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Abstract 

Stroke is a significant cause of mortality and long-term disability worldwide, with variable recovery 

trajectories posing substantial challenges in anticipating post-event care and rehabilitation planning. 

The NeuralCup 2023 consortium was established to address these challenges by comparing the 

predictability of stroke outcome models through a collaborative, data-driven approach. This study 

presents the consortium's findings, which involved 15 participating teams worldwide. Using a 

comprehensive dataset, which included clinical and imaging data, we conducted an open competition 

to identify and compare predictors of motor, cognitive, and neuropsychological (emotional) outcomes 

one-year post-stroke. Analyses incorporated both traditional and novel methods, including machine 

learning algorithms. These efforts culminated in the search for 'optimal recipes' for predicting each 

domain through an exhaustive exploration of the features of all the approaches. Key predictors included 

lesion characteristics, T1-weighted MRI sequences, and demographic factors. Notably, integrating 

FLAIR imaging and white matter tract analysis emerged as crucial to improving the accuracy of 

cognitive and motor outcome predictions, respectively. These findings advocate for a tailored, 

multifaceted approach to stroke outcome prediction, underscoring the potential of collaborative data 

science in addressing complex neurological prognostication challenges. This study also sets a new 

benchmark methodology in stroke research, offering a foundational step toward personalized care 

strategies that could significantly impact recovery planning and quality of life for stroke survivors. 

 

1. Introduction 

Knowledge about a future event empowers individuals to adequately prepare and take 

measures to influence outcomes in their favor. In healthcare, mathematical and statistical modeling 

has enabled the use of past observations to anticipate outcomes following various life-changing events 

such as brain damage. Stroke, as the second leading cause of death, has seen a 70% increase in 

incidence in the past two decades1, resulting in 6.55 million deaths and 101 million survivors in 

20191. Predictive frameworks in stroke are still invaluable for providing realistic prognostic 

expectations to the patients and their families, accurately planning post-acute care and enhancing 

clinical research trials by identifying patients with an expected homogenous outcome. This will allow 

to counter-balance individuals with similar outcome trajectories in clinical trials, increasing the 

statistical power of such studies.  

Forecasting behavioral outcomes post-stroke is a longstanding challenge2, but the optimal 

predictive biomarkers, neuroimaging methodology, or algorithms are difficult to pinpoint due to 

significant variations in study resources, methods, and purpose. Neuroimaging has been promising in 

revealing brain alterations due to infarct, particularly helping individual prediction. Previous work has 

demonstrated the importance of stroke volumes3, stroke location4, disconnection5, functional pattern6, 
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co-existence of small vessel disease7, and pre-existing brain atrophy8. These insights influence 

prediction parameters (for a review, see9,10, though methodologies vary from conventional regression 

models11 to advanced machine learning algorithms5. However, few frameworks consider cognitive 

and neuropsychological outcomes on top of the more visible motor outcomes12, and most focus on 3-

month outcomes, limiting long-term outcome investigations. In addition, many studies mislabel 

statistical associations as ‘predictions’13,14 which do not forecast accurate outcomes in new data. 

Advancing precision medicine requires data-driven approaches that assess model performance on 

unseen data to predict outcomes in new cohorts15. Yet, limited efforts place their existing predictive 

methods into a comparative context using the same dataset. Recently, systematic reviews have 

compared outcome prediction16,17 but have often excluded machine learning algorithms and failed to 

provide comprehensive comparisons.  

To address these gaps, we organized an open competition involving 15 teams of experts in stroke 

outcome prediction from across the globe at the NEURAL conference in Bordeaux in May 2023. 

Participants used a comprehensive dataset, including motor, cognitive, and neuropsychological scores 

one year after stroke, as well as neuroimaging, lesion, and demographic data to predict outcomes on 

an unseen out-of-sample dataset. Following this, we conducted a statistical analysis of the input and 

method combinations to derive the best recipe for predicting a wide range of stroke outcomes. 

 

2. Methods  

 

Dataset  

The dataset used for the stroke outcome prediction is based on a prospective observational 

study, “Brain Before Stroke (BBS)” cohort, conducted between June 2012 and February 2015. The 

main results and secondary objectives have already been published11,18–20. The study was approved by 

the local research ethics committee, and written consent was obtained from the patients before 

inclusion. The BBS cohort has not been previously used to compare different prognosis models side-

by-side, which is the objective of the present study.  

Briefly, the BBS cohort recruited consecutive stroke patients who underwent clinical and MRI 

evaluations at initial (24 to 72 hours) and chronic (1 year) states. Primary inclusion criteria were men 

and women over 18 years old with a clinical diagnosis of minor-to-severe supratentorial cerebral 

infarct (NIHSS between 1 and 25) at the stroke onset. Exclusion criteria were history of symptomatic 

cerebral infarct with a functional deficit (pre-stroke modified Rankin Scale [mRS] score ≥1), 

infratentorial stroke, history of severe cognitive impairment (dementia), or psychiatric disorders 

according to axis 1 of the DSM-IV21 criteria except for major depression, coma, pregnant or breast-

feeding women, and contraindications to MRI. 
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We mainly aimed to compute and compare imaging modalities' predicting abilities but also included 

demographic data such as age and sex, knowing their predictive value22. The baseline imaging used 

for prediction consisted of MRI performed between 24 and 72 hours after stroke onset on a 3T 

scanner (Discovery MR750w, GE Healthcare). We provided the raw Diffusion-Weighted Images 

(DWI) and the infarct masks that had already been manually delineated20 regarding the critical role of 

stroke volume and location in the outcome12,23. Additionally, we included 3D FLAIR and 3D T1 

sequences, which, while capable of detecting stroke-related changes at this stage, offer valuable 

insights into the overall integrity of the brain beyond the lesion site24. Furthermore, the teams were 

free to use any openly available brain atlases25,26 or additional tools to compute supplementary inputs 

such as the white matter tracts and/or their disconnection27–30 by the infarct. In summary, each team 

was free to include any input combination in their predictive models, which resulted in the following 

9 different inputs: “age”, “gender”, “DWI”, “T1”, “segmented lesions”, “FLAIR”, “tracts”, 

“parcellation atlases”, and “disconnectome”.  The parameters of acquisition and additionally used 

inputs are summarized in Table 1. 

 

Table 1. Inputs provided for the outcome prediction, as well as additional inputs (tracts, parcellation 

atlases, disconnectome) used by the teams. 

 

Inputs Data dimensionality Data example 

age  continuous  64.2849315 years 

gender discrete  female (1) 

 

 

DWI 

 

 

3D nifti image, 

continuous intensity values 

 

 

 

T1 

 

 

3D nifti image,  

continuous intensity values 

 

 

 

segmented lesions 

 

 

3D nifti image,  

binary values  

 

 

 

FLAIR 

 

 

3D nifti image, 

continuous intensity values 
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For 1-year post-stroke, teams had to predict motor, cognitive, and psychological outcomes. Motor outcome 

was based on an expanded version of the Fugl-Meyer (FM) score (range: 0–242) which provides a detailed 

evaluation of upper and lower limb functions with an excellent inter and intra-rater reliability31. Cognitive 

outcome was assessed with the Montreal Cognitive Assessment (MoCA) which is a validated tool for 

screening cognitive impairment after stroke32 (range: 0–30). To assess more details on the affected 

domains, we also considered the sub-scores of the MoCA (Attention, Visuospatial, Denomination, 

Language, Abstraction, Orientation, Recall) and the Isaacs test set (IST) which evaluates the executive 

functions through categorical verbal fluency33 (range: 0–max. number of orally produced words for 

different categories within 1 minute). Psychological outcome was assessed using the Hospital Anxiety and 

Depression Scale (HAD-Anxiety and HAD-Depression)34 (range: 0–21 for each test). 

From the original BBS dataset, we excluded individuals with inadequate baseline neuroimaging or missing 

1-year values resulting in 237 patients (see Supplementary Figure 1 for a detailed flowchart). The 

remaining data was split into a training dataset (n=187) and an out-of-sample validation dataset (n=50) 

through pseudorandomization to ensure comparable distribution of the outcome scores (Supplementary 

Figure 2). Table 2 provides patients’ demographics and neuropsychological scores of the whole dataset. 

 

Table 2. Patient demographics and average scores (with standard deviations) for the training and 

validation cohort. 

 training validation 

Score Mean (x̄) SD Mean (x̄) SD 

 

 

tracts 

 

 

3D nifti image 

 

 

parcellation atlases 

 

3D nifti image 

 

 

 

disconnectome 

 

 

3D nifti image, 

continuous probability 

values 
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Age  65,44 13,48 66,29 12,61 

FM  224,93 30,43 224,66 31,16 

MoCA  24,13 4,93 24,38 5,78 

IST  30,48 6,41 30,66 9,23 

HAD-A  6,07 3,80 5,78 4,27 

HAD-D  4,54 3,98 4,10 3,03 

 

Evaluation of the prediction outcomes  

The participating teams were provided with data and instructed to produce clinical score predictions 

for 50 out-of-sample patients. There were no restrictions placed on the use of inputs or methods. The 

teams' performances were primarily ranked based on the overall Pearson mean R2 outcome35, but we 

also examined additional statistical outcomes such as the Mean Squared Error (MSE) and Mean 

Absolute Error (MAE) losses (for formulas see Supplementary Formula 1 and Formula 2). To assess 

clinical relevance, we also used the area under the receiver operating characteristic (ROC) curve for 

motor, cognitive, and psychological tests (FM, MoCA, IST, HAD-A, and HAD-D) with clinically 

validated thresholds to define poor outcomes as follows: FM ≤ 100, MoCA ≤ 25, IST ≤ 28, HAD-A ≥ 

8, HAD-D= ≥ 8. 

 

Exhaustive evaluation of the used approaches 

After evaluating teams’ performances, we aimed to quantify which combinations of inputs and 

methods led to the most accurate stroke outcome prediction. The teams utilized different methods 

which were categorized into eight main classes that represent different strategies to obtain the 

prediction (Artificial Neural Networks, Regression), to extract and represent the data (Clustering, 

Feature Selection, Dimension Reduction, Parcellation/Segmentation), and to validate the prediction 

(Cross Validation, Bootstrapping). More details on each class, alongside examples of specific 

techniques used by the participating teams, can be found in Supplementary Table 1. 

To explore the similarities and differences between the teams we used Uniform Manifold 

Approximation and Projection for Dimension Reduction (UMAP)36 on a matrix summarizing the 

observed feature combinations and obtained R2 for each score. This created a 2D discrete 

morphospace – 60x60 grid to allow statistics on the UMAP latent space – where teams were localized 

based on the combinations of inputs (among the nine listed in Table 1) and methods (among the eight 

listed in Supplementary Table 1) they used. Similar approaches were located close to each other while 

differing methods were further apart. The low dimensionality of the space allowed us to utilize the 
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matrix for the next analysis step. Following previous work5, using the FSL tool randomise37 we 

identified areas in the morphospace that were associated with a high R2 score for each test. The 

randomise analysis yielded t-statistic maps distinguishing significant from non-significant regions, 

marking the presumably ‘best’ prediction points that we defined based on the local maxima. With the 

UMAP inverse transformation (inverse transforms) it is possible to generate a high dimensional data 

sample given a location in the low dimensional embedding space, meaning we can obtain an input 

data vector from coordinates in the morphospace even for coordinates that are not corresponding to 

the initial input data points. Therefore, we then used the UMAP inverse for the combination of 

variables that were assigned to the points where the t-value for the randomise test was the highest, 

associated with the best-predicting performance. After applying the inverse option of the analysis, we 

obtained a separate matrix for each feature, each containing 3600 values (60x60 space). Every value 

in the matrix represented a point in the UMAP space, corresponding to one out of seventeen (total 

number of features: 8 inputs + 9 methods) components of a potential feature vector. We binarized 

each feature matrix using the threshold 0.5 and concatenated the seventeen feature matrices that 

summarize the inputs and methods we were investigating. Subsequently, we were able to obtain a 

combination of used and discarded features for the previously identified local maxima (as well as any 

other coordinate in the space), revealing an estimation of the theoretically best combination for 

accurately predicting the one-year outcome for each clinical domain (see Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Visualization of the process for obtaining the theoretically optimal feature combination for predictions: inversing the 

randomise analysis yields heatmaps for each analyzed feature. After binarizing these maps, we investigated the overlap of the local 

maxima of the clinical tests with the binarized feature maps (1 representing the presence of the feature, and 0 representing the 

absence of a feature in the final combination ‘optimal recipe’).  
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3. Results 

Patient characteristics, participating teams and their prediction approaches  

 

 

 

 

 

 

 

 

 

 

Fifteen teams from nine different countries, each with different scientific backgrounds, participated in 

the stroke outcome prediction and submitted 24 stroke outcome predictions in total (Figure 2a). They 

combined between none and eight input data with one to five methods.   

 

Comparison of the evaluation metric R2 

 The performance of each team’s model was evaluated by comparing the predicted scores for 

the 50 out-of-sample patients with their actual recorded scores. The mean proportion of variance 

explained (R2) was calculated for each of the 24 prediction models (Figure 3a) from the 6 main 

scores: FM motor, FM total, MoCa, IST, HAD-A, and HAD-D. Team 5, in their third prediction 

obtained the highest overall R2= 0.311, followed by the same team’s first prediction with R2 =0.238, 

and the second prediction of team 2 (R2 =0.182). The mean R² values displayed a strong disparity of 

the predictive performances according to the type of outcome. The prediction of the motor outcome at 

one year could reach R² as high as 0.611 for team 5. On the other hand, the prediction of the 

neuropsychological outcome was the worst with R² not higher than 0.034 to anticipate post-stroke 

depression (HAD-D) and 0.138 for post-stroke anxiety (HAD-A). The predictive performances of 

cognitive status were intermediate between motor and mood prediction. Exhaustive information 

describing the results of all teams can be found in the supplementary material (Supplementary Table 2 

and Supplementary Table 3). 

As secondary analyses, we also looked at how each team’s model could classify patients’ outcomes as 

poor or good based on clinically relevant thresholds. The ROCs of the five best models are shown in 

Figure 2: Summary of participating teams and the approaches taken for all predictions. a Locations of the teams’ affiliated labs. b 

Summary of different inputs (A: age, B: gender, C: DWI, D: T1, E: lesion, F: FLAIR, G: tracts, H: atlases, I: disconnectome) and 

methods (A: clustering, B: artificial neural networks, C: regression, D: feature selection, E: dimensionality reduction, F: parcellation, 

G: cross-validation, H: bootstrap) used for each prediction. (Figure modified from38). 
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Supplementary Figure 3 and confirmed the highest performances for motor prediction followed by 

cognitive and mood predictions.  As an additional metric for evaluation, we calculated the mean 

average errors (MAEs) and mean squared errors (MSEs) of the teams’ predictions for the main test 

scores, which can be found in Supplementary Table 6.  

 

Evaluation with UMAP and randomise approach 

To investigate the nuances of different combinations of features (input variables and methodological 

approaches) used by the teams, we reduced their interactions into a UMAP morphospace for each 

outcome. These representations, combined with t-statistic maps (that indicate locations of the space 

associated with higher R²) highlight how close or far each of the 24 models is from the best 

prediction. The observed pattern indicated that overall, the proximity of the models’ placement in the 

morphospace was closer to the local maxima for motor outcomes and cognitive outcomes compared 

to psychological outcomes (Figure 3c and d). In other words, the prediction models show generally 

closer distances to the local maxima (indicated through the highest t-value) of the test scores FM, 

MoCA, and IST compared to the scores HAD-A and HAD-D, which is reflected in the achieved 

prediction accuracies. 

Moving back from the local maximum in the morphospace to the combination of features associated 

with this location, we identified the optimal combinations of features (defined as the best approaches 

within the boundaries of the given context) for each of the motor, cognitive, and neuropsychological 

domains (see Table 3 and Figure 1).  The overview reveals that the best predictions always required 

the lesion mask as an input. Adding information about the overall status of the brain by including the 

FLAIR modality improved predictions on the cognitive domain whereas utilizing white matter tracts 

and atlases seem to be beneficial for anticipating motor outcomes. Conversely, predicting higher 

cognitive outcomes in the neuropsychological domain benefited more from a global disconnectivity 

analysis.  

Investigating the methodological approaches, the most prominent and successful methods were 

clustering, ANNs (Artificial Neural Networks), regression, and feature selection. However, the 

utilization of the different methods varies (e.g., different clustering), making comparison less 

straightforward than with inputs. For an exhaustive listing of combinations for each single score of 

FM, MOCA, IST, HAD-A, and HAD-D, please refer to Supplementary Table 4.  

Examining the obtained t-statistics maps from the first step, we can identify separate clusters of 

significant t-values (Supplementary Figure 4). Repeating the above-described procedure for the local 

maxima of each cluster separately led to slightly different feature combinations for different clusters 

of the same test. For instance, the analysis of the local maximum of one cluster (coordinates: 25, 42) 

that was highly predictive for MoCA resulted in the combination of FLAIR, clustering, feature 
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selection, and dimension reduction while the analysis of the second cluster (local maximum 

coordinates: 44, 28) resulted in a different combination of features, that included age, sex, T1, lesions, 

ANNs, regression, and feature selection (Supplementary Figure 4). This example, along with similarly 

varying results for different significant clusters of the HAD-A and HAD-D tests, demonstrates that 

there is potentially more than one recipe that leads to a decent prediction of a score. The differences 

found in the feature combinations for the tests also show that there is not one single recipe for an 

overall good prediction that covers all stroke outcomes. Instead, different combinations of features 

work differently well depending on the type of outcome being predicted. 

Table 3. Summary of the optimal combination of features to use for long-term (1 year) predictions of 

motor, cognitive, and emotional stroke outcomes.   

 

 

 

 

 

 

 

 

 

 

 

Note: Resulting combinations of features to use for the motor, cognitive, and neuropsychological (emotional) domains. The first 

column of the table lists the features (inputs and methods) that were investigated, followed by the columns ‘Motor’, ‘Cognitive’, and 

‘Emotional’ that represent the domains of the neuropsychological scores the prediction performance of the teams was evaluated on. 

Gray cells containing ‘1’ indicate which features belong to the optimal, ‘theoretically best’ combination that leads to the best 

prediction of a given domain. White cells containing ‘0’ represent the features that do not contribute to the optimal feature 

combination. 
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4. Discussion 

Our study demonstrates the feasibility of making long-term predictions for various stroke 

outcomes. By analyzing different feature combinations, we have discovered that there is no one-

size-fits-all solution for predicting stroke outcomes. Instead, the effectiveness of various 

approaches varies depending on the specific outcome domain being predicted, such as motor, 

cognitive, or neuropsychological scores. Our systematic comparison of observed and non-

Figure 3: a Mean R2 comparison for all submitted predictions (motor, cognitive, and psychological outcomes) of five 

neuropsychological scores (FM total, MoCA, IST, HAD-A, HAD-D) sorted ascendingly from the highest score to the lowest score 

across all teams whose number is indicated on the x-axis. The stars indicate the prediction number, the whiskers indicate the standard 

error of the mean (SEM). b Median R2 comparison for all submitted predictions of the same scores, sorted ascendingly with whiskers 

indicating the interquartile range (IRQ). c T-statistic maps for each clinical outcome test, obtained from the FSL randomise analysis. 

The yellow regions indicate a significant t-value, the purple regions indicate a non-significant t-value. The UMAP distribution of all 

teams is plotted on the t-statistic maps. d Local maximum of the t-statistic map for each analyzed outcome score. 
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observed feature utilization (through UMAP projection and its inverse) is a novel approach to 

benchmark different models. It has initiated an exploration into the interaction of inputs and 

methods, contributing to the ongoing effort to establish a consensus in this field. 

The principal conclusion of this manuscript derives from an in-depth analysis of the 

methodologies employed by the participating teams in constructing their predictive models and 

the identification of the features instrumental in facilitating optimal predictions. This investigation 

has elucidated distinct ‘optimal recipes’ for various outcome scores, which reflect the different 

brain mechanisms in response to different tasks. These findings underscore that not all inputs and 

methodologies exhibit equivalent efficacy in the precise prognostication of specific stroke 

outcomes. Lesion-symptom mapping, with its rich history in studying the brain structure-function 

relationships, remains a widely used approach for analyzing and explaining stroke outcomes39. In 

our case, for predictions of all domains (motor, cognitive, emotional), the location and size of the 

lesion were consistently identified as pivotal factors.  

Some other factors were specific to a domain. For instance, the prediction of cognitive scores, 

such as the MoCA, was found to derive greater benefit from FLAIR imaging. This modality not 

only delineates the infarct but also captures underrepresented characteristics of cerebral damage 

beyond the lesion site, particularly white matter hyperintensities indicative of small vessel 

disease40. Such proxies of brain health41, if applied with the appropriate combination of methods 

(feature selection, dimension reduction, and clustering), could provide sufficient information to 

predict outputs on the cognitive domain. The importance of FLAIR imaging in predicting MoCA 

scores is consistent with the previous literature correlating cerebral integrity and potential frailty 

with cognitive decline and suboptimal recovery post-stroke42 , attributed to diminished neural 

plasticity beyond the lesion site43. Recently, a research group linked microstructural and 

macrostructural biomarkers from the normal-appearing brain matter in FLAIR images (texture, 

intensity, volume) to cognitive function43 supporting this hypothesis. In exploring the most 

predictive motor domain, it is noteworthy that motor outcome predictions uniquely benefit from 

incorporating additional data derived from tracts and atlases. This observation aligns well with 

foundational research conducted over a century ago, highlighting the critical role of structures 

now known as the corticospinal tract in motor impairment1.  

In contrast to post-stroke motor impairments that are visible and have been studied exhaustively 

over the last decades44–46, higher-order symptoms such as depression or anxiety have only recently 

been recognized and included in the clinical assessment for stroke patients47,48. Thus, prediction 

approaches used for motor impairment studies cannot simply be translated to other functions 

yielding the same results. In our analysis, while out-of-sample motor score predictions exceeded 

the predictive accuracy of several comparable attempts reported in the literature49–51, depression, 

and HAD-Anxiety marked the least predictive outcomes with the evaluation scores of R2
HAD-D

 

=0.034 and R2
HAD-A=0.138. Being able to similarly predict emotional outcomes is crucial, given 
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that one in three stroke survivors is affected by post-stroke depression52. Unfortunately, cognitive 

alterations and mood disorders are frequently overlooked, while they are associated with 

suboptimal recovery, increased risk of a further stroke, decreased quality of life, and mortality53,54. 

The importance of depression as an independent predictor for functional long-term stroke 

outcome was already established over two decades ago55. Hence, psychological outcomes 

following a stroke represent a crucial component for further exploration and prediction that are 

likely to benefit from more complex clinic-radiological models that include additional variables 

(e.g., genetic vulnerability, biological markers) to capture and explain more variance. 

Additionally, more than one recipe could predict cognitive and psychological scores with 

comparable accuracy (see Supplementary Figure. 4, Supplementary Table 5). These distinct 

patterns of feature combinations can be attributed to different factors associated with the same 

impairment. This demonstrates that the 'optimal recipes', defined as the most efficient or effective 

solution under a given set of conditions, we have identified are not static but amenable to 

refinement with integrating a broader array of inputs and methods.  

With the novel analytical framework selected for this study, we were able to shed light on the 

observed and estimate the non-observed feature combinations, suggesting avenues for future 

investigations. Nonetheless, these insights are constrained by the scope of the applied 

methodologies and clinical data's utilization (and availability). Therefore, it remains crucial to 

advocate for embracing open-science principles in the community, and we have made the training 

dataset available to encourage others to evaluate their predictive models against our cohort. By 

starting a crowd-sourcing initiative, we are committed to improving stroke outcome predictions 

and encouraging participation from other teams (to participate or test your algorithm, download 

the dataset on our website [http://neuralcup.bcblab.com]). The interplay of features helpful in 

predicting stroke outcomes of diverse domains warrants deeper investigation, and collaboration, 

methodological exchanges, and data-sharing in the field will greatly advance our understanding. 

While investigating predictive inputs and methods is a landmark in stroke outcome research, 

this study acknowledges its constraints. First and foremost, the quality of the prediction is 

dependent on the specificity of the behavioral and cognitive assessment. In the present study, 

while the behavioral assessment might be considered standard neurological practice, the 

granularity of the cognitive measures might have hampered the predictions. Future sharing 

initiatives should provide a larger dataset with a more in-depth cognitive examination. Embedding 

the teams' observed approaches into the UMAP framework is an innovative step in visualizing 

potential feature combinations that were directly observed. However, the selection of features 

included is inherently restricted by the provided data. While we had close to 300 patients with 

homogeneous data that included acute imaging as well as a chronic behavioral follow-up, we 

must acknowledge that comparisons to the high number of combinations of features limit the 
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sample size56. Additionally, the results reflect the methodologies of 24 prediction submissions, 

disproportionately influenced by the highest-performing team, thus not representing the full 

spectrum of possible outcomes. It is essential to provide additional input modalities, such as 

education level, and employ distinct methodological frameworks to capture a more 

comprehensive picture. For this, we have created an initiative that facilitates wider participation, 

increasing the sample size and subsequently aiming to refine the method categories into more 

nuanced classifications. This could unravel a finer detail of advantageous and suboptimal feature 

combinations and methodologies for stroke outcome prediction. Another constraint could be 

raised regarding the selection of neuropsychological test scores and the depth of reported results. 

Although the UMAP analysis was performed on the complete dataset comprising 13 score 

predictions (when including the subscores of MOCA), detailed results were only elaborated for 

five (FM, MoCA, IST, HAD-A, and HAD-D). This was motivated by the comprehensive 

interpretability of these selected scores across motor, cognitive, and neuropsychological 

(emotional) impairments and their clinical relevance backed by validated thresholds aiding in 

predictive model verification and comparison across the field. 

Although the study presents certain limitations in quantifying the methodological approaches, it is 

a pioneering systematic effort to incorporate complete methodologies, exhausting all available 

variables. This research lays the groundwork for future investigations to enhance the accuracy of 

stroke outcome predictions. Having demonstrated the viability of out-of-sample predictions, we 

actively encourage contributions to refine our collective understanding and predictive accuracy 

for stroke outcomes. 

 

This consortium has established a new benchmark in out-of-sample stroke outcome prediction. 

We successfully compared the long-term (one-year post-stroke) forecasts across three distinct 

domains, surpassing prior documented results. Our findings reveal that a universal prediction 

strategy for stroke outcome is less effective than employing tailored approaches for each domain 

or score to achieve the most accurate predictions, holding the promise to improve healthcare for 

stroke survivors. 
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matrix for the next analysis step. Following previous work5, using the FSL tool randomise37 we 

identified areas in the morphospace that were associated with a high R2 score for each test. The 

randomise analysis yielded t-statistic maps distinguishing significant from non-significant regions, 

marking the presumably ‘best’ prediction points that we defined based on the local maxima. With the 

UMAP inverse transformation (inverse transforms) it is possible to generate a high dimensional data 

sample given a location in the low dimensional embedding space, meaning we can obtain an input 

data vector from coordinates in the morphospace even for coordinates that are not corresponding to 

the initial input data points. Therefore, we then used the UMAP inverse for the combination of 

variables that were assigned to the points where the t-value for the randomise test was the highest, 

associated with the best-predicting performance. After applying the inverse option of the analysis, we 

obtained a separate matrix for each feature, each containing 3600 values (60x60 space). Every value 

in the matrix represented a point in the UMAP space, corresponding to one out of seventeen (total 

number of features: 8 inputs + 9 methods) components of a potential feature vector. We binarized 

each feature matrix using the threshold 0.5 and concatenated the seventeen feature matrices that 

summarize the inputs and methods we were investigating. Subsequently, we were able to obtain a 

combination of used and discarded features for the previously identified local maxima (as well as any 

other coordinate in the space), revealing an estimation of the theoretically best combination for 

accurately predicting the one-year outcome for each clinical domain (see Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Visualization of the process for obtaining the theoretically optimal feature combination for predictions: inversing the 
randomise analysis yields heatmaps for each analyzed feature. After binarizing these maps, we investigated the overlap of the local 
maxima of the clinical tests with the binarized feature maps (1 representing the presence of the feature, and 0 representing the 
absence of a feature in the final combination ‘optimal recipe’).  
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3. Results 

Patient characteristics, participating teams and their prediction approaches  

 

 

 

 

 

 

 

 

 

 

Fifteen teams from nine different countries, each with different scientific backgrounds, participated in 

the stroke outcome prediction and submitted 24 stroke outcome predictions in total (Figure 2a). They 

combined between none and eight input data with one to five methods.   

 

Comparison of the evaluation metric R2 

 The performance of each team’s model was evaluated by comparing the predicted scores for 

the 50 out-of-sample patients with their actual recorded scores. The mean proportion of variance 

explained (R2) was calculated for each of the 24 prediction models (Figure 3a) from the 6 main 

scores: FM motor, FM total, MoCa, IST, HAD-A, and HAD-D. Team 5, in their third prediction 

obtained the highest overall R2= 0.311, followed by the same team’s first prediction with R2 =0.238, 

and the second prediction of team 2 (R2 =0.182). The mean R² values displayed a strong disparity of 

the predictive performances according to the type of outcome. The prediction of the motor outcome at 

one year could reach R² as high as 0.611 for team 5. On the other hand, the prediction of the 

neuropsychological outcome was the worst with R² not higher than 0.034 to anticipate post-stroke 

depression (HAD-D) and 0.138 for post-stroke anxiety (HAD-A). The predictive performances of 

cognitive status were intermediate between motor and mood prediction. Exhaustive information 

describing the results of all teams can be found in the supplementary material (Supplementary Table 2 

and Supplementary Table 3). 

As secondary analyses, we also looked at how each team’s model could classify patients’ outcomes as 

poor or good based on clinically relevant thresholds. The ROCs of the five best models are shown in 

Figure 2: Summary of participating teams and the approaches taken for all predictions. a Locations of the teams’ affiliated labs. b 
Summary of different inputs (A: age, B: gender, C: DWI, D: T1, E: lesion, F: FLAIR, G: tracts, H: atlases, I: disconnectome) and 
methods (A: clustering, B: artificial neural networks, C: regression, D: feature selection, E: dimensionality reduction, F: parcellation, 
G: cross-validation, H: bootstrap) used for each prediction. (Figure modified from38). 
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4. Discussion 

Our study demonstrates the feasibility of making long-term predictions for various stroke 

outcomes. By analyzing different feature combinations, we have discovered that there is no one-

size-fits-all solution for predicting stroke outcomes. Instead, the effectiveness of various 

approaches varies depending on the specific outcome domain being predicted, such as motor, 

cognitive, or neuropsychological scores. Our systematic comparison of observed and non-

Figure 3: a Mean R2 comparison for all submitted predictions (motor, cognitive, and psychological outcomes) of five 
neuropsychological scores (FM total, MoCA, IST, HAD-A, HAD-D) sorted ascendingly from the highest score to the lowest score 
across all teams whose number is indicated on the x-axis. The stars indicate the prediction number, the whiskers indicate the standard 
error of the mean (SEM). b Median R2 comparison for all submitted predictions of the same scores, sorted ascendingly with whiskers 
indicating the interquartile range (IRQ). c T-statistic maps for each clinical outcome test, obtained from the FSL randomise analysis. 
The yellow regions indicate a significant t-value, the purple regions indicate a non-significant t-value. The UMAP distribution of all 
teams is plotted on the t-statistic maps. d Local maximum of the t-statistic map for each analyzed outcome score. 
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