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Neoantigens play important roles in cancer immunotherapy. Current methods used for

neoantigen prediction focus on the binding between human leukocyte antigens (HLAs)

and peptides, which is insufficient for high-confidence neoantigen prediction. In this

study, we apply deep learning techniques to predict neoantigens considering both the

possibility of HLA-peptide binding (binding model) and the potential immunogenicity

(immunogenicity model) of the peptide-HLA complex (pHLA). The binding model

achieves comparable performance with other well-acknowledged tools on the latest

Immune Epitope Database (IEDB) benchmark datasets and an independent mass

spectrometry (MS) dataset. The immunogenicity model could significantly improve the

prediction precision of neoantigens. The further application of our method to the

mutations with pre-existing T-cell responses indicating its feasibility in clinical application.

DeepHLApan is freely available at https://github.com/jiujiezz/deephlapan and http://

biopharm.zju.edu.cn/deephlapan.

Keywords: deep learning, neoantigen, recurrent neural network, human leukocyte antigen, cancer immunology

INTRODUCTION

Cancer cells are different, through somatic mutations, from normal cells and can therefore be
recognized being a foreign cell by the immune system. Among all foreign elements in cancer cells,
neoantigens are the most widely recognized elements derived frommutated genes (1). Neoantigens
have therefore been acknowledged as ideal targets for cancer immunotherapies, such as cancer
vaccines and T-cell immunotherapies (2–5). Recent studies also indicated that neoantigens are
closely related to the therapeutic effect of immune checkpoint blockade therapies (6–8). However,
only a small number of somaticmutations can generate neoantigens. It is still challenging to identify
somatic mutations that can generate effective neoantigens (9).

Recently, whole exome sequencing combined with bioinformatic prediction has been widely
used for candidate neoantigen identification (10). Several computational pipelines, such as TSNAD
(11), pVAC-Seq (12), and INTEGRATE-neo (13), have been developed for this purpose. The most
critical component of these pipelines is the in-silico estimation of binding between human leukocyte
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antigens (HLAs) and peptides. Previous prediction methods on
peptides binding with HLA alleles can be categorized into three
groups, including (i) position-specific scoring matrix (PSSM)-
based methods (14, 15), (ii) machine learning-based methods
(16, 17), and (iii) structure-basedmethods (18, 19). There are also
some consensusmethods that combine several methods for better
predictive performance (20, 21). Several neoantigen databases
have also been developed based on pan-cancer immunogenomic
analyses using neoantigen prediction tools, such as TSNAdb
(22) and TCIA (23). However, existing tools are insufficient
for neoantigen prediction in clinical applications because few
of the predicted binders are immunogenic (1). Many attempts
have been made to improve the prediction accuracy. For
instance, several researchers have performed epitope prediction
based on mass spectrometry (MS) profiling of HLA-peptide
sequences. This method also considered proteasomal cleavage
and transporter-associated with antigen processing (TAP)-
mediated peptide transport, which are necessary in antigen
presentation (24–27). In addition, the developers of NetMHCpan
have released their latest version, which is trained based on both
binding affinities and MS data of HLA-peptide binding (17).
Moreover, the rapid development of deep learning methods, such
as Convolutional Neural Networks (CNNs), has led to an increase
in their use in cancer immunology (28–32). However, current
methods will never catch up to the need for clinical applications
unless they consider the potential immunogenicity of presented
mutant peptides complexed with HLA class I molecules (pHLA).
Several studies have considered the binding of pHLA and T-
cell receptors (TCRs) to select immunogenic neoantigens using a
neoantigen immune fitness model, which assumes that the TCR
recognition probability of pHLA is positively correlated with the
similarity betweenmutant peptides and pathogenic antigens (33–
35). Furthermore, Jurtz et al. trained a sequence-based predictor
of the interaction between TCRs and peptides presented by
HLA-A02:01, which considers the sequences of both TCRs and
peptides (36).

In this study, we develop a novel Recurrent Neural Network
(RNN)-based approach, named DeepHLApan, for neoantigen
prediction, considering both the binding between HLA-peptide
pairs and the potential immunogenicity of pHLA. DeepHLApan
consists of two models: the binding model for predicting
the probability of the peptide being presented to the tumor
cell membrane by HLA and the immunogenicity model for
predicting the potential of pHLA eliciting T-cell activation. Since
there are much more binding data than immunogenicity data,
we take the prediction score of the immunogenicity model as a
filter and rank the prediction scores of the binding model for
high-confidence neoantigen identification. The binding model
of DeepHLApan achieves comparable performance with other
well-known binding prediction tools on the latest Immune
Epitope Database (IEDB) benchmark and an independent MS
dataset. We also confirm that the immunogenicity model could
significantly improve the performance of other neoantigen
prediction tools from previously published work (improvement
ranging from 20.5 to 55.4%). We further applied our method to
mutations with pre-existing T-cell responses and ranked most
of them (69%) in the top 20, under an expression threshold

of transcripts per million (TPM) >2. These results indicate
that DeepHLApan, combining the binding model and the
immunogenicity model, could be beneficial for high-confidence
neoantigen prediction and could further contribute to tumor
immunotherapy in practice.

MATERIALS AND METHODS

HLA-Peptide Binding and Immunogenicity
Data
The binding data between HLA class I alleles and peptides
were collected from the IEDB (http://www.iedb.org/) (37). HLA-
peptide pairs were filtered using the following criteria: (1) HLA
class I alleles that are of HLA-A, B, and C subtypes, (2) the length
of peptides range from 8 to 15, and (3) the pairs with inconsistent
experimental results are excluded. In total, we obtained 327,178
non-redundant HLA-peptide pairs covering 169 HLA alleles with
257,089 of them being binders (Figure S1A, Table S1). We then
balanced the positive data and negative data of each allele by
following these steps: (1) train a basic model based on the
327,178 pairs, (2) create pseudo-HLA-peptide pairs. The number
of created pseudo pairs of each HLA allele Npse was calculated
as follows:

Npse = 100 ∗ |Npos − Nneg | (1)

where Npos and Nneg represent the number of positive and
negative pairs of each HLA allele, respectively. Each peptide is
generated by selecting one protein in the Ensembl database (38)
randomly and extracting 8–11 mer peptides randomly in this
protein without mutations, and (3) predict the binding possibility
of pseudo pairs using the basic model and selecting the high-
confidence negative (score <0.1) or positive (score >0.9) pairs
for each allele.

After these steps, most of the alleles had balanced data, and

the alleles with unusual proportions (
Npos

Nneg
> 5 or

Nneg

Npos
> 5)

were removed (Figure S2, Table S2). Finally, 437,077 HLA-pairs
covering 81 HLA alleles were used for training the binding
model, with 280,525 collected pairs and 156,552 pseudo pairs
(Figure S1B, Table S3).

The immunogenicity data of pHLA were also retrieved from
the IEDB (37). The criterion for data filtering is as follows: (1)
The length of peptides range from 8 to 15, and (2) for pairs
with inconsistent experimental results, we selected the positive
pairs. Finally, we obtained 32,785 HLA-peptide pairs with 5,702
of them related to HLA-A02:01 (Table S4). Among the 32,785
HLA-peptide pairs, 7,212 of them are immunogenic and 3,013
immunogenic HLA-peptide pairs are related to HLA-A02:01.

IEDB Benchmark Data
The data used to test the performance of the binding model were
derived from the IEDB weekly benchmarking website (http://
tools.iedb.org/auto_bench/mhci) (version 2018-05-11). It should
be noted that this benchmark dataset includes 14 sub-datasets,
but three of them with SLA molecules from Sus scrofa were not
suitable for the binding model and were thus excluded. We then
renumbered the selected 11 sub-datasets for convenience, and
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the datasets measured by binding affinity were transformed to
the binary type under the threshold as IEDB stated: HLA-A03:01
is 602 nM, HLA-A02:01 is 255 nM, HLA-B07:02 is 687 nM, and
HLA-B27:05 is 584 nM. To note, all the data in this benchmark
dataset were not included in previous training data. Meanwhile,
the prediction performance of 12 models on these datasets was
downloaded from the IEDB for comparison.

Independent MS Dataset
We collected an independent dataset from Mei et al. (39) for
further binding model evaluation. The dataset has never been
used for training in all previous developed tools as the authors
claimed, but some of them have been used in the training of the
binding model of DeepHLApan. We removed the sub-datasets
that have been used for training, 15 sub-datasets (all of them are
MS data) were retained and used for the model comparison.

Neoantigen Dataset Used for Evaluating
Immunogenicity Model
The data used for evaluating the immunogenicity model were
collected from Koşaloǧlu-Yalçın et al. (40), containing 64
neoantigens with 6,400 random peptides that were generated
based on mutation data extracted from The Cancer Genome
Atlas (TCGA) database. In their work, NetMHCpan achieved
excellent performance based on the AUC under rank thresholds
of 10 and 2%.

CD8+ T-Cell Epitopes
We collected 2,023 assayed single-nucleotide variants from
17 patients, including 26 mutations with pre-existing T-cell
responses from Bulik-Sullivan et al. (27), which combined the
data from four published works (41–44) and substituted RNA-
Seq data from tumor-type-matched patients of TCGA.

For the mutations from Tran et al. (41), Gros et al. (42),
and Zacharakis et al. (44), all 8–11 mer peptides covering the
mutations were extracted for prediction and resulted in 59,726
peptides and 372,252 HLA-peptide pairs (Table S5A). Normally,
there would be 8 8-mer, 9 9-mer, 10 10-mer, and 11 11-mer
peptides for each mutation; however, some of the mutations are
located at the start or end of proteins and possess fewer than 38
peptides. For the mutations from Strønen et al. (43), the provided
2,852 HLA-peptide pairs were used for prediction (Table S5B).
To evaluate the possibility of a mutation eliciting T-cell activation
predicted by DeepHLApan, we removed the HLA-peptide pairs
with predicted immunogenic scores <0.5. We then summed the
binding scores of the rest of the pairs with the following formula
for a mutation rank within one patient.

Pr (mutation) =
∑

i=8,9,10,11

∑

BSimer,h ∗ rimer,h

nimer
(2)

where Pr(mutation) is the probability of the mutation
presentation, BSimer,h is the predicted binding scores of the
i-mer peptides with HLA h, rimer,h is the actual ratio of i-mer
peptides binding with HLA h in the training dataset, and nimer is
the number of i-mer within one mutation.

The mutation rank data of EDGE and MHCflurry were
derived from Bulik-Sullivan et al. (27). The mutation rank of
NetMHCpan 4.0 wasmeasured by taking theminimumpredicted
rank across all mutation-spanning peptides.

We also collected 31 validated immunogenic HLA-peptide
pairs from Tran et al. (41), Gros et al. (42), and Stronen et al.
(43), which were not provided by Bulik-Sullivan et al. (27)
(Table S6). Here, we separated the minimal epitopes according to
their length and ranked them. Pairs with predicted immunogenic
scores <0.5 were ignored, and the remaining pairs were ranked
by the binding score.

Recurrent Neural Networks
The model architecture used for training was stacked by three
layers of bidirectional Gated Recurrent Unit (BiGRU) with an
attention layer. A Gated Recurrent Unit (GRU) is a variant of
RNN which was first proposed by Cho et al. (45). Similar to
the RNN, GRU handles the variable-length sequence by having a
recurrent hidden state whose activation at each time is dependent
on that of the previous time. The difference between GRU and
RNN is the update of the recurrent hidden state which is the
core part for overcoming gradients vanish or explode in training
model to capture long-term dependencies. In particular, GRU
proposes to derive the vector representations of hidden states ht
for each time step t as follows:

zt = σ
(

Wzxt + Uzht−1 + bz
)

rt = σ
(

Wrxt + Urht−1 + br
)

ht = (1− zt) ◦ht−1 + zt ◦ φ
(

Whxt + Uh

(

rt ◦ ht−1
)

+ bh
)

(3)

where xt is the input vector, ht is the output vector, zt is the update
gate vector, rt is the reset gate vector, W, U and b are parameter
matrices and vector, σ is the logistic sigmoid function, and φ is a
hyperbolic tangent.

As for the BiGRU, it splits the neurons of a GRU into two
directions, one for positive time direction (forward states), and
another for negative time direction (backward states). By using
two time directions, input information from the past and future
of the current time frame can be used.

Attention Module
The attention module was incorporated with the BiGRU module
to make modeling of long-term dependencies of 49 amino acids
easier. The attention was first proposed by Bahdanau et al. (46)
but we used the type of attention proposed by Raffel and Ellis
(47). Given amodel which produces a hidden state ht at each time
step, attention-based models compute a “context” vector c as the
weighted mean of the state sequence h by

et = σa
(

ht
)

,α
t
=

exp (et)
∑T

k=1 exp (ek)
, c =

∑T

t=1
αtht . (4)

where σa is a learnable function which only depends on ht .

Model Training
Before training, the HLA alleles were transformed into pseudo-
sequences as presented by the NetMHCpan (48) method for pan-
allele prediction (i.e., each HLA allele was transformed into 34
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amino acid residues located within 4.0 Å of the peptide). Then,
the peptides were concatenated with the HLA pseudo-sequences.
If the length of the combined sequence was <49 amino acids,
pseudo amino acid “X” would be used for padding. The one-hot
method was used for amino acid representation (i.e., transform
each amino acid into a unique vector of 20 zeros and one 1).

Two steps were applied for reliable model training. First, the
original dataset was used for basic model training. Then, the
preliminarymodel was used for selecting high-confidence pseudo
positive/negative HLA-peptide pairs. The selected pseudo pairs
were added to the original dataset to balance the training data for
training the final model. Other parameters are as follows: dropout
rate was set to 0.2, the sigmoid function was used as the activation
function, Binary Cross Entropy (BCE) was employed for loss
calculation, and an Adam optimizer with a default learning rate
of 0.001 was used for parameter optimization.

5-Fold Cross-Validation
Five-fold cross-validation is used to evaluate model robustness.
Before training, the dataset is randomly partitioned into five non-
overlapping subsets. The cross-validation process is repeated
five times, with each subset used as a validation set while the
remaining subsets are used as the training set. The results of
the five validation sets are averaged to obtain the final result.
One hundred epochs are executed, and the model is saved if the
validation accuracy is better than previous epochs.

Evaluation Indicators
The area under the receiver operating characteristic curve (AUC)
is the main measurement for model and software comparison.
Accuracy (ACC) is used for the performance evaluation of
the binding model on single-labeled HLA alleles. Precision
[true positives/(true positives + false positives)] and recall [true
positives/(true positives + false negatives)] are used to illustrate
the importance of the immunogenicity model.

Data and Software Availability
All datasets for this study are included in the manuscript and
the Supplementary Files. The source codes of DeepHLApan are
freely available at https://github.com/jiujiezz/deephlapan. The
web service of DeepHLApan is available at http://biopharm.zju.
edu.cn/deephlapan.

RESULTS

The Architecture of DeepHLApan
Binding affinity is the most widely used measurement for HLA-
peptide binding. However, a large number of HLA-peptide
binding data without binding affinity have emerged with the
development of high-throughput methods (e.g., MS) for HLA-
peptide binding detection. In the binding dataset collected from
the IEDB, 66.8% of the binding data were not measured by
binding affinity (Table S1). And the gap further increases over
time. Therefore, we transformed the binding data with binding
affinity into a binary model to create a model that only provides
the result of binding or not-binding. In addition, the potential
immunogenicity of presented pHLA is a necessary factor for

tumor immunotherapy. However, published tools rarely consider
the immunogenicity of pHLA due to insufficient data. We
attempted to determine whether existing immunogenicity data
could promote the identification of high-confidence neoantigens.
DeepHLApan contains two independent parts (the binding
model and the immunogenicitymodel), and its model framework
consists of three layers of BiGRU with attention (Figure 1).

The Prediction Performance of the Binding
Model on Unseen Alleles
During the binding model training, we created high-confidence
pseudo HLA-peptide pairs to balance the training data of each
allele and removed the HLA alleles with an imbalanced number
of positive/negative pairs (see Materials and Methods). Of these
removed alleles, 62 had pure positive HLA-peptide pairs, one
had pure negative pairs, 14 had positive pairs more than 5-
fold negative pairs and four had negative pairs of more than
5-fold positive pairs (Figure S2). We evaluated the performance
of the binding model on these never-before-seen HLA alleles to
discover its ability for pan-allele prediction. For the 18 alleles
with both negative and positive pairs, most (9 out of 18, 50%)
of them had AUC>0.9 (Figure 2A). For the rest of the untrained
alleles, the majority (35 out of 63, 56%) had an accuracy >0.9
(Figure 2B). The reliable prediction results of the binding model
on never-seen HLA alleles indicate that it is suitable for pan-
allele prediction.

The binding model achieved good performance (AUC or
accuracy >0.9) on 43 HLA alleles. To further investigate whether
the binding model is able to learn truly correct motifs (only
considering 9-mer) for these alleles, we compared the actual
motifs and predicted motifs on 16 HLA alleles with more than
100 binding peptides (selected from 43 HLA alleles). The actual
motifs were based on the binding peptides and the predicted
motifs were generated by taking the top 1% predicted peptides
out of 100,000 random peptides. WebLogo (49) was used for
motif representation. We found that the predicted motifs are
not exactly the same as the actual motifs, but they have similar
patterns in most of the HLA alleles (Figure 3). The predicted
motif of HLA-B48:01 is most dissimilar to the actual motif,
but the amino acid arginine, glutamate, and glutamine are also
conserved in the second amino acid residue of the predicted
motif. These results demonstrate that the binding model of
DeepHLApan does not simply boil down to a mix between
many alleles of the training set, but has the ability to distinguish
different alleles.

The Binding Model Achieves Comparable
Performance With Other HLA-Peptide
Binding Prediction Tools
The IEDB benchmark dataset is often used to compare the
performance of different binding prediction tools. We used
the latest IEDB benchmark dataset for this purpose. In the 11
sub-datasets that are suitable for all tools, the DeepHLApan
binding model achieves the best performance for 6 out of the
11 (54.5%) sub-datasets while none of the other tools achieve
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FIGURE 1 | The architecture of DeepHLApan. Two types of data (437,077 binding data points, 32,785 immunogenicity data points) are collected for model training,

and one-hot encoding is used for amino acid representation. Three layers of bidirectional GRU with attention have been employed as the model framework. The

immunogenic score is used as a filter (>0.5), and peptides with binding scores ranked within the top 20 are predicted as high-confidence neoantigens.

FIGURE 2 | Binding model performance on never-seen HLA alleles. (A) Prediction AUC on alleles with both positive HLA-peptide pairs and negative pairs in

descending order. (B) Prediction ACC on alleles with single-labeled HLA-peptide pairs in descending order.

a best performance in more than four sub-datasets (Figure 4A,
Table S7A).

Interestingly, all the tools have a similar prediction ability in
nearly all the sub-datasets. For instance, in sub-datasets 1, 3, 4,
10, and 11, all the tools achieved good performance, with some
of them having an AUC of 1, which could be due to having
enough corresponding HLA allele-specific HLA-peptide pairs
in the training data. However, none of the tools could obtain
excellent performance in sub-datasets 5, 6, 7, 8, and 9. Further
investigation found that these datasets were derived from Liepe
et al. (50), and one third of them contained binding information
between spliced peptides and HLA alleles. Because all the tools

were trained exclusively on natural (non-spliced) epitopes, the
intrinsic differences between spliced and non-spliced antigenic
peptides resulted in their limited prediction performance on
spliced peptides (50).

We also collected an independent dataset from Mei et al. (39)
for binding model evaluation (see Materials and Methods). Mei
et al. provided a comprehensive analysis and benchmarking of 15
currently available tools for HLA-I peptide-binding prediction.
The validation dataset they used has never been used for training
in all previous developed tools and that’s why only 5 tools
[Pickpocket (51), MixMHCpred (25), NetMHCpan 4.0 (17),
NetMHCcons (21), and NetMHCstabpan (52)] could obtain the
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FIGURE 3 | The comparison of actual motifs and predicted motifs on 16 HLA alleles. The motif logo is created by Weblogo. The actual motifs are based on their

binding peptides, the predicted motifs are generated by taking top 1% predicted peptides out of 100,000 random peptides.

AUC values in all datasets. After removing the sub-datasets
that have been used for training in the binding model of
DeepHLApan, 15 sub-datasets were retained and had been used
for model comparison. The results showed that all tools achieved
similar performance on these datasets while MixMHCpred
performed slightly better than others (Figure 4B, Table S7B).

The methods focusing on HLA-peptide binding have been
developed over many years. Currently available methods, such
as MixMHCpred and NetMHCpan 4.0, have achieved excellent
performance on the basis of available experimental data. Based
on the performance comparison on the IEDB benchmarking
dataset and the independent MS dataset, we concluded that
the DeepHLApan binding model could obtain comparable
performance with state-of-the-art HLA-peptide binding tools.

The Immunogenicity Model Improves the
Precision of Neoantigen Prediction
Significantly
Because of the scarcity of immunogenicity data, few tools focus
on the potential immunogenicity of pHLA, resulting in a high
false positive rate (FPR) in practical applications. In this section,
we explore whether existing immunogenicity data can contribute
to neoantigen identification. Data used for immunogenicity
model training were retrieved from the IEDB, and the validated
neoantigens were retrieved from Koşaloǧlu-Yalçın et al. (40) (see
Materials and Methods). In their study, NetMHCpan obtained
remarkably good performance in terms of the AUC. However,
the predicted precision on their datasets was 9.6 and 36.6%

under the thresholds of 10 and 2%, respectively (Table 1). We
added the predicted score from the immunogenicity model as
an additional filter for neoantigen identification. The results
showed that the predicted immunogenic score could improve
the precision significantly (43.8 and 32.8% improvement under
the thresholds of 10 and 2%, respectively) at the cost of less
recall (Table 1, Table S8), which is acceptable for the purpose
of predicting more reliable neoantigens rather than obtaining
all potential neoantigens in practice. In addition, we also
retrained an HLA-A02:01-restricted immunogenicity model to
determine if more training data for each allele would attain
both high precision and high recall due to the sufficient
immunogenicity data of HLA-A02:01. The results showed that
the HLA-A02:01-restricted model could improve the precision
significantly (55.4 and 20.5% improvement under thresholds of
10 and 2%, respectively) and retain the recall with a decrease of
<10% (Table 2, Table S9), indicating that the immunogenicity
model could greatly contribute to high-confidence neoantigen
identification with a growing amount of training data.

Application of DeepHLApan on Published
CD8+ T-Cell Epitopes
In recently published work (27), the EDGE model, which
was trained by a tumor HLA-peptide MS dataset, achieved
better performance on retrospective neoantigen T-cell data
than MHCflurry (53), a tool for binding affinity prediction.
To directly evaluate the performance of DeepHLApan on
neoantigen prediction, we applied it on the same data they
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FIGURE 4 | Model comparison between the binding model of DeepHLApan with other tools. (A) Performance of the binding model compared with the other 12

well-acknowledged tools on the latest IEDB benchmark datasets. (B) Performance of the binding model compared with the other 5 binding tools on the independent

MS dataset. The detailed information of each sub-dataset is listed in Tables S7A,B.

TABLE 1 | The improvement of precision and decrease of recall with

immunogenicity model on all available neoantigen predictions.

Threshold (%) NetMHCpan NetMHCpan with

immunogenicity model

Precision (%) Recall (%) Precision Recall

10 9.6 96 13.8% (+43.8%) 56.3% (−41.9%)

2 36.6 92.2 48.6% (+32.8%) 54.7% (−40.7%)

The number in parentheses with a positive or negative sign indicates the percentage of

improvement and decrease, respectively.

collected from four published works (41–44) (see Materials and
Methods), which contained 2,023 mutations from 17 patients,
26 of which had pre-existing T-cell responses. We compared
the performance of DeepHLApan with EDGE, MHCflurry and
NetMHCpan 4.0 at the mutation level (Table S10). For each
mutation, all 8–11 mer overlapping mutations were used for
prediction andwe ranked themutations for each tool as described

TABLE 2 | The improvement of precision and decrease of recall with

immunogenicity model on HLA-A02:01-restricted neoantigen prediction.

Threshold (%) A02:01 restricted A02:01 restricted with

immunogenicity model

Precision (%) Recall (%) Precision Recall

10 10.1 96.0 15.7% (+55.4%) 88.0% (−8.3%)

2 37.5 84.0 45.2% (+20.5%) 76.0% (−9.5%)

The number in parentheses with a positive or negative sign indicates the percentage of

improvement and decrease, respectively.

in the Materials and Methods. Taking the number of pre-
existing T-cell responses in the 5, 10, or 20 top-ranked mutations
for each patient as the measurement, DeepHLApan performed
better than MHCflurry, but is comparable with NetMHCpan
4.0 for the 5 and 10 top-ranked mutations across different
gene expression thresholds. With the 20 top-ranked mutations,
DeepHLApan achieved better performance than NetMHCpan
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FIGURE 5 | For 26 mutations with pre-existing T-cell responses, we ranked them in order of probability of presentation within their corresponding patients. The

mutation rank of NetMHCpan 4.0 was measured by taking the minimum predicted rank across all mutation-spanning peptides. The number of predicted mutations

ranked in the top 5, 10, and 20 by EDGE and MHCflurry were derived from Bulik-Sullivan et al. (27).

4.0 and a comparable performance with EDGE at TPM >2
(Figure 5). Further evaluation of the AUC performance of four
tools on each patient showed that EDGE performed best and
DeepHLApan performed better than the other two tools on
average under different thresholds of TPM (Table S11). We also
evaluated the performance of DeepHLApan on the rank of the
concrete HLA-peptide pairs within one patient. DeepHLApan
ranked 32.2% (10/31) of the immunogenic HLA-peptide pairs
as the 20 top-ranked HLA-peptide pairs at TPM >2 with 32.2%
(10/31) missed due to predicted immunogenic scores <0.5
(Table S6). The rate could be 47.6% (10/21) if we ignored the
missed HLA-peptide pairs and is better than that predicted by
EDGE (27). All of the results mentioned above indicated that
DeepHLApan could identify high-confidence neoantigens by
filtering with an immunogenic score >0.5 and selecting HLA-
peptide pairs with 20 top-ranked binding scores.

DISCUSSION

Neoantigens have been acknowledged as ideal targets for
tumor immunogenicity and substantial effort has been made in
neoantigen identification. However, most of the existing tools
only consider the binding affinity between human leukocyte
antigens (HLAs) and peptides and achieve unsatisfactory results.
Recently, the EDGE model, which was trained by a tumor
HLA peptide mass spectrometry dataset, achieved excellent
performance in selecting high-confidence neoantigens (27).
However, it did not consider the potential immunogenicity of
predicted pHLA, as did many other tools, which cannot be
ignored in the process of T-cell activation.

In this study, we propose a novel RNN-based method,
DeepHLApan, for high-confidence neoantigen prediction
considering both the possibility of mutant peptide presentation
and the potential immunogenicity of pHLA. We demonstrate
that the binding model could achieve good performance

on unseen HLA alleles and has a comparable performance
with other well-acknowledged tools on the latest IEDB
benchmark datasets and an independent MS dataset.
In the model comparison of the DeepHLApan binding
model with other tools trained on datasets of canonical
peptides, all of them performed poorly on the datasets
with a high number of spliced peptides. One possible
reason might be the different binding patterns between
spliced and non-spliced antigenic peptides. Another reason
might be that the identification of many of the spliced
peptides stated in Liepe et al. (50) are ambiguous, and
the vast majority of these peptides likely correspond to
false-positives (54).

Using the immunogenicity model on the neoantigen
datasets collected from Koşaloǧlu-Yalçın et al. we demonstrate
that the predicted immunogenic score could significantly
improve prediction precision of neoantigens. Although, with
the improvement of precision of neoantigen identification
by the immunogenicity model, the recall rate decreases in
the neoantigen prediction, the cost is acceptable in clinical
applications because the main problem in neoantigen
identification is the high FPR for tumors with a lot of mutations.
The decrease of recall can be solved as the amount of training
data increases (Table 2). We also retain the predicted binding
score for cases where some tumor types do not have enough
mutations to tolerate poor recall. Finally, the application
of DeepHLApan to the mutations with pre-existing T-cell
responses shows that it has a performance comparable to
that of the state-of-the-art EDGE model in high-confidence
neoantigen prediction under the expression threshold of
TPM >2.

There are also some limitations of our study. First,
DeepHLApan does not have a significantly improved
performance on the published CD8+ T-cell epitopes compared
with EDGE. One of the possible reasons for this result is
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the limited number of immunogenic HLA-peptide pairs,
which results in an immunogenicity model that is unable
to classify all HLA-peptide pairs correctly. Another reason
is the possibility that the datasets used for comparison are
more suitable for EDGE. Another limitation of our study is
that we consider all the HLA-peptide pairs as immunogenic
if they have been validated to elicit T-cell activation at least
once when training an immunogenic model. This assumption
simplifies the evaluation of potential immunogenicity because
whether the pHLA-matched TCR exists in the body is unknown.
And with the alterations in the tumor microenvironment or
immunoediting, the previous immunogenic neoantigens might
be non-immunogenic. All these complex factors should be
considered if we want to obtain accurate prediction. One of
the solutions to this issue, and a direction for future research,
would be to develop a model based on the pHLA-TCR pairs
for more reliable immunogenicity prediction for specific
individual. With that model, we could predict higher confidence
neoantigens by taking advantage of whole-exon sequencing (call
mutations) and RNA-Seq sequencing [evaluate gene expression
and analyze the complementarity-determining regions 3
[CDR3] sequences by TRUST (55)] or TCR sequencing (call
CDR3 sequences).
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Figure S1 | The distribution of binding data collected from the IEDB before and

after data balance. (a) Before data balance, the distribution of 327,178

non-redundant HLA-peptide pairs, which covers 169 HLA alleles. The HLA alleles

are displayed clockwise according to the HLA-peptide pairs they possess. The

length of each HLA allele is proportionable to the number of HLA-peptide pairs.

Red and green indicates positive and negative pairs, respectively. The histogram

illustrates the length distribution of peptides (ranges from 8 to 15) of each HLA

allele. (b) After data balance, the distribution of 437,077 HLA-pairs covering 81

HLA alleles. Only alleles with more than 3,000 HLA-peptide pairs are labeled.

Figure S2 | The HLA-peptide pair distribution of the removed alleles. These

removed alleles are divided into four types: 62 had pure positive HLA-peptide

pairs, one had pure negative pairs, 14 had positive pairs more than 5-fold of the

negative pairs and four had negative pairs more than 5-fold of the positive pairs.

The number in each cell represents the number of HLA-peptide pairs of each

HLA allele.

Table S1 | The binding data collected from the IEDB. HLA-peptide without affinity

are set to 0 in the “Affinity” column.

Table S2 | The detailed information of the removed alleles with their predicted

binding scores and labels. In the “label” column, 0 stands for non-binding, and 1

stands for binding.

Table S3 | The binding data used for training the final binding model.

Table S4 | The immunogenicity data collected from the IEDB.

Table S5 | (A) HLA-peptide pairs created by the data from Tran et al., Gros et al.,

and Zacharakis et al. with their predicted binding scores and immunogenic

scores. (B) HLA-peptide pairs created by the data from T Stronen et al. with their

predicted binding scores and immunogenic scores.

Table S6 | Immunogenic HLA-peptide pairs derived from Gros et al., Tran et al.,

and Stronen et al. with their ranks predicted by DeepHLApan under TPM>2.

Table S7 | (A) The AUC performance of the binding model of DeepHLApan on the

latest IEDB benchmark datasets compared with other tools. The best performance

of each sub-dataset is highlighted in red. (B) The AUC performance of the binding

model of DeepHLApan on the datasets collected from Mei et al. compared with

other tools. The best performance of each sub-dataset is highlighted in red.

Table S8 | The validated neoantigens retrieved from Koşaloǧlu-Yalçın et al. and

the corresponding predicted immunogenic scores.

Table S9 | HLA-A02:01-restricted validated neoantigens retrieved from

Koşaloǧlu-Yalçın et al. and the immunogenic scores predicted by the

HLA-A02:01-restricted model.

Table S10 | The predicted mutation score of four tools at TPM>0. Smaller the

values of MHCflurry and NeMHCpan4 are and larger the values of EDGE and

DeepHLAPan are, stronger the binding probabilities.

Table S11 | The performance (AUC) of 4 tools on neoantingen prediction for each

patient at different cut off of TPM. The best performance of each patient is

highlighted in bold.
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