

Alongside fat oxidation, the energy costs of lactation may be

met from dietary energy intake. Averaging across several studies,

energy intake increased by �360 kcal/day by peak lactation, rep-

resenting over half the costs of lactation, but again there was also

substantial variability between populations [7].

Within populations, a number of studies report that mothers

who are fatter or gain more energy stores during pregnancy have

infants who gain more weight [68–70]. This may involve direct

energy transfer during breast-feeding, for example maternal nu-

tritional status is associated with the hormonal and nutritional

content of breast-milk [71], which in turn is associated with infant

growth rate and body composition [71–73]. However, hormonal

programming during fetal life may also contribute, for example

umbilical cord concentrations of adiponectin and leptin are like-

wise associated with fetal and infant weight gain and subsequent

body composition [74, 75]. Again, the magnitude of maternal adi-

posity is related to the efficiency of lactation: to divert a given

amount of energy into breast-milk is relatively cheaper for fatter

compared to thinner mothers (ie, it generates a weaker trade-off

against other functions), as a lower fraction of total energy stores

is required [76].

Importantly, the contribution of gluteo-femoral fat to lactation

relates not only to its energy content per se, but also to specific

fatty acids that promote infant brain development. Beyond abso-

lute reductions in energy stores, lactating mothers tend to redis-

tribute fat from lower to upper body depots, allowing the diversion

of fatty acids from gluteo-femoral depots to the offspring [77, 78].

Of particular relevance to the hypotheses under discussion

here, substantial catch-up in weight, length and head circumfer-

ence is possible in breast-fed infants born small for gestational

age [79], providing that the mother has adequate energy stores or

dietary supply. Chronic maternal under-nutrition may minimise

such catch-up by constraining the quality and quantity of breast-

milk [80, 81], though see [82].

In summary, therefore, maternal adiposity plays a key role in

nutritional investment during lactation, and this contrasts with

pregnancy where FFM and BMR are more important somatic fac-

tors. Why, however, do individual mothers vary in their relative

investment during these two successive periods? I hypothesise

that the mother’s life history is a key factor shaping the partition-

ing of investment, and that this generates correlated levels of en-

ergy allocation to growth and maintenance in each generation.

MATERNAL LIFE HISTORY AND THE
PARTITIONING OF INVESTMENT

According to life history theory, environments with high mortality

risk and shorter life expectancy promote the allocation of energy to

Figure 3. Associations between maternal fat-free mass and offspring size in an Ethiopian birth cohort (n = 403), for (a) absolute birth weight and (b) birth weight

as a percentage of maternal fat-free mass. Andersen, Friis, Kaestel, Wells, Girma, unpublished data
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survival and reproduction over growth and maintenance [27, 28].

Specific predictions are that maturation is faster, final adult size is

smaller, reproduction begins earlier, lifespan is shorter, ageing

occurs faster, and offspring quality is traded off against offspring

quantity [83]. Conversely, low-mortality environments favour in-

vesting more in maintenance (potentially extending lifespan, and

hence the duration of the reproductive career) and growth

(promoting the efficiency of reproduction and the quality of off-

spring). Specific predictions are that maturation is slower, final

adult size is larger, reproduction begins later, lifespan is longer,

ageing occurs at a slower rate and offspring quality is favoured

over quantity. However, life history variability is not a simple

‘fast-slow’ dichotomy, rather individual mothers are distributed

along continua of trade-offs, such that we can predict

correlations between life history characteristics of mothers and

their offspring.

The functional trade-offs that underlie life history variability are

very apparent in somatic traits [17]. Increased energy allocation to

growth promotes adult height and FFM, whereas allocating en-

ergy to body fat promotes survival, as adipose tissue plays mul-

tiple roles in immune function [84–87], and reproduction. Once

we recognise this trade-off, we can see that it involves exactly the

traits highlighted above that impact the partitioning of maternal

investment between pregnancy and lactation.

For example, reducing energy allocation to growth during

maternal development (resulting in short stature and reduced

FFM) reduces the capacity for maternal investment during

pregnancy. This equates to constraint of investment in ‘mainten-

ance’ during early ‘critical windows’, and indicates a shorter ex-

pected lifespan and duration of the reproductive career of the

offspring [17, 30]. Fetal exposure to a mother whose energy allo-

cation strategy has favoured survival/reproduction over growth/

maintenance steers the offspring to reproduce the same trade-

offs.

Consistent with that, several studies have linked early growth

constraint with some degree of preservation of fatness [88–91],

though under the harshest conditions both height and fatness are

constrained [92]. Similarly, short stature in adult women is

associated with greater adiposity compared to tall women, and

an enhanced tendency for weight gain in energy-rich

environments (Table 2) [93], which at a mechanistic level may

be mediated by reduced capacity for fat oxidation [93]. Exposure

to an obesogenic environment may magnify the strength of these

associations, via the tendency for obesity to provoke insulin re-

sistance and elevate fat accretion.

In similar manner, under conditions of persistent energy

scarcity both growth and maturation rate are constrained, such

that if energy supply increases, menarche occurs earlier while

growth also increases [94]. When post-natal energy supply is less

constrained however, the developmental trade-off between

growth and adiposity is mediated by maturation rate, so that early

menarche is associated with higher adiposity and shorter adult

height [95–97].

The inter-generational transmission of female life history strat-

egy is evident in the UK ALSPAC cohort, where mother’s age at

menarche was associated with early growth patterns, maturation

rate and adolescent body composition of daughters. Mothers who

had experienced earlier menarche were shorter and fatter

compared to those who had experienced later menarche [98].

Their daughters showed faster rates of infant growth, earlier me-

narche and higher levels of body fat. Taller mothers with later

menarche and lower adiposity had daughters that developed simi-

lar traits.

To summarize this analytical framework, Fig. 4 contrasts the

developmental trajectory of three hypothetical life history

trajectories [17]. Greater fetal weight gain indicates the allocation

of energy both to somatic growth, and to physiological traits bene-

ficial for lifelong homeostatic maintenance and hence longevity.

This increases the pay-off for extending the period of growth to

attain large adult size, enabling a profile of maternal investment

that favours the emergence of similar life history trade-offs in the

next generation. In contrast, reduced fetal weight gain limits the

allocation of energy to growth and maintenance. Under

continued harsh conditions, post-natal growth remains con-

strained, and menarche occurs ‘early’ in terms of small body

size, leading to small adult size. Should post-natal energy supply

improve, it is too late to benefit maintenance. Instead, matur-

ation accelerates so that menarche now occurs early in terms of

time, accompanied by elevated fat stores, but because the

growth period is shortened, adult size remains small. Through

the partitioning described above, the combination of short adult

stature and high fatness favour the same trade-offs emerging in

the next generation.

Several studies have highlighted how greater maternal invest-

ment during infancy accelerates the pace of maturation among

female offspring (Table 2). Across both high-income and low-/

middle-income country populations, faster infant weight gain pre-

dicts earlier menarche, whereas birth weight, indexing maternal

investment during pregnancy, either shows no such association

with menarche or the reverse pattern. A study of >80 000 UK

women examining the interactive associations of fetal and post-

natal growth with age at menarche confirmed that post-natal

growth demonstrates a stronger effect. Menarche occurred only

�2 months earlier in those with low relative to high birth weights,

but occurred a year earlier in those of high versus low weight at

7 years, regardless of birth weight [99].

In summary, the available evidence indicates that mater-

nal somatic trade-offs between linear growth and adiposity

are associated with differential partitioning of investment in

the offspring between fetal life and infancy.
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INTERGENERATIONAL TRANSMISSION OF LIFE
HISTORY STRATEGY AND NCD RISK

So far, this paper has argued that mothers are subject to life his-

tory trade-offs, and that this shapes developmental trajectory in

the next generation. Because these trade-offs affect not only

growth/reproduction but also the relative allocation to ‘mainten-

ance’, it becomes clear that an additional connection is between

life history strategy and metabolic health, best conceptualized

through risk of chronic non-communicable diseases (NCDs).

On this basis, since life history trade-offs are transmissible across

generations, so is the risk of NCDs, strongly mediated by early

growth patterns (an index of energy allocation to metabolic cap-

acity) and subsequent adiposity (an index of energy allocation to

metabolic load).

For example, a study of South Asian women in the UK showed

how maternal investment in fetal life shapes the subsequent life

history trajectory of daughters. Using birth weight as a simple

proxy for maternal investment in utero, lower birth weight was

Table 2. Associations of adult stature and infant weight gain with markers of reproductive potential

Population N Association of adult stature in women with markers of adiposity Ref.

High-income

Germany 15248 Prevalence of obesity (BMI> 30) increased inversely in association with height centile [136]

Russia (Siberia) 59 Shorter Buryat women have higher BMI and % fat and lower fasting fat oxidation rate

than taller women

[93]

Serbia 2539 Short women had higher waist circumference, BMI and waist-hip ratio than tall women,

but similar hip girth

[137]

US 3815 Short stature and lower leg length were associated with higher % fat [138]

Israel 1587 Short stature was associated with greater BMI [139]

Low-/middle-income

Brazil 1180 Short stature was associated with higher % fat and waist-hip ratio compared to women

of tall stature

[140]

Brazil 48 Over 4 y, waist-height ratio increased in short mothers but not normal-height mothers (p

for interaction = 0.04)

[141]

Mexico 69996 BMI was 1.2 kg/m2 higher in women with height <150 vs >150 cm [142]

Population N Association of infant weight gain with age at menarche Ref.

High-income

UK 2457 Low birth weight and faster infant weight gain were associated with early

menarche, with infancy the dominant effect

[143]

UK 2715 Faster weight gain from birth to 2 m and 2 to 9 m associated with

higher childhood fatness and earlier menarche

[144]

Germany 87 Faster growth in infancy, but not size at birth, was associated with

earlier menarche

[145]

US 262 Faster weight gain from 4 to 12 m, but not birth weight or weight gain

birth to 4 m, was associated with earlier menarche

[146]

US 856 Higher birth weight and faster weight gain birth to 6 m, 6–12 m and

12–24 m were associated with earlier menarche

[147]

Low-/middle-income

Philippines 997 Thinness (but not weight) at birth and faster growth from birth to 6 m

was associated with earlier menarche

[148]

Brazil 2083 Lower birth weight followed by faster growth birth to 19 m and 19–43

m was associated with earlier menarche

[149]

Jamaica 140 Faster growth in infancy, but not size at birth, was associated with

earlier menarche

[150]

South Africa 1201 Rapid weight gain from birth to 1 years was associated with earlier me-

narche and greater adult adiposity

[151]

BMI—body mass index; m—month; y—year.
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associated with earlier menarche, shorter adult stature, higher

levels of body fat, and higher blood pressure [30]. This indicates

diverting energy to reproduction, at the expense of linear growth

and homeostatic maintenance.

Another study showed how these associations become

magnified when the shift between fetal and post-natal nutrition

becomes more extreme. Indian girls who migrated to Sweden very

early in life initially demonstrated very poor levels of growth, but

nevertheless underwent precocious puberty and became short,

highly adipose adults [100]. In both these studies, ample energy

for catch-up growth was presumably available, thus allowing the

acceleration of maturation. Similar studies have associated earlier

mother’s menarche with elevated adiposity and offspring blood

pressure [101–103]. Importantly, some of these inter-generational

associations extend to sons as well as daughters [98, 102], though

the long-term consequences for sons have received little

attention.

According to the arguments above, the transmission of life his-

tory strategy across generations is expected to correlate not only

with differential somatic phenotype, but also a broader range of

health outcomes. Greater fetal weight gain indicates greater in-

vestment in maintenance, predicting a longer lifespan, as well as

growth. We should therefore expect larger birth weight, later me-

narche and taller adult height all to correlate with lower NCD risk,

as well as the potential to transfer the same life history strategy to

the next generation. Conversely, reduced fetal weight gain

followed by catch-up growth, accelerated maturation and adipos-

ity, is predicted to superimpose a high metabolic load on a dimin-

ished metabolic capacity, resulting in elevated NCD risk (Fig. 4).

Consistent with this perspective, numerous studies have linked

somatic markers of trade-offs favouring survival and reproduction

over growth and maintenance with elevated adult NCD risk.

Beyond well-established inverse associations with birth weight,

many NCD risk factors are elevated in association with short stat-

ure, including insulin resistance, elevated blood lipids, and higher

blood pressure [104–107]. Likewise, the direct association be-

tween adiposity and NCD risk in adult women is well-established

[108, 109], while earlier menarche has also been associated with

many NCD risk factors [110–112]. Finally, higher levels of repro-

ductive investment appear to come at a cost to maternal main-

tenance, demonstrated by correlations between fertility and the

risk of some NCDs. All of these associations indicate a reduced

long-term capacity for homoeostasis among those favouring re-

production over growth/maintenance. However, a caveat is that

hormonal profiles associated with fertility can also protect against

certain cancers, hence the association between maternal fertility

and morbidity/mortality varies across different diseases [113].

One final issue is to consider how ecological conditions interact

with these trade-offs. Many populations have a long history of

lower average birth weight, indicating limited maternal

investment in utero, but post-natal catch-up was likely also limited

[26]. Such populations are only now experiencing increased rates

Figure 4. Conceptual diagram illustrating life history trajectories and their associated risk of Non-Communicable Diseases (NCDs). Each trajectory demon-

strates different trade-offs, shaping both metabolic capacity and load (traits relevant to the life-course emergence of NCD risk) and the somatic traits that underlie

partitioning of maternal investment between pregnancy and lactation. Blue: high maternal investment in pregnancy favours energy allocation to growth/main-

tenance, promoting longevity and health. Green: low maternal investment in pregnancy is followed by post-natal energy constraint, preventing catch-up. This leads

to small adult size but low NCD risk. Red: low maternal investment in pregnancy is followed by catch-up during lactation, continuing into childhood. The extra

energy accelerates maturation and increases adiposity without benefitting adult size, thus increasing NCD risk. Each of these trajectories produces in adult women

the traits that favour the same trajectory in the next generation. Redrawn with permission from ref. [17]
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of NCDs in association with recent nutrition transition This is

equivalent to shifting from the green to the red trajectory in

Figure 4, and to shift further to the blue line, the quality of infant

growth would also need to improve. This suggests that the NCD-

costs of delaying maternal investment until after birth may be

relatively modest, until they interact with an obesogenic setting

that promotes metabolic load throughout childhood. Two large

studies, from Europe and India, have linked the presence of NCDs

in old age with a combination of poor early growth followed by

excess BMI gains from mid-childhood onwards [21, 114]. Thus,

the long-term impact of infant weight gain on NCD risk is

mediated by nutritional experience after weaning, and obesogenic

environments may substantially amplify the costs associated with

growth variability within the critical window of lactation.

CONCLUSION AND SUGGESTIONS FOR
FUTURE STUDIES

In this review, I have developed earlier arguments to set out a new

perspective on the adaptive basis of developmental plasticity.

Most researchers assume either that developmental plasticity

allows response to resource limitations (e.g. sacrificing one func-

tion or trait to protect another), or that it allows an adaptive re-

sponse to immediate cues in anticipation of matching phenotype

to adult conditions.

I have developed a different perspective, proposing that devel-

opmental plasticity incorporates adaptation of the offspring to the

magnitude of maternal capital. What I add here is that the

mother’s capacity to transfer capital depends on life history

trade-offs that occurred during maternal development, and that

the value of a given unit of capital to the offspring depends on the

stage of development when it is received. Because fetal and infant

growth variability have very different associations with long-term

phenotype, the mediation of maternal nutritional investment by

her life history trajectory generates important trade-offs in the

offspring between growth, reproductive potential and health.

The partitioning of maternal capital transfer between pregnancy

and lactation therefore merits further attention.

This approach helps explain why life histories and health status

may show some consistency across generations, without

appealing to environmental ‘prediction’ or ‘anticipation’. Rather,

maternal trade-offs that constrain her investment in her own

growth and maintenance are proposed to steer the offspring to

make similar trade-offs in the next generation. My approach

differs from previous work by emphasising the mother’s response

to selective pressures, rather than environmental conditions

per se, as the primary source of developmental constraints in the

offspring. This is an important difference, for two reasons. First,

mothers within a population can vary substantially in their life

histories, despite inhabiting a common environmental niche,

due to a range of social and physical factors acting across gener-

ations. Second, mothers may vary their investment in individual

offspring in order to tailor reproductive strategy to ecological con-

ditions. For example, where extrinsic mortality risk is high,

mothers may increase offspring quantity at the expense of off-

spring quality. A combination of reduced linear growth and divert-

ing available energy to fat stores may contribute to such a strategy.

Relevant trade-offs between growth, maintenance, reproduc-

tion and survival traits may be tested in epidemiological studies.

In an accompanying article, for example, Macintosh and col-

leagues apply this theoretical paradigm to bone phenotype in a

sample of women in the UK. Consistent with predictions, markers

of trade-offs favouring growth and maintenance (larger birth

weight, later age at menarche) are associated with stronger and

longer bones in adult women, indicating a lower risk of osteopor-

osis. In contrast, earlier menarche is associated with greater adi-

posity. This study therefore provides support for the hypothesis

that maternal life history strategy encompasses both somatic and

functional trade-offs between reproductive potential and main-

tenance/health. Broadly, this perspective provides an evolution-

ary explanation for the extensive biomedical literature linking

markers of growth and maturation with NCD risk and lifespan.

More detailed measurements of maternal and offspring body

composition through the periods of pregnancy and lactation

would help establish with greater confidence the extent to which

maternal investment is indeed partitioned between pregnancy

and lactation in association with trade-offs between height and

adiposity. Another key area for future work is to investigate

whether such somatic and functional trade-offs apply to male as

well as female life history strategies. Given the low level of nutri-

tional investment provided by fathers, some of the associations

described here for female life histories may not necessarily apply

to males.
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