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Although family history is a risk factor for pancreatic adenocarcinoma, much of the
genetic etiology of this disease remains unknown. While genome-wide association studies
have identified some common single nucleotide polymorphisms (SNPs) associated with
pancreatic cancer risk, these SNPs do not explain all the heritability of this disease. We
hypothesized that copy number variation (CNVs) in the genome may play a role in genetic
predisposition to pancreatic adenocarcinoma. Here, we report a genome-wide analysis
of CNVs in a small hospital-based, European ancestry cohort of pancreatic cancer cases
and controls. Germline CNV discovery was performed using the Illumina Human CNV370
platform in 223 pancreatic cancer cases (both sporadic and familial) and 169 controls.
Following stringent quality control, we asked if global CNV burden was a risk factor for
pancreatic cancer. Finally, we performed in silico CNV genotyping and association testing
to discover novel CNV risk loci. When we examined the global CNV burden, we found
no strong evidence that CNV burden plays a role in pancreatic cancer risk either overall
or specifically in individuals with a family history of the disease. Similarly, we saw no
significant evidence that any particular CNV is associated with pancreatic cancer risk.
Taken together, these data suggest that CNVs do not contribute substantially to the
genetic etiology of pancreatic cancer, though the results are tempered by small sample
size and large experimental variability inherent in array-based CNV studies.
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INTRODUCTION
Pancreatic adenocarcinoma is the fourth-leading cause of cancer
mortality in the United States for both men and women (Siegel
et al., 2012). Despite recent advances in screening methods and
surgical treatment, it is a rapidly fatal disease with a poor 5-year
survival rate of 5–6%. Thus, a challenge exists to develop new and
more effective therapeutic interventions.

Inherited genetic predisposition to pancreatic cancer is
hypothesized to play a role in both familial and non-familial
forms of the disease. In large-scale genome-wide association
studies, common single-nucleotide polymorphisms (SNPs) on
chromosomes 9q34, 13q22, 1q32, and 5p15 were associated
with pancreatic cancer risk (Amundadottir et al., 2009; Petersen
et al., 2010); however, the true causal variants underlying these
associations and their functional mechanisms remain unclear.
Additional studies have focused their analyses on SNPs within
candidate genes (Jiao et al., 2006, 2008; Li et al., 2007; McWilliams
et al., 2008). Under this approach, SNPs within DNA dam-
age response and repair genes—particularly ATM, LIG3, XRCC1,
and XRCC2 genes—were associated with increased risk, suggest-
ing the involvement of inherited genetic variants within these
pathways in pancreatic tumorigenesis.

Importantly, such efforts to identify inherited genetic variants
that contribute to pancreatic cancer susceptibility may lead to
novel biological insights about the disease and useful biomarkers
for risk prediction. However, while these efforts have primarily
focused on the analysis of SNPs, the additional contribution of
germline copy number variations (CNVs) remains unclear.

CNVs are generally defined as inherited or de novo deletions or
duplications of the genome ranging in size from 100 bp to 3 Mb
(Zhang et al., 2009). Such variations may lead to changes in gene
dosage and/or expression (Diskin et al., 2009). As of August 2012,
approximately 179,450 human CNVs have been reported in the
Database of Genomic Variants (DGV) (Iafrate et al., 2004; Zhang
et al., 2006). Although there are substantially fewer reported
CNVs than SNPs, it is estimated that more than 30% of the
human genome is covered by at least one CNV (compared to
the <1% covered by SNPs). Thus, CNVs are hypothesized to be
of functional significance.

The specific role of CNVs in familial forms of pancreatic
cancer has been investigated previously. Lucito et al. used rep-
resentational oligonucleotide microarray analysis (ROMA) to
identify a total of 56 germline CNVs that were present in patients
with a family history of pancreatic cancer and absent from a
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cohort of healthy controls (Lucito et al., 2007). Al-Sukhni et al.
followed a similar approach by analyzing the germline DNA of
91 familial pancreatic cancer patients and a 950 healthy controls
using high-resolution Affymetrix 500 K and SNP 6.0 platforms
(Al-Sukhni et al., 2012). There, investigators found a total of
93 germline CNVs that were unique to familial pancreatic can-
cer patients.Taken together, these studies nominate several CNVs
as putative risk loci for familial pancreatic cancer. However,
additional studies are needed to confirm these findings. More
importantly, evidence for the broader role of CNVs outside of the
familial pancreatic cancer setting is still unclear.

Here, we report a genome-wide analysis of CNVs in a hospital-
based, European ancestry cohort of pancreatic cancer cases and
controls. Germline CNV discovery was performed using the
Illumina Human CNV370 platform in 223 pancreatic cancer cases
(both sporadic and familial) and 169 controls. Following strin-
gent quality control, we explored whether global CNV burden was
a risk factor for pancreatic cancer. Finally, we performed in silico
CNV genotyping and association testing to discover novel CNV
risk loci.

MATERIALS AND METHODS
SAMPLE COLLECTION AND SNP ARRAY GENOTYPING
Participants were part of an ongoing hospital-based case-
control project conducted in conjunction with the Familial
Pancreatic Tumor Registry (FPTR) at Memorial Sloan-Kettering
Cancer Center (MSKCC; New York, NY) as described previously
(Mukherjee et al., 2011; Willis et al., 2012). Briefly, patients were
eligible if they were 21 years or older, spoke English, and had
pathologically or cytologically confirmed adenocarcinoma of the
pancreas. Patients were recruited between June 2003 and July 2009
from the surgical and medical oncology clinics at MSKCC at the
time of their initial diagnosis or during follow-up. Controls were
spouses of patients or visitors accompanying patients with other
diseases, had the same age and language eligibility requirements
as the cases, had no personal history of cancer (except for non-
melanoma skin cancer), and were not blood relatives of the cases.
The participation rate among approached and eligible individu-
als was 76% among cases and 56% among controls. The study
was approved by the MSKCC Institutional Review Board, and all
enrolled participants signed informed consent.

Consented participants provided a blood or buccal (mouth-
wash or saliva) sample to the MSKCC FPTR research study assis-
tant and completed risk factor and family history questionnaires
administered by the research study assistant in person or via tele-
phone. Biospecimens were subsequently delivered for genomic
DNA extraction and banking to the Molecular Epidemiology
Laboratory. DNA was isolated from mouthwash specimens using
the Puregene DNA Purification Kit (Qiagen, Inc.), from saliva
samples with the Oragene saliva kits (DNA Genotek), and from
whole blood using the GentraPuregene Blood Kit (Qiagen Inc.).
DNA samples were hydrated in 1 × TE buffer. The quality and
quantity of the DNA was assessed by spectrophotometry and
agarose gel electrophoresis.

A total of 464 individuals (263 cases and 201 controls)
recruited at MSKCC were available for inclusion in downstream
analyses. DNA samples were genotyped in 28 batches on the

Illumina Human CNV370 bead array (either the Illumina Human
CNV370-Duo or Illumina Human CNV370-Quad format) at the
Genomics Core Laboratory of MSKCC according to the manu-
facturer’s protocol. Normalization and SNP genotype calling was
performed using the Illumina BeadStudio software package. Ten
individuals had their DNA analyzed twice for quality control dur-
ing the course of the genotyping experiments, yielding a total
of 474 samples. Normalized probe intensities were exported for
downstream CNV discovery and genotyping.

SNP genotype calls for 474 individual samples (including 10
duplicate pairs) were exported to PLINK (version 1.07; Purcell
et al., 2007) for processing. Identity-by-descent (IBD) analysis
was performed to confirm that none of the genotyped indi-
viduals were blood relatives. For each known duplicate sample
pair, priority was given to the sample that passed CNV-level
quality-control (described below). We removed SNPs with call
rates <95%, minor allele frequency <5%, or Hardy–Weinberg
equilibrium (HWE) test p-value < 1 × 10−7 in controls, leaving
a total of 315,136 SNPs.

Population structure was examined by principal component
analysis (PCA) of the SNP genotype calls. As reference, we
obtained whole-genome SNP data for Utah residents with north-
ern and western European ancestry (abbreviated CEU) and
individuals living in Toscani in Italia (abbreviated TSI) from
the International HapMap project (phase 3, draft release 2)
(International Hapmap 3 Consortium et al., 2010). The top
four principal components of genetic structure identified by
EIGENSOFT were used as covariates in downstream CNV asso-
ciation testing (Patterson et al., 2006).

CNV DISCOVERY AND QUALITY CONTROL
CNV discovery was performed for each MSKCC sample using
two parallel methods. First, we applied a hidden Markov model
(HMM)-based algorithm implemented in the PennCNV pack-
age (2009 Aug 27 release, Wang et al., 2007). PennCNV makes
use of normalized probe intensity (R) and allelic intensity ratio
(BAF) values measured across different probes on the bead array
to detect regions of copy number variation in the sample. For each
probe, a ratio of the observed R value to the expected R value is
calculated (here, the expected value is pre-defined as the average
intensity observed at the locus in a pool of healthy HapMap indi-
viduals from CEU, YRI, and CHB-JPT populations). Positive or
negative deviations of the log Robserved/Rexpected ratio (LRR) from
zero indicate that the locus may be either duplicated or deleted,
respectively. The algorithm incorporates spatial information as
well, such that the probability of transitioning between different
copy number states is dependent upon the physical map distance
between two adjacent loci.

PennCNV was applied to 474 individual samples (including 10
duplicate pairs) using default parameters and GC-wave correction
(Diskin et al., 2008). From each duplicate pair, one sample was
kept for downstream analysis on the basis of having the lowest
LRR value. Quality-control (QC) was then applied at the sample-
level to PennCNV output by excluding samples on the basis of:
(1) LRR standard deviation >0.28 (mean LRR plus 3 times the
interquartile range); (2) BAF standard deviation >0.13 (approxi-
mately the mean BAF plus three times the interquartile range); or
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(3) a total number of CNV calls >124 (approximately the mean
call rate plus 1.5 times the interquartile range). Additional QC was
applied at the CNV-level by excluding CNV calls <5 kb in length
and spanning <5 probes. After QC, we derived a total of 11,635
CNV calls from 417 unique samples using PennCNV.

Secondly, we applied an Objective Bayes HMM-based algo-
rithm implemented in QuantiSNP (version 2.3 beta, Colella
et al., 2007). QuantiSNP was run using default parameters and
GC-wave correction on 474 individual samples (including 10
duplicate pairs). One sample from each duplicate pair was kept
for downstream analysison the basis of having the lowest LRR
value. QC was then applied at the sample-level by excluding
samples on the basis of: (1) LRR standard deviation >0.21;
(mean plus 3 times the interquartile range); (2) BAF standard
deviation >0.102 (approximately the mean plus three times the
interquartile range); (3) a total number of CNV calls >160
(approximately the mean call rate plus two times the interquartile
range). Additional QC was applied at the CNV-level by exclud-
ing CNV calls with logBF confidence scores <15. After QC, we
derived a total of 5422 CNV calls from 414 unique samples using
QuantiSNP.

Lastly, as an additional QC procedure, we retained only those
CNV calls that were made in the same individual by both
PennCNV and QuantiSNP. Any sample or CNV call that was
present in just one of the result-sets was excluded. The bound-
aries of each merged CNV call were defined using the smallest
starting coordinate and largest end coordinate from either algo-
rithm. This procedure yielded 3520 merged CNV calls from 392
unique individuals.

CNV ANNOTATION
The start and end coordinates of each CNV in our dataset
were based on the March 2006 human genome build
(NCBI36/hg18). For comparison to previously-reported
CNV loci, we obtained the 2012-03-29 release of the Database of
Genomic Variants (DGV).

DEFINITION OF CNV REGIONS (CNVRs)
CNVRs were defined as any contiguous segment of the genome
spanned by a CNV call from any sample. To identify CNVRs,
we applied an iterative clustering procedure to the QC-filtered
CNV calls, whereby CNV calls with a mutual overlap of ≥40%
were considered to be members of the same CNVR cluster. The
boundaries of the CNVR clusters were “relaxed,” such that the
starting and ending coordinates were based by the smallest and
largest coordinates of any CNV that was a member of the cluster,
respectively.

IN SILICO CNVR GENOTYPING
In silico CNVR genotyping was performed using the CNVtools
package (Barnes et al., 2008). For each CNVR of interest, we
systematically evaluated the parameter space of data summa-
rization methods, number of copy-number components, and
signal/variance model specifications:

1. Data summarization. As starting input for CNVtools, we
extracted the normalized signal intensities of probes on the

array that mapped within the boundaries of a given CNVR of
interest. The probe intensities for a given region and sample
were summarized using either one of two methods: princi-
pal component analysis or simply taking the mean. For each
CNVR under investigation, we selected the method which gave
the best separation between different copy-number clusters by
visual inspection.

Table 1 | Association of demographic and experimental factors with

CNV burden.

Variable Beta P-value

DNA SOURCE

Blood 1.0 (ref)

Buccal 0.72 0.29

Saliva 0.69 0.38

Age 0.02 0.30

GENDER

Female 1.0 (ref)

Male 0.38 0.30

EXPERIMENTAL BATCH

Batch1 1.0 (ref)

Batch2 3.07 0.02

Batch3 2.26 0.08

Batch4 −0.14 0.91

Batch5 1.26 0.37

Batch6 1.41 0.33

Batch7 0.36 0.81

Batch8 0.41 0.78

Batch9 1.26 0.32

Batch10 1.17 0.35

Batch11 3.64 0.005

Batch12 1.14 0.38

Batch13 2.86 0.03

Batch14 1.21 0.35

Batch15 0.46 0.75

Batch16 4.41 0.003

Batch17 2.09 0.11

Batch18 1.71 0.18

Batch19 0.66 0.60

Batch20 0.63 0.63

Batch21 0.44 0.74

Batch22 2.36 0.22

Batch23 −1.39 0.47

Batch24 −0.14 0.91

Batch25 0.00 1.00

Batch26 3.58 0.001

Batch27 3.24 0.002

Batch28 3.57 0.02

PLATFORM

Illumina CNV370-duo 1.0 (ref)

Illumina CNV370-quad 2.10 3.66 × 10−7

Differences in CNV burden between different levels of a factor were evaluated

using linear regression.
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2. Copy-number components. For each CNVR under investi-
gation, we used the Bayesian Information Criterion (BIC)
and our subjective visual assessment of clustering quality to
select the optimal number of copy-number classes used for
genotyping.

3. Signal and variance model selection. For each CNVR under
investigation, we explored different combinations of linear
models to describe the signal mean and variance of each
copy-number class (model.mean and model.var parameters,
respectively). We considered models for signal mean that were
“free” (stratified by copy-number class) or proportional to
copy-number. Similarly, we considered models for signal vari-
ance that were either free (stratified by copy-number class),
proportional to copy-number, or constant for each copy-
number. Selection was based on successful convergence of the
model fitting procedure and visual assessment of the clustering
quality.

Individual CNVR loci were excluded from downstream risk asso-
ciation testing on the basis of being too problematic for in silico
CNVR genotyping—e.g., rare or singleton (detected in only one
sample) events, and noisy or insufficient separation between
different copy-number clusters.

STATISTICAL METHODS TO EVALUATE RISK ASSOCIATION
Comparison of CNV burden
In this study, “CNV burden” was estimated on a per-individual
basis by counting the number of CNV calls made in a given
individual. We compared the estimated CNV burden between

Table 2 | Characteristics of the CNV discovery samples.

Cases Controls P-valuea

n = 223 n = 169

n (%) n (%)

GENDER

Male 129 (57.8) 71 (42.0) 0.003

Female 94 (42.2) 98 (58.0)

AGE

≤50 58 (26.0) 33 (19.5) 0.45

51–60 60 (26.9) 54 (32.0)

61–70 78 (35.0) 62 (36.7)

>70 27 (12.1) 20 (11.8)

FAMILY HISTORY

Yes 24 (10.8) 0 (0.0) <0.001

No 197 (88.3) 169 (100.0)

Missing 2 (0.9) 0 (0.0)

DNA SOURCE

Blood 31 (13.9) 0 (0.0) <0.001

Buccal 156 (70.0) 143 (84.6)

Saliva 36 (16.1) 26 (15.4)

SNP array platform <0.001

Illumina human CNV370-duo 144 (64.6) 151 (89.3)

Illumina human CNV370-quad 79 (35.4) 18 (10.7)

aP-value based on Fisher’s exact test.

cases and controls using either univariate or multivariate logis-
tic regression models in R. Notably, as reported by others,
estimates of CNV burden are susceptible to non-specific sources
of bias, including batch effects, DNA source effects, and age
(International Hapmap 3 Consortium et al., 2010). Therefore,
we analyzed the effects of DNA source, SNP array platform
(Illumina Human CNV370-duo vs. CNV370-quad), and exper-
imental batch on CNV burden using univariate linear regression
models (Table 1). Variables that were associated with CNV bur-
den (p < 0.1) were used as covariates in a multivariable logistic
regression model to test for the association of CNV burden with
risk. Our final multivariate model adjusted for age, gender, the
top four principal components of genetic ancestry, experimen-
tal batch, and SNP array platform. The case-control comparison
was made for (1) both deletion and duplication calls together,
(2) deletion calls alone, or (3) duplication calls alone. In either
univariate or multivariate models, we estimated the odds ratio
per-unit-of-CNV burden, and significance was determined using
the 1-degree-of-freedom (df) Wald test.

Single-locus risk association testing
We evaluated individual CNVRs for association with risk using
two approaches. First, we used the approach implemented in
CNVtools and described previously (Barnes et al., 2008). Briefly,

FIGURE 1 | Population structure of the study samples revealed by

principal component analysis. Following SNP array genotyping, we
applied the EIGENSTRAT package to 43,909 pairwise independent
(r2 < 0.1) SNPs with minor allele frequency (MAF) >0.05 and call
rates >95% among the 223 pancreatic cancer cases, 169 controls, and 253
individuals from reference HapMap CEU and TSI populations. A plot of the
top two principal components of genetic variation (PC1 and PC2) is shown
with cases as red dots, controls as black dots, CEU reference samples as
blue triangles, and TSI reference samples as green triangles. As expected
for our New York-based population study, the majority of cases and controls
clustered with either the CEU reference samples (i.e., central European
ancestry) or TSI (southern Italian ancestry). A subset of cases and controls
(representing those with Ashkenazi Jewish ancestry) clustered separately.
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for each CNVR locus, the approach is to jointly fit two models:
(1) a Gaussian mixture model describing the relationship of sig-
nal intensity to copy-number genotype and (2) a generalized logit
linear model describing the log-linear relationship of case-control
status to copy-number phenotype. The models are fit twice,
once under the null hypothesis of no risk association and again
under the alternative hypothesis. A likelihood ratio test is then
performed comparing the likelihood of the two fits with 1 df.

Our second approach was a multivariate logistic regression
model that adjusted for age, gender, the top four principal com-
ponents of genetic ancestry, and DNA source. For each locus of
interest, copy-number genotypes were obtained based on in sil-
ico genotyping (described above); we estimated the per-copy odds
ratio (OR) and significance was determined using the 1-df Wald
test.

RESULTS
CHARACTERISTICS OF THE STUDY PARTICIPANTS
Table 2 describes the characteristics of 223 pancreatic cancer
cases and 169 healthy controls included in our analyses. The
majority of samples were processed on the Illumina Human
CNV370-duo platform using DNA collected from buccal sources
(mouthwash or saliva). We observed a significant association of
case-control status with gender (p-value = 0.003), family history
(p-value < 0.001), DNA source (p-value < 0.001), and array

platform (p < 0.001). Following SNP array genotyping, principal
component analysis revealed that the majority of our cases and
controls clustered into northern and southern European genetic
ancestry groups (Figure 1). We also observed a smaller subset
of individuals that clustered separately into a group identified as
Ashkenazi Jewish.

CNV DISCOVERY
Our approach to CNV discovery is summarized in Figure 2. After
sample-level and CNV-level quality control filtering, we derived
a total of 3520 high-confidence CNV calls from 223 cases and
169 controls. Of the total 3520 CNV calls, 1912 (54.3%) were
deletions and 1608 (45.7%) were duplications. The median CNV
length was 50.3 kb and 135.2 kb for deletions and duplications,
respectively.

Notably, using a minimum overlap threshold of 40%, we found
that 3407 (96%) of the CNVs discovered in our study were over-
lapped by a CNV previously reported in the DGV. Of the remain-
ing 113 putatively novel CNVs, 17 (1.5%) were observed among
study participants with Ashkenazi Jewish ancestry. Furthermore,
377 CNVs (194 deletions, 183 duplications) were found to be
“singletons” in our study (i.e., detected in only one study sample).

To determine whether non-specific technical factors influ-
enced our CNV discovery results, we first compared the distri-
butions of CNV call rates across different genotyping batches

FIGURE 2 | Schematic overview of the CNV discovery pipeline.

Whole-genome SNP array genotyping was applied to the germline DNA of 263
pancreatic cancer patients (cases) and 201 healthy individuals (controls).
Following normalization, probe intensities were analyzed separately by two

CNV detection algorithms, PennCNV and QuantiSNP. Quality-control filtering
was applied to the outputs of these algorithms by removing low-quality samples
and/or low-confidence CNV calls. This resulted in a final set of 3520 putatively
high-quality, high-confidence CNV calls across 223 cases and 169 controls.
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FIGURE 3 | Box-and-whisker plots of the number of CNV calls made

within different experimental batches. Whole-genome SNP array
genotyping was performed in 28 batches. Based on the final derived set of
3520 QC-filtered CNV calls, the interquartile range and median number of

calls in a given genotyping batch are represented by a white box and black
bar, respectively. The whiskers are drawn to 1.5 times the interquartile range;
circles are drawn to represent individuals with a total number of CNV calls
beyond that range.

(Figure 3). Indeed, significant batch-to-batch variation was
observed, suggesting that experimental “batch effects” may have
played a role. Similarly, we observed significant differences in
the distributions of CNV call rates for samples genotyped on
the Illumina Human CNV370-duo vs.-quad platform (Figure 4).
In contrast, no significant differences were observed when com-
paring the CNV call rate across different sample DNA sources
(Figure 5).

Finally, using an iterative clustering procedure (described in
Materials and Methods), we collapsed the 3520 individual CNVs
into 809 unique CNV regions (CNVRs), i.e., continuous segments
of the genome spanned by one or more CNVs (Figure 6).

COMPARISON OF CNV BURDEN BETWEEN CASES AND CONTROLS
Global CNV burden
Under the hypothesis that CNV burden is a risk factor for pan-
creatic cancer, we first sought to compare CNV burden between
cases and controls. Here, considering all 3520 CNVs discovered in
our study regardless of frequency, we defined CNV burden as the
number of CNV calls made in an individual. This measure was
derived on a per-individual basis by counting (1) deletions and
duplications together, (2) deletions only, or (3) duplications only
and then averaged across case and control groups (Table 3).

The average case/control CNV burden ratio was observed to
be 1.07 counting all CNV types together, 0.98 counting deletions
only, and 1.17 counting duplications only. To assess whether these
differences in CNV burden were significant, we employed a logis-
tic regression model and estimated the odds ratio (OR) per unit

FIGURE 4 | Box-and-whisker plots of the number of CNV calls made

across different DNA sources. Germline DNA was extracted from either a
blood, buccal, or saliva biospecimen offered by each individual in our study.
Based on the final set of 3520 QC-filtered CNV calls, the interquartile range
and median number of calls derived from a given DNA source are
represented by a shaded box and black bar, respectively. The whiskers are
drawn to 1.5 times the interquartile range; circles are drawn to represent
individuals with a total number of CNV calls beyond that range. We
observed moderate (but non-statistically significant) variation in the number
of CNVs detected between the DNA sources.
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FIGURE 5 | Box-and-whisker plots of the number of CNV calls made

between different configurations of the genotyping platform.

Whole-genome SNP array genotyping was performed on two different
configuration of the Illumina HumanCNV370 bead array: the duo and quad.
Based on the final set of 3520 QC-filtered CNV calls, the interquartile range
and median number of calls derived from each configuration are
represented by a shaded box and black bar, respectively. The whiskers are
drawn to 1.5 times the interquartile range; circles are drawn to represent
individuals with a total number of CNV calls beyond that range. We
observed statistically significant differences in the number of CNVs
detected between the two configurations.

of CNV burden. Under a univariate model, we observed no signif-
icant association between pancreatic cancer risk and CNV burden
when counting all CNV types together (OR = 1.05, p = 0.12)
or deletions only (OR = 0.99, p = 0.73). A nominally significant
(p-value < 0.05) association was observed when counting dupli-
cations only (OR = 1.10, p = 0.02). However, under a multi-
variate model controlling for age, gender, genetic ancestry, and
the non-specific effects of experimental batch and SNP array
platform, we observed no statistically significant associations.

We further hypothesized that CNV burden would be enriched
in patients with a family history of pancreatic cancer or early-
onset disease. To evaluate this, we compared the CNV burden
between controls and cases (n = 24) who reported a history of
pancreatic cancer in at least one first-degree relative. Similarly,
we compared CNV burden between controls (n = 33) aged 50
or younger and cases (n = 58) diagnosed at or prior to age 50.
Again, although we observed minor differences in case/control
CNV burden, these differences were not statistically significant in
either univariate or multivariate analysis.

Putative rare or de novo CNV burden
To explore whether putative rare or de novo CNV burden is
associated with pancreatic cancer risk, we extended the above
analysis by considering only the subset of 377 CNV calls detected
in a single individual in our study (Table 4). In both univariate
and multivariate analyses, no statistically significant case-control
differences in CNV burden were detected.

FIGURE 6 | Clustering of CNVs from different samples to identify

common CNV regions (CNVRs). In this illustrated example, each green
bar represents a CNV call detected in a single individual (either a case or
control). CNVs with reciprocal overlap of at least 40% were clustered into
the same CNVR.

ANALYSIS OF CNV LOCI PREVIOUSLY DISCOVERED IN FAMILIAL
PANCREATIC CANCER
Next, we compared our CNV discovery results to loci that have
been previously implicated in familial pancreatic cancer by scan-
ning for CNVs that overlapped with 28 duplications and 25 dele-
tions identified by Lucito et al. and 40 duplications and 53 dele-
tions identified by Al-Sukhni et al. (Table 5). Seven overlapping
CNV loci of the same type were identified, including 4 dele-
tions and 3 duplications. At five of these loci, CNV events were
observed in both our cases and controls together, or our controls
alone. However, for the remaining two CNV loci (a duplica-
tion at chr18:6838462-7291170 and deletion at chr9:2235919-
2351848) we observed a single CNV event exclusively in one of
our cases.

ASSOCIATION OF INDIVIDUAL CNVR LOCI WITH PANCREATIC
CANCER RISK
Lastly, we evaluated whether specific CNVR loci were associated
with pancreatic cancer risk. To facilitate robust in silico CNVR
genotyping and to avoid potential biases in signal characteris-
tics between the Illumina CNV370-duo and Illumina CNV370-
quad platforms, we focused this analysis on the subset of 295
samples (144 cases, 151 controls) genotyped using Illumina
Human CNV370-duo. In silico copy-number genotyping was
attempted across 706 CNVR loci that were derived from sam-
ples in this subset (Figure 7, described in Materials and Methods).
Of those loci, only 176 were successfully genotyped with high
quality.

Each CNVR that could be successfully genotyped was then
analyzed for association with pancreatic cancer risk by use of a
likelihood ratio test (Table 6). We observed a total of seven loci
associated with p-values < 0.05. Considering the number of loci
tested, only one association (PA-CNVR46.1, likelihood ratio test
p = 6.41 × 10−5) met the Bonferroni threshold of significance.
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Table 3 | Comparison of global CNV burden in cases and controls based on the final derived set of 3520 QC-filtered CNV calls.

Subjects CNV type Mean CNV burdena Logistic regression

Cases Controls Case/control ratio Univariate Multivariateb

OR P-value OR P-value

All cases (n = 223) vs. All 9.22 8.66 1.07 1.05 0.12 1.01 0.80
all controls (n = 169) Deletions 4.84 4.92 0.98 0.99 0.73 1.01 0.78

Duplications 4.38 3.73 1.17 1.10 0.02 1.00 0.93

Cases with family history (n = 24) vs. All 8.83 8.66 1.02 1.02 0.79 1.02 0.78
all controls (n = 169) Deletions 5.29 4.92 1.07 1.07 0.48 1.07 0.52

Duplications 3.54 3.73 0.95 0.95 0.67 0.96 0.73

Cases diagnosed age ≤50 (n = 58) vs. All 8.21 8.52 0.96 0.96 0.62 0.93 0.41
controls age ≤50 (n = 33) Deletions 4.17 4.97 0.84 0.80 0.07 0.87 0.30

Duplications 4.03 3.55 1.14 1.16 0.22 0.96 0.79

OR, per-unit CNV burden odds ratio.
aMean CNV burden is defined as the average number of CNVs detected in each group of samples, and is derived by counting deletions and duplications together,

deletions only, or duplications only.
bMultvariate model adjusted for age, gender, genetic ancestry, experimental batch, and SNP array platform.

Table 4 | Comparison of putative rare or de novo CNV burden in cases and controls based on a subset of 377 CNV calls observed in a single

individual.

Subjects CNV type Mean CNV burdena Logistic regression

Cases Controls Case/control ratio Univariate Multivariateb

OR P-value OR P-value

All cases (n = 223) vs. All 0.96 0.97 0.98 0.99 0.89 1.00 0.97

all controls (n = 169) Deletions 0.52 0.46 1.13 1.09 0.50 1.12 0.37

Duplications 0.43 0.51 0.85 0.87 0.32 0.85 0.27

Cases with family history (n = 24) vs. All 1.04 0.97 1.07 1.05 0.78 1.03 0.87

all controls (n = 169) Deletions 0.42 0.46 0.90 0.94 0.82 0.95 0.85

Duplications 0.63 0.51 1.23 1.20 0.49 1.14 0.65

Cases diagnosed age ≤50 (n = 58) vs. All 0.79 0.97 0.82 0.78 0.34 0.83 0.55

controls age ≤50 (n = 33) Deletions 0.31 0.39 0.79 0.80 0.52 0.73 0.49

Duplications 0.48 0.58 0.84 0.84 0.53 0.94 0.88

OR, per-unit CNV burden odds ratio.
aMean CNV burden is defined as the average number of putative rare or de novo CNVs detected in each group of samples, and is derived by counting deletions and

duplications together, deletions only, or duplications only.
bMultvariate model adjusted for age, gender, genetic ancestry, experimental batch, and SNP array platform.

However, in a multivariate logistic regression model adjusted
for age, gender, experimental batch and the top four principal
components of genetic ancestry, this region did not remain statis-
tically significantly associated with risk (per-copy OR = 0.86, 95%
CI = 0.58–1.26, p = 0.44).

DISCUSSION
In this study, we sought to investigate the roles of CNV bur-
den and individual CNV loci in pancreatic cancer susceptibility.
Toward this end, we first performed genome-wide CNV discov-
ery within a hospital-based cohort of 223 pancreatic cancer cases

and 169 healthy controls using a SNP array platform. To help
minimize the proportion of false-positive CNVs in our data set,
we took the approach of analyzing whole-genome SNP array data
using two separate CNV discovery algorithms (PennCNV and
QuantiSNP) followed by stringent QC filtering.

A small proportion (n = 113) of the CNV loci detected in
our study were not overlapped by CNVs previously reported
in the DGV. One likely explanation is that these regions are
platform-specific artifacts. Indeed, because we did not exper-
imentally validate the CNV loci discovered in our study, we
cannot exclude the presence of artifacts in our downstream
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Table 5 | Overlap between discovery CNVs (this study) and CNVs previously implicated in familial pancreatic cancer.

CNV locus (hg18) Type Number of samples (this study)

with an overlapping CNV of same type

All cases Cases with family Controls

(n = 223) history (n = 24) (n = 169)

chr12:130382166-130686668 Deletion Al-Sukhni et al., 2012 3 1 2

chr3:60219748-60263116 Deletion Lucito et al., 2007 3 0 6

chr18:6838462-7291170 Duplication Al-Sukhni et al., 2012 1 0 0

chr9:2235919-2351848 Deletion Al-Sukhni et al., 2012 1 0 0

chr11:39882017-40010124 Deletion Al-Sukhni et al., 2012 0 0 1

chr19:2984601-5201290 Duplication Lucito et al., 2007 0 0 1

chr7:133223330-133393933 Duplication Al-Sukhni et al., 2012 0 0 1

FIGURE 7 | Schematic overview of in silico genotyping of 809 CNVRs

across pancreatic cancer cases and controls. (A) Using SNP array data for
each of the 223 cases and 169 controls, we extracted signal intensity
information for probes that overlapped with each of the CNVRs. Probe
intensities for a given CNVR region were summarized on a sample-by-sample
basis by taking the mean or by use of principal component analysis. (B) In
silico genotyping for each CNVR was then performed using the CNVtools
package, which assigns cases and controls to copy number classes by jointly

fitting a Gaussian mixture model and a log-linear regression model to the
observed distribution of summarized probe intensities. An example fit is
shown, overlaid with the estimated locations of individuals who have normal
copy number class, a heterozygous deletion, or a homozygous deletion (blue,
green, and black lines, respectively) for this CNVR. (C) Quality-control was
applied by removing CNVRs with low-quality genotyping, low minor allele
frequency, or CNVRs that were derived solely from samples genotyped on
the Illumina CNV370-quad platform.

analyses despite the application of rigorous filtering methods. In
addition, 17 of the previously unreported CNV loci were observed
among subjects with Ashkenazi Jewish ancestry. Therefore, we
further speculate that at least some of the CNV calls unique
to our study may be true population-specific CNVs from pop-
ulations (i.e., Ashkenazi Jewish) that are underrepresented in
the DGV.

Experimental batch effects are well known to the genomics
field and require proper consideration when performing case-
control analyses. In this study, we observed significant varia-
tion in distributions of CNV call rates across different sample
batches, which is likely the result of technical variation during
the course of batch processing. In support of this hypothesis,
we also observed variations in CNV call rates at the individual
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Table 6 | Likelihood ratio tests for the association of 176 CNVR loci with pancreatic cancer risk.

CNVR Locus(hg18) Typea Likelihood ratio P-value

PA_CNVR46.1 chr4:115387397-115401739 Multiallelic 15.98 6.41 × 10−5

PA_CNVR181.4 chr17:41792236-42143493 Multiallelic 10.79 0.001

PA_CNVR276.2 chr15:28304144-28591312 Multiallelic 7.09 0.01

PA_CNVR145.1 chr8:145589526-145701138 Deletion 6.51 0.01

PA_CNVR112.1 chr8:5586807-5592495 Deletion 6.31 0.01

PA_CNVR45.1 chr4:108285187-108293245 Deletion 4.87 0.03

PA_CNVR515.1 chr16:34325303-34618468 Duplication 4.76 0.03

PA_CNVR81.18 chr6:32563460-32577503 Multiallelic 3.87 0.05

PA_CNVR131.1 chr8:83443991-83456427 Deletion 3.84 0.05

PA_CNVR248.1 chr12:8533984-8665794 Deletion 3.83 0.05

PA_CNVR452.1 chr9:44683090-44844429 Duplication 3.80 0.05

PA_CNVR373.1 chr3:8801023-8832963 Duplication 3.59 0.06

PA_CNVR206.2 chr20:26155692-28255585 Duplication 3.35 0.07

PA_CNVR338.1 chr2:208742960-208760548 Deletion 3.29 0.07

PA_CNVR90.1 chr6:79029649-79104256 Deletion 3.26 0.07

PA_CNVR489.1 chr5:104461415-104631946 Deletion 3.08 0.08

PA_CNVR383.1 chr3:60043770-60251762 Deletion 2.79 0.09

PA_CNVR357.1 chr13:56654503-56698837 Deletion 2.78 0.10

PA_CNVR384.2 chr3:75502426-75552183 Deletion 2.76 0.10

PA_CNVR144.1 chr8:145046951-145275551 Deletion 2.68 0.10

PA_CNVR81.1 chr6:32560011-32648263 Multiallelic 2.64 0.10

PA_CNVR212.3 chr1:1191495-1278446 Multiallelic 2.56 0.11

PA_CNVR509.2 chr16:16225138-16708567 Multiallelic 2.48 0.12

PA_CNVR18.1 chr14:105630045-105837886 Multiallelic 2.42 0.12

PA_CNVR49.1 chr4:129993825-130159225 Deletion 2.41 0.12

PA_CNVR419.1 chr10:56877102-56916808 Deletion 2.37 0.12

PA_CNVR485.1 chr5:97073409-97127572 Deletion 2.35 0.13

PA_CNVR73.5 chr6:31479757-31502679 Deletion 2.31 0.13

PA_CNVR81.12 chr6:32608853-32635771 Multiallelic 2.19 0.14

PA_CNVR206.3 chr20:28043606-28255585 Multiallelic 2.12 0.14

PA_CNVR253.16 chr12:31248369-31298174 Duplication 2.12 0.15

PA_CNVR144.5 chr8:145064091-145118650 Deletion 2.08 0.15

PA_CNVR314.1 chr2:52577564-52637176 Deletion 2.04 0.15

PA_CNVR73.1 chr6:31465370-31562866 Deletion 2.03 0.15

PA_CNVR305.1 chr2:34556561-34580068 Multiallelic 2.01 0.16

PA_CNVR245.1 chr1:246802692-246852068 Deletion 1.92 0.17

PA_CNVR172.1 chr17:19446576-19475026 Deletion 1.90 0.17

PA_CNVR147.1 chr11:3179445-3351014 Deletion 1.89 0.17

PA_CNVR237.1 chr1:194992939-195168376 Multiallelic 1.88 0.17

PA_CNVR350.1 chr2:232958927-232976959 Deletion 1.79 0.18

PA_CNVR573.1 chr22:18693299-19048116 Duplication 1.78 0.18

PA_CNVR302.1 chr2:17086609-17095859 Deletion 1.76 0.18

PA_CNVR165.1 chr11:133851329-134227062 Duplication 1.75 0.19

PA_CNVR397.1 chr3:166524485-166560107 Deletion 1.74 0.19

PA_CNVR299.1 chr2:4191253-4201943 Deletion 1.68 0.19

PA_CNVR192.1 chr19:40613106-40636215 Deletion 1.68 0.20

PA_CNVR16.1 chr14:85528167-85560365 Duplication 1.53 0.22

PA_CNVR387.1 chr3:116125098-116150586 Deletion 1.46 0.23

PA_CNVR142.1 chr8:137757412-137926509 Deletion 1.42 0.23

PA_CNVR138.1 chr8:115704806-115710821 Deletion 1.41 0.23

PA_CNVR253.2 chr12:31157554-31298174 Duplication 1.41 0.23

PA_CNVR7.2 chr14:39308459-39982197 Deletion 1.35 0.24

(Continued)

Frontiers in Genetics | Applied Genetic Epidemiology February 2014 | Volume 5 | Article 29 | 10

http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Willis et al. CNVs in pancreatic cancer

Table 6 | Continued

CNVR Locus(hg18) Typea Likelihood ratio P-value

PA_CNVR364.1 chr13:108363498-108381356 Deletion 1.35 0.25

PA_CNVR509.1 chr16:16657423-16726778 Multiallelic 1.34 0.25

PA_CNVR423.4 chr10:67952976-68091312 Deletion 1.34 0.25

PA_CNVR353.1 chr13:18019741-18334782 Duplication 1.26 0.26

PA_CNVR472.1 chr5:31522297-31818133 Duplication 1.26 0.26

PA_CNVR234.1 chr1:187549425-187789366 Deletion 1.24 0.27

PA_CNVR347.1 chr2:230799467-230897291 Multiallelic 1.20 0.27

PA_CNVR156.1 chr11:55124465-55180783 Deletion 1.13 0.29

PA_CNVR438.2 chr9:181843-264641 Multiallelic 1.10 0.29

PA_CNVR59.2 chr4:173218118-173263440 Deletion 1.10 0.29

PA_CNVR59.1 chr4:173222335-173227450 Deletion 1.10 0.29

PA_CNVR114.3 chr8:7683445-7929107 Deletion 1.09 0.30

PA_CNVR212.2 chr1:1096336-1468043 Multiallelic 1.06 0.30

PA_CNVR156.8 chr11:55124465-55209499 Deletion 1.04 0.31

PA_CNVR81.127 chr6:32593190-32635057 Multiallelic 1.00 0.32

PA_CNVR247.1 chr12:7884583-8017012 Multiallelic 0.99 0.32

PA_CNVR444.1 chr9:11837376-12177104 Deletion 0.99 0.32

PA_CNVR292.1 chr15:85631534-85671028 Deletion 0.97 0.33

PA_CNVR193.1 chr19:48312997-48531928 Multiallelic 0.96 0.33

PA_CNVR28.1 chr4:34456032-34499424 Deletion 0.95 0.33

PA_CNVR264.1 chr12:78652724-78698368 Multiallelic 0.91 0.34

PA_CNVR114.18 chr8:7683445-7781955 Multiallelic 0.86 0.35

PA_CNVR190.1 chr19:20385941-20522325 Deletion 0.85 0.36

PA_CNVR396.1 chr3:163986784-164109279 Deletion 0.75 0.39

PA_CNVR102.1 chr6:168078929-168342182 Duplication 0.74 0.39

PA_CNVR417.8 chr10:46611927-47218918 Multiallelic 0.73 0.39

PA_CNVR316.2 chr2:57256144-57299713 Multiallelic 0.73 0.39

PA_CNVR336.1 chr2:180123158-180129913 Deletion 0.72 0.39

PA_CNVR193.2 chr19:47935678-48430180 Multiallelic 0.65 0.42

PA_CNVR533.1 chr7:8791785-8833529 Deletion 0.64 0.42

PA_CNVR240.1 chr1:201109558-201523423 Multiallelic 0.63 0.43

PA_CNVR516.1 chr16:35041151-35074383 Deletion 0.59 0.44

PA_CNVR50.1 chr4:132165825-132547664 Deletion 0.56 0.45

PA_CNVR324.1 chr2:89682553-89911010 Multiallelic 0.55 0.46

PA_CNVR68.5 chr6:29959422-29969546 Deletion 0.51 0.47

PA_CNVR436.2 chr10:134890273-135000022 Deletion 0.50 0.48

PA_CNVR154.1 chr11:50578631-50687058 Duplication 0.49 0.48

PA_CNVR108.1 chr8:2232502-2570171 Duplication 0.49 0.49

PA_CNVR74.1 chr6:31566612-31580699 Deletion 0.46 0.50

PA_CNVR467.1 chr5:8756085-8797557 Deletion 0.46 0.50

PA_CNVR606.1 chr18:61352708-61358853 Multiallelic 0.45 0.50

PA_CNVR181.1 chr17:41780482-42092850 Multiallelic 0.42 0.51

PA_CNVR546.1 chr7:64407696-64593616 Deletion 0.39 0.53

PA_CNVR294.1 chr15:95622079-95632771 Deletion 0.39 0.53

PA_CNVR181.7 chr17:41636474-42143493 Multiallelic 0.38 0.54

PA_CNVR353.2 chr13:17922259-18120572 Duplication 0.38 0.54

PA_CNVR72.1 chr6:31382534-31406722 Deletion 0.37 0.54

PA_CNVR72.41 chr6:31382224-31419324 Deletion 0.37 0.54

PA_CNVR417.1 chr10:46830464-47218918 Multiallelic 0.37 0.54

PA_CNVR514.2 chr16:32467276-32498422 Deletion 0.37 0.54

PA_CNVR517.1 chr16:44943958-45048915 Duplication 0.37 0.54

PA_CNVR392.1 chr3:133185033-133195707 Multiallelic 0.36 0.55

(Continued)
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Table 6 | Continued

CNVR Locus(hg18) Typea Likelihood ratio P-value

PA_CNVR593.1 chr21:29458916-29478852 Deletion 0.36 0.55

PA_CNVR68.19 chr6:29988619-29999402 Deletion 0.35 0.55

PA_CNVR68.6 chr6:29972182-29996478 Deletion 0.34 0.56

PA_CNVR208.1 chr20:52078573-52094148 Deletion 0.32 0.57

PA_CNVR607.1 chr18:64003719-64042401 Deletion 0.30 0.59

PA_CNVR146.1 chr8:146116506-146137021 Deletion 0.30 0.59

PA_CNVR133.1 chr8:85420095-85433884 Deletion 0.29 0.59

PA_CNVR143.1 chr8:144686338-144780417 Deletion 0.28 0.59

PA_CNVR231.1 chr1:173054347-173067547 Deletion 0.28 0.60

PA_CNVR68.1 chr6:29950151-30021706 Deletion 0.27 0.60

PA_CNVR421.1 chr10:66980652-66988454 Deletion 0.25 0.62

PA_CNVR253.1 chr12:31180151-31237140 Duplication 0.25 0.62

PA_CNVR68.7 chr6:30000415-30007126 Deletion 0.24 0.62

PA_CNVR63.1 chr6:243700-326918 Multiallelic 0.24 0.62

PA_CNVR88.1 chr6:67075448-67104015 Deletion 0.24 0.63

PA_CNVR246.1 chr12:6114170-6134080 Deletion 0.20 0.65

PA_CNVR36.1 chr4:68608212-68676295 Deletion 0.20 0.65

PA_CNVR468.1 chr5:9951962-9981862 Deletion 0.20 0.66

PA_CNVR516.3 chr16:35041151-35141900 Deletion 0.19 0.66

PA_CNVR78.7 chr6:32059186-32065343 Deletion 0.19 0.66

PA_CNVR125.1 chr8:39331592-39509376 Multiallelic 0.18 0.67

PA_CNVR254.1 chr12:31898373-31965665 Multiallelic 0.18 0.67

PA_CNVR482.13 chr5:69611483-69791981 Multiallelic 0.18 0.68

PA_CNVR572.9 chr22:17318367-17396663 Duplication 0.17 0.68

PA_CNVR102.6 chr6:168209041-168274300 Duplication 0.16 0.69

PA_CNVR255.1 chr12:33193705-33201064 Deletion 0.16 0.69

PA_CNVR273.1 chr15:21601351-21612590 Deletion 0.16 0.69

PA_CNVR81.35 chr6:32610165-32656281 Multiallelic 0.16 0.69

PA_CNVR256.3 chr12:34261193-34692538 Duplication 0.14 0.71

PA_CNVR436.1 chr10:134913018-134948335 Deletion 0.14 0.71

PA_CNVR422.1 chr10:67749354-67785209 Deletion 0.10 0.75

PA_CNVR34.1 chr4:63352170-63357704 Deletion 0.08 0.77

PA_CNVR37.1 chr4:69007217-69210001 Deletion 0.08 0.77

PA_CNVR73.2 chr6:31465923-31485621 Deletion 0.07 0.78

PA_CNVR78.1 chr6:32057331-32118241 Deletion 0.07 0.78

PA_CNVR451.1 chr9:43515795-43730292 Deletion 0.07 0.79

PA_CNVR70.1 chr6:30565183-30617261 Deletion 0.05 0.82

PA_CNVR387.2 chr3:116143746-116150586 Deletion 0.05 0.82

PA_CNVR352.1 chr2:242565979-242692820 Deletion 0.05 0.83

PA_CNVR352.9 chr2:242412215-242645262 Deletion 0.04 0.84

PA_CNVR229.1 chr1:167436480-167513579 Deletion 0.03 0.85

PA_CNVR147.2 chr11:3240658-3297012 Multiallelic 0.03 0.86

PA_CNVR228.1 chr1:147435422-147637598 Multiallelic 0.03 0.86

PA_CNVR578.1 chr22:22653131-22728586 Multiallelic 0.03 0.86

PA_CNVR556.5 chr7:110847122-110883322 Deletion 0.03 0.87

PA_CNVR473.1 chr5:32137157-32202977 Duplication 0.03 0.87

PA_CNVR158.1 chr11:70966737-71226822 Duplication 0.03 0.87

PA_CNVR227.1 chr1:146409913-146483416 Multiallelic 0.02 0.88

PA_CNVR102.4 chr6:168092530-168162650 Duplication 0.02 0.88

PA_CNVR382.1 chr3:46771354-46825614 Deletion 0.02 0.88

PA_CNVR482.19 chr5:69724106-69791981 Duplication 0.02 0.89

PA_CNVR278.1 chr15:29812822-30302218 Multiallelic 0.02 0.90

(Continued)
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CNVR Locus(hg18) Typea Likelihood ratio P-value

PA_CNVR280.1 chr15:32459510-32625184 Deletion 0.01 0.91

PA_CNVR511.1 chr16:19857185-19862969 Deletion 0.01 0.92

PA_CNVR451.5 chr9:43599125-43616717 Deletion 0.01 0.94

PA_CNVR451.20 chr9:43515795-43616717 Deletion 0.01 0.94

PA_CNVR11.1 chr14:44251087-44294325 Deletion 0.00 0.95

PA_CNVR324.5 chr2:89029231-91046486 Multiallelic 0.00 0.95

PA_CNVR8.1 chr14:40660199-40763690 Deletion 0.00 0.95

PA_CNVR7.1 chr14:39506301-39650286 Deletion 0.00 0.95

PA_CNVR249.1 chr12:9496550-9616735 Multiallelic 0.00 0.97

PA_CNVR57.1 chr4:162239613-162310205 Deletion 0.00 0.97

PA_CNVR3.1 chr14:21014014-21038716 Deletion 0.00 0.97

PA_CNVR19.1 chr14:106185238-106297061 Multiallelic 0.00 0.97

PA_CNVR170.1 chr17:9937668-10337719 Duplication 0.00 0.97

PA_CNVR182.1 chr17:46849574-46910094 Duplication 0.00 0.98

PA_CNVR175.1 chr17:21967881-22013983 Deletion 0.00 0.99

PA_CNVR71.1 chr6:30854607-30864253 Deletion 0.00 0.99

PA_CNVR237.3 chr1:195089923-195168376 Multiallelic 0.00 0.99

PA_CNVR276.4 chr15:28714502-28881771 Multiallelic 0.00 0.99

PA_CNVR579.1 chr22:23983992-24254444 Multiallelic 0.00 1.00

PA_CNVR210.1 chr20:61880157-62011862 Deletion −1.09 1.00

aCNVR type is defined by the observation of either deletion genotypes only (“deletion”), duplication genotypes only (“duplication”), or both deletion and duplication

genotypes (“multiallelic”) among the analyzed individuals.

sample-level by comparing CNVs from 10 duplicate pairs of
samples that were genotyped twice on the same array platform
but in two different batches (data not shown). Furthermore, the
distribution of CNV call rates for samples genotyped on the
Illumina Human CNV370-duo vs. -quad platforms were signif-
icantly different. While batch effects may have contributed to
this observation, we speculate that it also reflects differences in
probe-level characteristics between the duo and quad bead array
configurations.

Following CNV discovery, we explored several hypotheses that
CNV burden is a risk factor for pancreatic cancer. Different for-
mulations of “CNV burden” have been employed in the literature,
including: a simple CNV count, the total CNV length, and the
total number of genes overlapped by a CNV. Here, we regarded
CNV burden as the number of CNV calls made per individual—
a metric that was evaluated across a spectrum of different CNV
types and frequency, and different case-control subgroups.

When we considered all 3520 CNVs discovered in our study
across all 223 cases and 169 controls, we found no strong evidence
of an association between CNV burden and pancreatic cancer
risk. Similarly, no evidence was found when we restricted our
analyses to cases with early-onset (age ≤ 50) disease or with a
family history of pancreatic cancer. Notably, a recent study by
Stadler et al. found that a significant proportion of men with
early-onset testicular cancer harbored de novo CNVs (Stadler
et al., 2012). Although the pathogenicity of these specific de
novo CNVs has yet to be confirmed, this finding suggested a
novel framework for understanding the genetic basis of sporadic
cancers. We explored this hypothesis by restricting our analyses to

singleton CNVs (i.e., putative rare or de novo CNVs), but found
no evidence of association.

Although our results do not support the role of CNV bur-
den in pancreatic cancer risk, we emphasize that our conclusions
are tempered by the presence of experimental variability in the
CNV discovery scheme. It remains possible that true differences
in case/control CNV burden might have been masked by the
presence of varying DNA sources, genotyping platforms, and
experimental batch performance.

We next attempted in silico validation of CNV loci that were
previously implicated in familial pancreatic cancer risk. By com-
paring our CNV discovery results against those reported by Lucito
et al. and Al-Sukhni et al. we identified two loci in which the CNV
events were present exclusively in our cases—and, thus, consis-
tent with the original hypotheses that each locus confers a strong
risk of pancreatic cancer. The first such locus, on chromosome
9p24.2, was reported by Al-Sukhni et al. as a deletion event in
a single case, but harbors no known RefSeq genes. The second
locus, on chromosome 18p11.31, was reported by Al-Sukhni as a
duplication event in a single case and harbors four known genes
including ARHGAP28, LINC00668, LAMA1, LRRC30. Notably,
LAMA1 (laminin subunit alpha-1 precursor) encodes a subunit
of the extracellular protein laminin. While the specific role of
laminin in pancreatic tumorgenesis remains poorly understood,
a recent study by Vincent et al. found that LAMA1 was among
several genes that were hypermethylated and underexpressed in
pancreatic tumor samples compared to normal pancreas (Vincent
et al., 2011). Our results add further support to the hypothesis
that inherited duplications at the LAMA1 locus may be involved
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in pancreatic cancer risk. However, as we did not experimen-
tally validate the duplication involving LAMA1 in our data set, we
cannot exclude the possibility of either false positives or negatives.

Lastly, to determine whether specific CNV loci play a role
in pancreatic cancer risk, we performed in silico copy-number
genotyping and association testing across 176 CNVR loci identi-
fied in our discovery experiment. Using a likelihood ratio testing
approach, we identified seven regions putatively associated with
pancreatic cancer risk at the nominal threshold of p < 0.05. Only
one locus (PA-CNVR46.1) reached the Bonferroni level of signif-
icance. This locus maps to a non-genetic region of chromosome
4q26 and was found to be multiallelic in our samples (i.e., both
deletion and duplication genotypes were detected). However, its
effect on risk was not significant in a multivariate logistic regres-
sion model adjusted for gender, age, ancestry, and DNA source.
Follow-up studies of these seven putative loci would be necessary
to validate their associations with pancreatic cancer risk.

Yet, prior to the conclusion of our study, work performed by
Conrad et al. suggested that nearly 77% of all common CNVs
in the human genome are tagged (r2 > 0.8) by SNPs through
linkage disequilibrium (Conrad et al., 2009). Hence, one could
speculate that any common CNV locus with weak-to-moderate
effects on pancreatic cancer risk would have been detected already
through large-scale GWAS involving several thousand cases and
controls (Amundadottir et al., 2009; Petersen et al., 2010). Thus,
in this context, we strongly emphasize that our inability to detect
such CNV loci is not unexpected given the relatively small sample
size of our study.

As a corollary, one could further hypothesize that CNVs with
large contributions to pancreatic cancer risk are likely to be
individually rare and poorly tagged by SNPs on commercially
available genotyping arrays. Hence, we also emphasize that such
CNV loci were likely to have been missed in our study due to
not only small sample size, but also the resolution of the Illumina
Human CNV370 bead array.

In conclusion, based on the results of genome-wide CNV
discovery in a hospital-based case-control cohort, our study
found no evidence that CNVs contribute substantially to the
genetic etiology of pancreatic cancer. However, in light of recent
population-wide CNV data and the challenges faced by our study,
future efforts to address the role of CNVs in pancreatic cancer will
require larger case-control groups and high-resolution discovery
platforms.
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