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The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
been recently demonstrated in the sputum or saliva, suggesting how the shedding
of viral RNA outlasts the end of symptoms. Recent data from transcriptome analysis
show that the oral cavity mucosa harbors high levels of angiotensin-converting enzyme
2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), highlighting its role as
a double-edged sword for SARS-CoV-2 body entrance or interpersonal transmission.
Here, we studied the oral microbiota structure and inflammatory profile of 26 naive
severe coronavirus disease 2019 (COVID-19) patients and 15 controls by 16S rRNA V2
automated targeted sequencing and magnetic bead-based multiplex immunoassays,
respectively. A significant diminution in species richness was observed in COVID-19
patients, along with a marked difference in beta-diversity. Species such as Prevotella
salivae and Veillonella infantium were distinctive for COVID-19 patients, while Neisseria
perflava and Rothia mucilaginosa were predominant in controls. Interestingly, these
two groups of oral species oppositely clustered within the bacterial network, defining
two distinct Species Interacting Groups (SIGs). COVID-19-related pro-inflammatory
cytokines were found in both oral and serum samples, along with a specific bacterial
consortium able to counteract them. We introduced a new parameter, named CytoCOV,
able to predict COVID-19 susceptibility for an unknown subject at 71% of power with
an Area Under Curve (AUC) equal to 0.995. This pilot study evidenced a distinctive
oral microbiota composition in COVID-19 subjects, with a definite structural network in
relation to secreted cytokines. Our results would be usable in clinics against COVID-19,
using bacterial consortia as biomarkers or to reduce local inflammation.

Keywords: microbiota (D064307), cytokines, machine learning, oral microbiota, network analysis, COVID-19,
metagenomics

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a global pandemic established at the end
of 2019, whose etiological agent is severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), a member of betacoronaviruses (Li et al., 2020). COVID-19
in the more severe disease is typically characterized by: (i) symptoms of the
lower respiratory tract (Srivastava and Gupta, 2020); (ii) a systemic “cytokine
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storm” (de la Rica et al., 2020; Jose and Manuel, 2020); and (iii)
ageusia and hyposmia (Gupta et al., 2020; Srivastava and Gupta,
2020). Patients exhibiting an exaggerated form of symptoms
(Wang et al., 2020) showed greater levels of pro-inflammatory
factors (Chen et al., 2020a; Li et al., 2020; Qin et al., 2020), and
besides respiratory illnesses, they may also have enteric symptoms
and encephalitis (Gupta et al., 2020). Virus replication in the
throat particularly during the first 5 days of symptoms is strongly
supported by identification of transcribed subgenomic mRNA in
throat swab samples. However, some reports suggest the potential
for pre- or oligosymptomatic transmission as a consequence
of a mild illness of the upper respiratory tract. The presence
of SARS-CoV-2 has been recently demonstrated in the sputum
or “posterior oropharyngeal saliva” (Braz-Silva et al., 2020;
Leung et al., 2020; To et al., 2020a,b), indicating that shedding
of viral RNA outlasted the end of symptoms. Transcriptome
analysis found that angiotensin-converting enzyme 2 (ACE2)
and transmembrane protease, serine 2 (TMPRSS2) receptors,
employed by SARS-CoV-2 to enter cells, were highly expressed
in salivary glands and epithelial cells, showing the potential
vulnerability risk for oral cavity for lung or gut involvement
(Herrera et al., 2020). From these data, virus–host interplay
within the oral cavity seems to be a promising feature of COVID-
19 pathogenesis, forming the basis of disease severity and spread.
The relationship between virus and host environment included
disturbance of resident bacterial community, as recently reported
within the gut of COVID-19 patients (Feng et al., 2020). It is
also true that oral, lung and gut microbiota are intermingled in
their functions through yet unknown mechanisms, and that oral
dysbiosis (triggered or maintained by SARS-CoV-2 infection)
could be spread to the other two body districts (Bao et al.,
2020; Xiang et al., 2020). In this proposition, it is known that
oral pathogens involved in periodontal diseases or present on
the tongue dorsum (e.g., Prevotella and Veillonella genera) take
advantage of local dysbiosis and, when dispersed through the
blood stream or inhaled, could propagate and instaurate a new
disease in distant organs, such as heart and lung (Leishman et al.,
2010; Mammen et al., 2020). In this view, the oral cavity could
act as a potential reservoir not only for the SARS-CoV-2 but
also for a dysbiotic microbiota with a lung pathogenic potential
(Bao et al., 2020; Xiang et al., 2020), Thus, characterizing the oral
microbiota structure when SARS-CoV-2 is present may identify
physiological markers for the potential risk in terms of disease
severity and therapeutic strategies. In the present study, we
characterized the interplay of oral microbiota and inflammatory
cytokines in COVID-19 patients.

MATERIALS AND METHODS

Study Cohort and Samples
A total of 26 patients, 6 women (mean age 66 ± 16 years) and
20 men (mean age 66 ± 15 years) hospitalized at the Infectious
Diseases Unit, University of Trieste, Italy, between April 10, 2020
and May 5, 2020, tested positive for COVID-19, were selected for
this study. All patients provided informed consent for the use of
their data and clinical samples for the purposes of the present

study. All patients did not take antibiotics or probiotics in a 3-
month period before sampling. Patients acquired their infections
upon known close contact to an index case, thereby avoiding
representational biases owing to symptom-based case definitions.
All patients had interstitial pneumonia and were receiving oxygen
therapy but did not require endotracheal intubation and invasive
mechanical ventilation (Raghu and Wilson, 2020; Wong et al.,
2020). Oropharyngeal and nasopharyngeal swabs for diagnosis of
SARS-CoV-2 were performed, and oral swab specimens touching
the tongue, palatum and cheeks were additionally collected
for oral microbiota and local immune response profiling.
All samples were taken before starting any therapy against
COVID-19. No mouth washing products were administered to
the patients. Specimens were additionally collected with the
same modality from age-matched healthy volunteers (n = 15)
without evaluable risk for SARS-CoV-2 infection and without
antibiotics or probiotics intake in a 3-month window before
sampling. In addition, sera samples from 11 infected patients
with severe disease who underwent endotracheal intubation and
invasive mechanical ventilation were analyzed for peripheral
cytokines profile.

DNA and RNA Extraction
Total DNA and RNA were extracted starting from 300 and 200 µl
of samples, respectively, in a final elution volume of 50 µl, using
the Maxwell CSC Instrument (Promega Srl, Italy) and following
the manufacturer’s instructions.

SARS-CoV-2 Detection
SARS-CoV-2 detection was performed on the CFX96TM

Real-Time PCR Detection System (Bio-Rad, Hercules, CA,
United States), using the NeoPlexTM COVID-19 Detection Kit
(GeneMatrix, Seongnam, Kyonggi-do, South Korea) targeting
viral N and RdRp genes and the housekeeping gene of β-actin as
internal control, following the manufacturer’s instructions.

ACE2 and TMPRSS2 Expression
The expression levels of human ACE2 and TMPRSS2 genes were
evaluated by SYBR green PCR analyses. In brief, RNA was reverse
transcribed using the SensiFast cDNA Synthesis Kit (Bioline,
Taunton, MA, United States), and SYBR green PCR analysis
was performed using the Kapa HiFi HotStart Ready Mix (Roche
Diagnostics Deutschland, Mannheim, Germany) (Ma et al.,
2020). The housekeeping Beta-globin human gene was used for
normalization, and the relative expression levels (1Ct) of human
ACE2 and TMPRSS2 genes were compared between groups.

16S-Targeted Sequencing
The V2–V3 portion of the 16S rRNA was amplified, using
the primer set F101-R534, with a different IonXpress barcode
per sample attached to the reverse primer. PCR reactions were
performed using the Kapa Library Amplification Kit (Kapa
Biosystems, Wilmington, MA, United States) and BSA 400 ng/µl,
under the following conditions: 5 min at 95◦C, 30 s at 95◦C, 30
s at 59◦C, 45 s at 72◦C, and a final elongation step at 72◦C for
10 min. DNA after normalization was quantified with a Qubit R©
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2.0 Fluorometer (Invitrogen, Carlsbad, CA, United States).
The amplicon size was checked on a 2% agarose gel. The
subsequent step of PCR purification was carried out using the
Mag-Bind R© Total Pure NGS beads (OMEGA Bio-Tek, Norcoss,
GA, United States), retaining fragments > 100 bp. Template
preparation was performed by the Ion PGM Hi-Q View kit
on the Ion OneTouchTM 2 System (Life Technologies, Grand
Island, NY, United States) and sequenced using the Ion PGM
Hi-Q View sequencing kit (Life Technologies, Grand Island, NY,
United States) with the Ion PGMTM System technology. Negative
controls, including a no-template control, were processed with
the clinical samples (Campisciano et al., 2017).

Microbiota Characterization
Raw FASTQ files were analyzed with DADA2 pipeline v.1.14 for
quality check and filtering (sequencing errors, denoising, chimera
detection) on a Workstation Fujitsu Celsius R940 (Fujitsu, Tokyo,
Japan) (Supplementary Figure 1). Filtering parameters were as
follows: truncLen = 0, minLen = 100, maxN = 0, maxEE = 2,
truncQ = 11 and trimLeft = 15. All the other parameters in the
DADA2 pipeline for single-end IonTorrent were left as default.
Raw reads (2,447,325 in total, on average 59,691 per sample)
were filtered (818,531 in total, on average 19,964 per sample),
and 962 Amplicon Sequence Variants (ASVs) were found. Sample
coverage was computed and resulted to be on average higher
than 99% for all samples, thus meaning a suitable normalization
procedure for subsequent analyses. Bioinformatic and statistical
analyses on recognized ASVs were performed with Python
v.3.8.2. Each ASV sequence underwent a nucleotide Blast using
the National Center for Biotechnology Information (NCBI) Blast
software (ncbi-blast-2.3.0) and the latest NCBI 16S Microbial
Database accessed at the end of July 2020 (ftp://ftp.ncbi.nlm.nih.
gov/blast/db/). After blasting, the 962 ASVs were merged into
122 species (thus excluding sub-species or strain differences), and
a matrix of their relative abundances was built for subsequent
statistical analyses.

Network Analysis
Pearson matrices for network analysis (metric = Bray–Curtis,
method = complete linkage) were generated on normalized and
standardized data with in-house scripts (Python v3.8.2) and
visualized with Gephi v.0.9.2, as previously reported (Derosa
et al., 2020; Riganelli et al., 2020). Bacterial species having
a prevalence ≥ 5% were considered to generate the nodes
within the final network, while a significant Pearson correlation
coefficient and its related p-value (after Benjamini–Hochberg
FDR at 10%) was employed to obtain eight categories defining
edge thickness (Li et al., 2008). A leave-one-out method was
employed by SciKit-learn package v0.4.1 on the subjects in order
to have an averaged p-value for each correlation among two
definite variables. Network analysis was performed on unified
datasets (Derosa et al., 2020) taking care of an optimized
visual representation with Gephi v.0.9.2, as proposed by current
guidelines (Merico et al., 2009; Faust and Raes, 2012; Faust et al.,
2012; Lozupone et al., 2012; Berry and Widder, 2014). Nodes
were colored according to the cohort in which species harbored
the highest mean relative abundance, after normalization and

standardization. The degree value, measuring the in/out number
of edges linked to a node, and the betweenness centrality,
measuring how often a node appears on the shortest paths
between pairs of nodes in a network, were computed with
Gephi v.0.9.2. Intranetwork communities (here called Species
Interacting Groups—“SIGs” (Iebba et al., 2018; Derosa et al.,
2020) were retrieved using the Blondel community detection
algorithm (Blondel et al., 2008) by means of randomized
composition and edge weights, with a resolution equal to 1
(Lambiotte et al., 2014).

Soluble Immune Mediators
Quantification
The profile of a panel of 27 cytokines including chemokines and
growth factors was assessed in duplicate, in oral swabs of positive
and negative subjects for SARS-CoV-2 using magnetic bead-
based multiplex immunoassays (Bio-Plex ProTM human cytokine
27-plex panel; Bio-Rad Laboratories, Milan, Italy) according to
the pre-optimized protocol (Zanotta et al., 2015). Briefly, the
undiluted samples (50 µl) were mixed with biomagnetic beads
in 96-well flat-bottom plates, and after incubation for 30 min at
room temperature followed by washing the plate with Bio-Plex
wash buffer, 25 µl of the antibody–biotin reporter was added.
After the addition of 50 µl of streptavidin–phycoerythrin (PE)
and following incubation for 10 min, the concentrations of the
cytokines were determined using the Bio-Plex-200 system (Bio-
Rad Corp., Hercules, CA, United States) and Bio-Plex Manager
software (v.6; Bio-Rad). The data were expressed as median
fluorescence intensity (MFI) and concentration (pg/ml).

Statistical Analysis
Data matrices (microbiota taxa or cytokines) were firstly
normalized then standardized using QuantileTransformer and
StandardScaler methods from Sci-Kit learn package v0.20.3.
Normalization using the output_distribution = “normal”
option transforms each variable to a strictly Gaussian-shaped
distribution, while the standardization results in each normalized
variable having a mean of zero and variance of one. These
two steps of normalization followed by standardization ensure
the proper comparison of variables with different dynamic
ranges, such as bacterial relative abundances or cytokines levels.
For microbiota analysis, measurements of α diversity (within
sample diversity), such as Richness and Shannon index, were
calculated at species level using the SciKit-learn package v.0.4.1.
Exploratory analysis of β-diversity (between sample diversity)
was calculated using the Bray–Curtis measure of dissimilarity
and represented in Principal Coordinate Analysis (PCoA), along
with methods to compare groups of multivariate sample units
(analysis of similarities—ANOSIM, permutational multivariate
analysis of variance—PERMANOVA) to assess significance in
data points clustering (Anderson and Walsh, 2013). ANOSIM
and PERMANOVA were automatically calculated after 999
permutations, as implemented in SciKit-learn package v0.4.1.
We implemented Partial Least Square Discriminant Analysis
(PLS-DA) and the subsequent Variable Importance Plot (VIP)
as a supervised analysis wherein the VIP values (order of

Frontiers in Microbiology | www.frontiersin.org 3 July 2021 | Volume 12 | Article 671813

ftp://ftp.ncbi.nlm.nih.gov/blast/db/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-671813 July 26, 2021 Time: 18:3 # 4

Iebba et al. Oral Microbiota/Cytokines in COVID-19

FIGURE 1 | Microbiota composition in COVID-19 and control samples. Alpha- and beta-diversity (A,B) of controls (green, n = 15) and COVID-19 patients (red,
n = 26). Variable Importance Plot (VIP, C) shows: (i) discriminant species after PLS-DA in descending order of VIP score (bar length); (ii) the highest relative
abundance depending on the cohort (central bar color) and the lowest one (edge bar color); (iii) fold ratio (FR) of the highest vs. the lowest relative abundance (bar
thickness), and (iv) significant difference after Mann–Whitney U test (non-FDR, *p ≤ 0.05, **p ≤ 0.01). Network analysis (D) shows communities of bacterial species
(namely, species-interacting groups, SIGs) and their positive (red Pearson coefficient) or negative (blue Pearson coefficient) relative abundances correlation. Nodes
are colored according to the cohort harboring the higher relative abundance for a definite species, and node name size is directly proportional to the “keystonness”
(importance of a species within the overall network). Edge thickness is inversely proportional to the Pearson p-value after 10% Benjamini–Hochberg two-stages FDR,
and it is colored according to positive (red) or negative (blue) Pearson coefficient. For each SIG are reported percentages of COVID-19- and controls-related species.
Venn diagram (E) shows species distribution among the two cohorts considering all of the 122 species (not the core microbiota) retrieved by DADA2 pipeline.
Volcano plot (F) highlights discriminant oral bacterial species in terms of their fold change (X axis) and cologarithm of Mann–Whitney U test p-value (non-FDR) (Y
axis): species with zero relative abundance were not reported. Pairwise analysis (G) of selected 11 species (four for COVID-19—red and seven for controls—green)
depicts significant differences in terms of relative abundance and prevalence. In each sub-graph are reported the p-value (from Mann–Whitney U test) and the fold
ratio (FR) among COVID-19 and controls.

magnitude) are used to identify the most discriminant bacterial
species among COVID-19 and control samples. Bar thickness
reports the fold ratio (FR) value of the mean relative abundances
for each species among the two cohorts, while an absent border
indicates mean relative abundance of zero in the compared
cohort. In order to compare the microbiota species with
cytokines levels, a multivariate statistical Pearson correlation
analysis (and related p-values) was performed with custom

scripts (Python v3.8.2), and a Hierarchical Clustering Analysis
(HCA) with “Bray–Curtis” metrics and “complete linkage”
method was used to visualize putative cross-correlation clusters.
Mann–Whitney U and Kruskal–Wallis tests were employed
to assess significance for pairwise or multiple comparisons,
respectively, considering a p-value < 0.05 as significant.
Statistical analyses gathering more than two groups were
performed using ANOVA followed by pairwise comparisons
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with Bonferroni adjustments. Differential enrichment analyses
in murine studies were corrected for multiple hypothesis testing
using a two-stage Benjamini–Hochberg FDR at 10%.

Data Availability
Raw fastq files were submitted to NCBI Sequence Read
Archive (SRA) portal under the Bioproject PRJNA692359,
submission SUB8898095.

RESULTS

Data relative to demographics and clinical data of enrolled
patients at the time of samples collection are resumed in Table 1.
Cardiac dysfunctions (14/26) and neurological involvement
(11/26) including ageusia or hyposmia (9/26) and paralysis
and epilepsy (2/26) represent the most frequently present
comorbidities. Regarding drug therapies, all patients were
treated, after sampling, with hydroxychloroquine, and 57.7% of
them (15/26) received combinations with antibiotics.

COVID-19 Patients Harbor a Distinctive
Oral Microbiota
Following 16S-targeted sequencing, we observed a significant
diminution (-40%) of alpha-diversity (species richness) in
COVID-19 patients (p = 2.92∗10−2) (Figure 1A), while Shannon
biodiversity was unaltered. The unsupervised algorithm of PCoA
visually represented a significant separation of COVID-19 oral
samples from controls (p < 1∗10−3) (Figure 1B), thus meaning a
different oral microbiota composition assessed with two different
measures of beta-diversity (ANOSIM and PERMANOVA). In
order to find a pattern of bacterial species able to describe the
changes in microbiota composition of COVID-19 samples, we
used the supervised algorithm of PLS-DA, which generated a
VIP showing the most important species able to separate the two
cohorts (Figure 1C). Six bacterial species, having a VIP score
higher than the chosen cut-off of 1.25, were discriminant for
COVID-19 (Haemophilus parainfluenzae, Veillonella infantium,
Soonwooa purpurea, Prevotella salivae, Prevotella jejuni, and

TABLE 1 | Patients’ demographics.

Patients Men (n = 21) Women (n = 5) Total (n = 26)

Mean age 66 ± 15.8 72.6 ± 12.9 67.3 ± 15.3

Symptoms

Hyposmia 8/21 (38%) 1/5 (20%) 9/26 (34.6%)

Loss of taste 8/21 (38%) 1/5 (20%) 9/26 (34.6%)

Neurological alterations 1/21 (4.7%) 0 1/26 (3.84%)

Pneumonia 21/21 (100%) 5/5 (100%) 26/26 (100%)

Comorbidity

Diabetes 5/21 (23.8%) 0 5/26 (19.2%)

Hypertension 12/21 (57.1%) 2/5 (40%) 14/26 (53.8%)

Cancer 3/21 (14.2%) 2/5 (40%) 5/26 (19.2%)

Cardiopathy 10/21 (47.6%) 1/5 (20%) 11/26 (42.3%)

Obesity 13/21 (61.9%) 1/5 (20%) 14/26 (53.8%)

Capnocytophaga gingivalis), while several species (n = 23)
were significantly distinctive for controls (the most important
being Neisseria perflava, Lampropedia puyangensis, Rothia
mucilaginosa, Kallipyga gabonensis, Candidatus Flaviluna, and
Granulicatella elegans). Interestingly, through network analysis,
we were able to retrieve four communities, also known as SIGs
(Figure 1D), which represent a topological clusterization of
bacterial species linked to “functional modules,” for example, a
disease status. In order to see if SIGs would be related to COVID-
19, nodes were colored according to the cohort in which species
had the highest mean relative abundance (after normalization
and standardization) (Figure 1D). Two SIGs (SIG1 and SIG4)
harbored the majority of COVID-19-related species (18/22, 82%),
while SIG2 and SIG3 contained mostly controls species (19/20,
95%), and this repartition of species was significant (Fisher
test with Freeman–Halton extension, p = 2.13∗10−6). SIG1
harbored three out of six COVID-19-related species extrapolated
from VIP plot (namely, V. infantium, P. salivae, P. jejuni),
while S. purpurea was included in SIG4, along with other two
species known for their noxious effects (Atopobium parvulum
and Fusobacterium nucleatum). The first species depicted by VIP
plot as discriminant for COVID-19, namely, H. parainfluenzae,
was indeed colored as control within the network because
of the normalization/standardization procedure, thus meaning
that this species would not be reliable as a descriptor. The
good community SIG3, harboring three discriminant species for
controls (N. perflava, R. mucilaginosa, and G. elegans), and 8 of
the overall 23 control-related species, is the farthest from the
bad SIG1, probably collecting different genetic and metabolic
pathway features with a potential to counteract COVID-19-
related species. Among the 122 species retrieved from the
DADA2 pipeline (Supplementary Table 1), 102 were shared
among the two cohorts, while 12 and 8 were present only in
controls and COVID-19 samples, respectively (Figure 1E). Venn
diagram relies on the presence of species, not their relative
abundance or prevalence; thus, in order to select bacterial
species having a plausible and reliable role as biomarkers for
COVID-19 and controls, we employed a combination of volcano
plot (Figure 1F), species pairwise comparison (Supplementary
Figures 2, 3), VIP plot and network analysis, resulting in 11
selected species. Bacterial species biomarkers for COVID-19
are P. salivae, V. infantium, P. jejuni and S. purpurea (this
latter being present in COVID-19 patients only, Figure 1E).
Biomarkers species for healthy oral microbiota are N. perflava,
K. gabonensis, G. elegans, Porphyromonas pasteri, Gemella
taiwanensis, R. mucilaginosa, and Streptococcus oralis.

Pro-inflammatory Cytokines Are
Distinctive for COVID-19 in Both Oral and
Serum Samples
After defining oral bacterial species as biomarkers of COVID-19,
we investigated their possible correlation with pro-inflammatory
cytokines eventually involved in a local “cytokine storm,” as
found within patients’ bloodstream recently described in the
literature. Using a panel of 27 cytokines including chemokines
and growth factors, we found that COVID-19 patients were
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significantly distinguishable from controls using non-supervised
methods, such as PCoA (p = 9.9∗10−4, Figure 2A) and HCA
(p = 0.0046, Figure 2B). Aiming at finding discriminant oral
cytokines for COVID-19 status, we employed volcano plot
(Figure 2C) and VIP plot (Figure 2D), finding out seven
COVID-19-related discriminant cytokines (IL-6, IL-5, GCSF,
IL-2, TNF-α, GMCSF, and INF-γ), while only one (IL-12p70)
for controls. IL-6 and IL-12p70 were the most discriminant
cytokines for COVID-19 and controls, respectively, as confirmed
by their pairwise analysis (Figure 2E and Supplementary
Figure 4). Results from serum cytokines profiling from patients
with severe symptomatology and complication highlighted a
superimposable cytokine profile to the oral one of patients at
the onset of infection, resulting in a significant Pearson positive
correlation (Figure 2F). In particular, high levels of oral cytokines
involved in early antiviral response mirrored cytokine levels
in systemic circulation. As reported in the literature for the
lung, the expression of human ACE2 and TMPRSS2 in mucosal
oral samples was downregulated in infected patients (greater

than 100-fold) compared with no infected subjects, and no
significant association was found with microbiome composition
or cytokines profile (data not shown).

Oral Bacterial Species Topologically
Counteracts COVID-19-Related
Cytokines
Once we found that specific oral cytokines were distinctive
for COVID-19, and that the oral cytokine profile was similar
to the systemic circulation one, we made a cross-correlation
and a network analysis aimed at finding functional clustering
and relations among bacterial species and cytokines. Within
the network, two distinct communities were formed, separated
by a “structural gap” (bunch of negative Pearson correlations)
(Figure 3A): the upper community (“GREEN”) harboring 86%
of species or cytokines from controls and the lower one
(“RED”) hosting 85% of species or cytokines having higher
abundance in COVID-19 patients (χ2 = 20.5, p < 0.00001).

FIGURE 2 | Cytokine pattern in COVID-19 and controls. Cohort separation of controls (green, n = 17) and COVID-19 patients (red, n = 7) based on cytokine profiles,
shown by Principal Coordinate Analysis (PCoA, A) and Hierarchical Clustering Analysis (HCA, B), following the Bray–Curtis distance algorithm. Volcano plot (C)
highlights discriminant oral cytokines in terms of their fold change (X axis) and cologarithm of Mann–Whitney U test p-value (non-FDR) (Y axis). Variable Importance
Plot (VIP, D) shows: (i) discriminant cytokines after PLS-DA in descending order of VIP score (bar length); (ii) the highest cytokine quantity (pg/ml) depending on the
cohort (central bar color) and the lowest one (edge bar color); (iii) fold ratio (FR) of the highest vs. the lowest cytokine quantity (pg/ml) (bar thickness) and iv)
significant difference after Mann–Whitney U test (non-FDR, **p ≤ 0.01; ***p ≤ 0.001). Pairwise analysis (E) of selected two cytokines depicts significant differences in
terms of quantity (pg/ml), reporting p-value (from Mann–Whitney U test) and fold ratio (FR) among COVID-19 and controls. Pearson linear correlation (F) on
non-normalized and non-standardized oral (X axis) and serum (Y axis) cytokines levels (pg/ml), showing significant positive correlation among the two cytokine
patterns. Outlier cytokines having extreme values (IL-1Ra, IL-15, and PDGF-bb) were excluded from linear correlation analysis.
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FIGURE 3 | Integration of oral species and cytokines datasets. Network analysis (A) shows communities (namely, GREEN for controls and RED for COVID-19) of
bacterial species and cytokines and their positive (red Pearson coefficient) or negative (blue Pearson coefficient) abundances (relative percentage or pg/ml,
respectively, for species and cytokines) correlation. Nodes are colored according to the cohort harboring the higher abundance for a definite species or cytokine, and
node name size is directly proportional to the “keystonness” (importance of a species or cytokine within the overall network). Edge thickness is inversely proportional
to the Pearson p-value after 10% Benjamini–Hochberg two-stages FDR, and it is colored according to positive (red) or negative (blue) Pearson coefficient. For each
community are reported percentages of COVID-19- and controls-related nodes. Dashed line represents a “structural gap” (a bunch of negative Pearson correlation
edges) between GREEN and RED communities. Correlogram (B) of bacterial species and cytokines shows positive (red) or negative (blue) Pearson correlation on
normalized and standardized abundances. Significant correlation is marked with an asterisk inside each square: only species or cytokines having at least one
significant correlation were reported. Dendrograms on the x and y axes were generated following Bray–Curtis similarity, evidencing three different clusters for
bacterial species (shown here within white boxes). Cytokines chosen to compute the C4 parameter (IL-12p70, IL-6) are highlighted with a colored box in the top
dendrogram. The parameter C4 computed for each species is depicted as bar plot length at the right of the correlogram, highlighting the bad species (in red) or the
good ones (in green). Scatterplots (C) among the four selected species and the two cytokines used to compute the C4 parameter: their abundances are negatively
related to one another (normalized and standardized data), as reported by Pearson coefficient and p-value (95% confidence interval, gray area). Kernel Density
Estimation (KDE) plots (D) report on X axis the normalized and standardized abundance of the selected species and cytokines and on Y axis the subjects’
distribution, divided by COVID-19 (red) and controls (green).
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Interestingly, keystone species in the GREEN community were
R. mucilaginosa and S. oralis, already evidenced within the good
community SIG3 (Figure 1D), while two cytokines (GMCSF
and IL-4) were keystone within the RED community. Moreover,
within RED cluster, we observed a sub-cluster of COVID-19-
related species (V. infantium, P. jejuni, Streptococcus cristatus)
already seen within the bad community SIG1 (Figure 1D) that
were at the farthest distance from GREEN, thus highlighting
their functional negative effect. In this proposition, given that
unifying oral cytokine and species datasets crunched the overall

network structure passing from four to two communities, and
that a marked “structural gap” was evidenced among GREEN
and RED communities (Figure 3A), the next step was to
study all the possible correlations among the single species
and the single cytokines, with the intention to highlight oral
bacterial species with a potential to counteract COVID-19-related
cytokines. An HCA correlogram based on Pearson correlation
coefficients was performed, resulting in three different clusters
of species based on their positive or negative correlation with
cytokines (Figure 3B).

FIGURE 4 | Consortia of bacteria and cytokines predict COVID-19 status. Receiver Operating Characteristic (ROC) with fivefold cross-validation and C-Support
Vector Machine classifier was employed to assess the best oral bacterial species (among 11 selected, (A) or species plus cytokines (among 19 selected, (B) able to
predict COVID-19 status. Each panel reports the best five Area Under Curve (AUC) values in descending order (see the inset legend also showing specificity, Sp, and
sensitivity, Se, for each ROC curve), plus a sixth curve encompassing the preceding five grouped. Combinations were computed for selected species (n = 11, 2,047
combinations, (C) and species plus cytokines (n = 19, 524,287 combinations, (D), and the best “consortia” predicting COVID-19 are shown along with their AUC,
Sp and Se values. BacCOV (E) and CytoCOV (F) parameters were computed and divided into their GREEN (species and cytokines higher in controls) and RED
(species and cytokines higher in COVID-19) components and employed to generate scatterplot 2D graphs. Abundance thresholds (computed as in Supplementary
Table 5) are shown as dotted gray lines, and their values are reported in bold. In each quadrant of panels E and F are reported the percentages of controls (green) or
COVID-19 subjects (red).
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Cluster1 harbored bad species (such as V. infantium,
S. cristatus, Prevotella denticola, and A. parvulum) already
seen within COVID-19-related communities as SIG1, SIG4
(Figure 1D) and RED (Figure 3A). Cluster2 and Cluster3
contained mostly beneficial species that, conversely, were present
within SIG2, SIG3 (Figure 1D) and GREEN (Figure 3A). With
this notion in mind, and starting from Pearson coefficients (r) of
the two cytokines distinctive for COVID-19 (IL-6) and controls
(IL-12p70) (Figure 2D), we computed a parameter called C4
(COVID-19 Cytokines Counteracting Coefficient) valuable for
each oral bacterial species (Figure 3B):

C4 = rIL−12p70 - rIL−6.
Averaging all C4 values within each cluster of the HCA

correlogram resulted in C4cluster1 = −0.017, C4cluster2 = 0.472
and C4cluster3 = 0.301, with a significant difference among
Cluster1 and Cluster2 (t = −2.72764, p = 0.0084, Figure 3B).
Noteworthy, the species having the highest C4 values were
S. oralis, P. pasteri and R. mucilaginosa, species previously found
in SIG3 and GREEN communities (Supplementary Table 2).
The detrimental species V. infantium, already found in the
RED sub-cluster (Figure 3A) and within SIG1 (Figure 1D),
had the highest negative C4 value, thus representing a plausible
helper species for COVID-19 onset. In order to confirm the
relation among these four species and the involved cytokines,
we performed Pearson linear correlation scatterplots (Figure 3C)
and Kernel Density Estimation (KDE) area plots (Figure 3D).
Linear scatterplots confirmed the expected negative correlation
among beneficial species and the pro-inflammatory IL-6, thus
meaning that higher amounts of these bacteria could lower
the pro-inflammatory oral environment. KDE plots measured
patients’ distribution along the abundance of the four selected
species or the two cytokines, evidencing how R. mucilaginosa
and P. pasteri, having a clear superimposition of two peaks
centered on the same value for COVID-19 (red) and controls
(green), would act differently from S. oralis, which presents
two green peaks mutually excludable from the single red one
(Figure 3D). The information provided by KDE plots would
thus be compulsory for a plausible fine-tuning regulation of
species relative abundances in the oral cavity against COVID-19
onset. Taking into consideration the results from Figures 1, 3,
we selected three species as potential counteractors of COVID-
19, namely, S. oralis, R. mucilaginosa and P. pasteri. These
species topologically grouped within SIG3, together with other
possible candidates considerable as “helpers” to their positive
function: Granulicatella adiacens, G. elegans, G. taiwanensis,
and N. perflava. The collective information gathered from
network analysis, HCA correlograms and KDE plots integrating
species and cytokines datasets would thus be amenable for a
specific probiotic formulation committed against COVID-19
onset and/or COVID-19-related cytokines.

Consortia of Bacteria and Cytokines
Predict COVID-19 Status and
Ageusia/Hyposmia
After selecting 11 bacterial species (Figure 1) and 8 cytokines
(Figure 2) as biomarkers for COVID-19 and controls, along

with their topological relationships (Figure 3), we focused our
attention to their predictive power. Employing the Receiver
Operating Characteristic (ROC) metric to evaluate classifier
output quality using a fivefold cross-validation, we evidenced
how single cytokines gave a higher power when unified to
single species in predicting COVID-19 status (Figures 4A,B),
showing a significant higher averaged Area Under Curve (AUC)
(AVGAUCavg(Cytokines_Species) = 0.891; AVGAUCavg(Species) = 0.637;
Mann–Whitney U test, two-tailed p = 0.012). Moreover, the
first five ROC curves in Figure 2B, representing the ROCs
having the best AUC values, were devoted to only cytokines,
thus confirming their importance in defining the disease status
better than species. Aiming at finding the best consortium of
bacterial species (n = 11) or species and cytokines (n = 19)
able to predict the COVID-19 status, a combinatorial calculation
was performed (Supplementary Table 3). A total of 2,047 and
524,287 combinations were retrieved for species (Figure 4C) and
species plus cytokines (Figure 4D), respectively, and also in this
scenario, the best averaged AUC value was significantly higher
(Mann–Whitney U test, two-tailed p = 0.012) for “consortia”
of species plus cytokines (AVGAUCavg(Cytokines_Species) = 0.995),
other than considering proper consortia formed by species alone
(AVGAUCavg(Cytokines_Species) = 0.932). Interestingly, the majority
of consortia showing ROC curves with the highest values of
AUC, specificity and sensitivity (namely, 0.995, 0.990, and 1.000,
respectively, Figure 4D) were those encompassing a balanced
ratio of species and cytokines that were beneficial (P. salivae,
S. oralis, R. mucilaginosa, G. taiwanensis, K. gabonensis,
G. elegans, IL-12p70) or detrimental (P. jejuni, S. purpurea,
V. infantium, TNF-α, INF-γ, IL-2, IL-6, IL-5, GCSF, and
GMCSF). After assessing that definite combinations of our
selected bacterial species, alone or added to oral cytokines, were
able to discriminate COVID-19 status, we aimed at parametrizing
each single subject for a general COVID-19 susceptibility. To
this aim, we created two parameters, named BacCOV and
CytoCOV, based on the abundances of selected bacterial species
or cytokines (shown in Figures 1G, 2D). More precisely, in
order to have a bidimensional representation for both cohorts,
usable to visually predict the propensity of a putative unknown
subject to COVID-19, we computed for each subject: (i) the
BacCOV_GREEN and CytoCOV_GREEN values averaging the
abundances of beneficial species (n = 7) or species plus cytokines
(n = 7+1) and (ii) the BacCOV_RED and CytoCOV_RED values
averaging the abundances of detrimental species (n = 4) or
species plus cytokines (n = 4+7) (Supplementary Table 4).

TABLE 2 | Boundaries for CytoCOV parameter, as evidenced in Figure 4F, in
order to assess subjects’ COVID-19 predicted susceptibility.

CytoCOV_RED
≥ 28.5

CytoCOV_GREEN
< 2.5

CytoCOV_RED
< 28.5

CytoCOV_GREEN
≥ 2.5

CytoCOV_RED
< 28.5

CytoCOV_GREEN
< 2.5

Controls 0% 62% 38%

COVID-19 71% 0% 29%

Percentage values represent subjects’ fraction.
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FIGURE 5 | Consortia of bacteria predict COVID-19 ageusia/hyposmia. Mixed graphs for COVID-19 patients having ageusia/hyposmia (A) are made of VIP plot,
volcano plot and boxplot of relative abundances for selected species. Description for these plots as in Figures 1, 2. Significant difference after Mann–Whitney U test
(non-FDR, *p <= 0.05, **p <= 0.01). Receiver Operating Characteristic (ROC) with fivefold cross-validation and C-Support Vector Machine classifier (B) was built for
each one of the selected species plus their combined effect on predicting the presence of ageusia/hyposmia (“yes,” blue) in respect to their absence (“no,” orange).
Panel B reports Area Under Curve (AUC), specificity (Sp), and sensitivity (Se) values for each ROC curve. Confusion matrix (C) was employed to evaluate the quality
of the output of the C-Support Vector Machine classifier used to generate ROC curves. The diagonal elements represent the percentage of patients (referred to the
blue shadowed sidebar) for which the predicted label (X axis) is equal to the true label (Y axis), while off-diagonal elements are those that are mislabeled by the
classifier. Scatterplot (D) among the two selected species shows how their relative abundances are positively related to one another (normalized and standardized
data), as reported by Pearson coefficient and p-value (95% confidence interval, gray area). Raw relative abundances of selected species were used to generate a
scatterplot (E) to ease a clinical interpretation of patients’ distribution into the 2D space. Abundance thresholds are shown as truncated dotted gray lines, and their
values are reported in bold: percentages of patients separated by these boundaries are reported in bold.
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These four values were used to generate L-shaped graphs,
in which we set X-axis and Y-axis thresholds (computed as
in Supplementary Table 5) in order to ease a clinical usage
for subjects’ COVID-19 susceptibility (Figures 4E,F). Even if
BacCOV significantly divided the two cohorts (p = 2.1∗10−3),
a one-order higher significant separation was obtained with
CytoCOV (p = 4∗10−4), correctly classifying 71% of COVID-
19 patients (Figure 4F). Thus, the CytoCOV parameter
would be easily employed in clinics to assess COVID-19
susceptibility for an unknown subject, through the following
passages: (i) assaying the abundances of 11 bacterial species
and 8 cytokines; (ii) computing the CytoCOV parameter
(Supplementary Table 4); and (iii) using the boundaries
provided in Table 2.

Thirty-five percent of our COVID-19 patients (9/26)
presented, as comorbidity, ageusia and/or hyposmia. Applying
the same analysis used previously, even if these patients did
not possess a distinctive oral microbiota composition (data not
shown), significant higher levels of detrimental species such as
P. jejuni and S. cristatus were found (Figure 5A). Interestingly,
these species were found within the RED community in the
combined species/cytokines network (Figure 3A). Averaged
AUC values of ROC curves regarding these two selected
species were 0.864 and 0.775, respectively (Figure 5B),
while their combination ensured an accurate prediction of
67% of patients with ageusia/hyposmia (confusion matrix,
Figure 5C). Interestingly, these two species were positively
and significantly related (r = 0.35, p = 0.027, Figure 5D), so
we employed a bidimensional representation of their relative
abundances in order to assess patients’ ageusia/hyposmia
susceptibility (Figure 5E). An unknown COVID-19 patient
would thus be susceptible of ageusia/hyposmia if harboring
P. jejuni and S. cristatus at relative abundances higher than
or equal to 17.1% or 14.4%, respectively (Fisher’s exact test
p = 1.9∗10−3).

DISCUSSION

COVID-19 proved to be an important threat to our lives,
harnessing more than 60 million cases worldwide and around 1.5
million global deaths, as of November 2020 (Dong et al., 2020).
The major issue when coping with the COVID-19 etiological
agent, SARS-CoV-2 betacoronavirus, resides in its high spreading
ability, which is mediated by several interpersonal factors, such
as oral droplets (Bao et al., 2020; Netz and Eaton, 2020). In this
proposition, the oral cavity should be considered a preferential
route for SARS-CoV-2 entry or transmission (Jiao et al., 2020;
Netz and Eaton, 2020), especially in nosocomial environments at
risk (Kumbargere Nagraj et al., 2020), with potential involvement
for extrapulmonary sites (such as the brain (Gupta et al., 2020;
Kanberg et al., 2020) and gastrointestinal tract) (Jiao et al.,
2020; Trottein and Sokol, 2020). Here, we investigated the
oral microbiota composition and cytokines in severe COVID-
19 subjects and matched controls. As of January 2020, only
a few experimental studies focused on the COVID-19-related
intestinal bacterial microbiota (Gu et al., 2020; Zuo et al., 2020a,b)

and on fungal one (Zuo et al., 2020c), leaving unanswered
questions on the oral district. The new approach of social network
analysis allowed us to properly merge species and cytokines
datasets, providing definite bacterial consortia as biomarkers
for COVID-19 status or ageusia/hyposmia and providing also
new parameters for clinical purposes against COVID-19. Our
results especially suggest how a minimal consortium of beneficial
species (P. salivae, S. oralis, R. mucilaginosa, G. taiwanensis,
K. gabonensis, G. elegans) could be used orally as local probiotics
to counteract COVID-19 symptoms and cytokine storm, which
is typical in severe COVID-19 patients (Guo et al., 2020;
Jose and Manuel, 2020). In a recent study, genera Rothia,
Streptococcus and Veillonella were positively related to COVID-
19 in feces (Gu et al., 2020), while here, we found how some
oral species belonging to these genera exert a counteracting effect
on COVID-19 cytokine storm (Jose and Manuel, 2020). This
discrepancy is noteworthy because future studies dealing with
different body districts should consider shotgun sequencing or
16S-targeted sequencing to reach the species level, assuring a
proper functional description (e.g., combination of microbiota
and cytokine data) for clinical use (Manna et al., 2020; Peddu
et al., 2020). Being attractive for the ease of sampling, as
demonstrated in international projects such as HMP, the oral
swab sampling (touching tongue, palatum and cheeks) would be
a valid alternative to the currently used specimens (e.g., feces and
blood) to assess the microbiota compositional differences in a
disease, giving reliable insights on a subject susceptibility. Our
study has intrinsic limitations: (i) the low number of subjects
involved; (ii) the missing point of a shotgun implementation
to ascertain gene and/or pathways; and (iii) we could not be
sure if the observed dysbiosis was already in action in COVID-
19 patients when oral swab samples were taken. Based on
the results of this pilot study, we are planning a forthcoming
research encompassing more patients to be recruited, trying
to correlate symptoms onset and SARS-CoV-2 viral loads in
a time-course fashion. In the forthcoming workflow, there
is a thorough description of the local microbiota and its
functional inference through metagenomics [as performed in
our previous study on oral Neisseriaceae (Donati et al., 2016)],
along with direct isolation and whole-genome sequencing (WGS)
of resident species important for the local homeostatic ecology
(such as Neisseria spp.) or of species already established in pre-
existing pathological conditions (such as Prevotella spp. and
Veillonella spp.) (Leishman et al., 2010; Mammen et al., 2020).
Even with these limitations, our study would give a hint to
the importance of oral microbiota modulation for COVID-
19 symptoms treatment or detection (Al-Khatib, 2020; Bao
et al., 2020; Chen et al., 2020b; Patel and Sampson, 2020;
Sampson et al., 2020).
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