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ABSTRACT Seed vigor is crucial for crop early establishment in the field and is particularly important for
forage crop production. Oat (Avena sativa L.) is a nutritious food crop and also a valuable forage crop.
However, little is known about the genetics of seed vigor in oats. To investigate seed vigor-related traits and
their genetic architecture in oats, we developed an easy-to-implement image-based phenotyping pipeline
and applied it to 650 elite oat lines from the Collaborative Oat Research Enterprise (CORE). Root number,
root surface area, and shoot length were measured in two replicates. Variables such as growth rate were
derived. Using a genome-wide association (GWA) approach, we identified 34 and 16 unique loci associated
with root traits and shoot traits, respectively, which corresponded to 41 and 16 unique SNPs at a false
discovery rate , 0.1. Nine root-associated loci were organized into four sets of homeologous regions, while
nine shoot-associated loci were organized into three sets of homeologous regions. The context sequences of
five trait-associated markers matched to the sequences of rice, Brachypodium and maize (E-value , 10210),
including three markers matched to known gene models with potential involvement in seed vigor. These
were a glucuronosyltransferase, a mitochondrial carrier protein domain containing protein, and an iron-sulfur
cluster protein. This study presents the first GWA study on oat seed vigor and data of this study can provide
guidelines and foundation for further investigations.
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Cultivated oat (Avena sativa L.) is the seventh most important cereal
crop in the world in terms of production and cropping area
(FAOSTAT 2017). Oat is mostly known for the benefits to human
health of its dietary fiber, beta-D-glucan (Butt et al. 2008). Oat is also
a good forage crop because of its high biomass, protein content, and
digestible fiber (Coblentz et al. 2018; Coblentz et al. 2012; Contreras-
Govea and Albrecht 2006). As forage, oats are grown in a wide range
of environments, from temperate regions to the tropics (Suttie and
Reynolds 2004). However, oat studies related to forage production in
sub-tropic or tropic setup are rare.

Early plant establishment of forage is crucial for subsequent
biomass production. Good establishment implies a rapid develop-
ment of ground cover which can not only lower soil evaporation and
facilitate water use efficiency (López-Castañeda and Richards 1994;
Rebolledo et al. 2015), but also make crops more competitive to weeds
(Zhao et al. 2006). Plants with higher seed vigor can germinate rapidly
and have the ability to establish quickly at early developmental stages
(Finch-Savage and Bassel 2016; Ellis 1992).

Seed vigor is a complex concept which encompasses a number of
aspects from seed germination to seedling growth, such as rate of
germination, uniformity of germination, rate of seedling growth, and
uniformity of seedling growth (Ellis 1992). Several factors impact on
seed vigor which can be categorized to either intrinsic or external.
Intrinsic factors are related to the organism, including its genetic
constitution, stage of maturity at harvest, seed size, and seed weight.
External factors are those related to the environment, such as the soil
type, temperature, water availability that the mother plant encoun-
tered, as well as the environmental factors throughout the post-
harvest stages. Seed ages and deteriorates during post-harvest storage,
causing a decline in vigor. Three key seed vigor traits have been
identified as necessary for a good establishment across a wide range of
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seedbed conditions: the seed must germinate rapidly, have rapid
initial downward growth, and have a high potential for upward shoot
growth in soil of increasing impedance (Finch-Savage et al. 2010).

In oat, seed vigor has been investigated through seed coating
treatments (Peltonen-Sainio et al. 2006); fungicide treatments and
environmental factors encountered by the mother plant (Oliveira
et al. 2014); the relationships among thermal time, embryo size and
other vigor parameters (López-Castañeda et al. 1996); and the
contribution of genotypes, seed sizes and osmotic potentials to seed
vigor (Willenborg et al. 2005). However, these studies used only small
samples (two to five genotypes), and the differences among geno-
types, although statistically significant, were small (Willenborg et al.
2005). On the other hand, information on the genetic architecture of
oat seed vigor is lacking, unlike other cereal crops, such as rice and
wheat, for which genetic studies on seed vigor were available and
informed that seedling vigor-related traits were controlled by several
loci of moderate to minor effect (Borjas et al. 2016; Landjeva et al.
2009; Redoña and Mackill 1996; Spielmeyer et al. 2007; Sun et al.
2007; Wang et al. 2018; Zhang et al. 2005)

For genetic studies, it is necessary to phenotype a sufficient
number of diverse genotypes. Therefore, efficient and appropriate
phenotyping methods are needed. Root development is difficult to
access and root phenotyping methods are generally destructive, so
that the time-series measures on an individual plant, necessary to
estimate root growth rate, are not possible. Germination pouches
allow a direct observation of roots during growth, and can serve as a
good tool to investigate root traits. Compared to other growing
systems, like agar or paper roll methods, using germination pouches
to phenotype root traits requires much less space and is easy to
implement. Root phenotyping is time-consuming, therefore, software
for root system analysis, such as RootReader2D (Clark et al. 2013),
SmartRoot (Lobet et al. 2011), or WinRhizo (Arsenault et al. 1995)
have been developed to investigate in detail the root system. However,
some of this software is expensive, and automatic identification of
complex root systems has been problematic to achieve. Therefore, an
accurate and efficient method to analyze a large number of images
would help in the investigation of seed vigor across genotypes.

Genome-wide association (GWA) is a method to investigate the
genetic architecture of traits of interest using available germplasm. It
takes advantage of ancestral recombination events and can provide
higher resolution compared to traditional quantitative trait locus
(QTL) mapping using bi-parental populations (Zhu et al. 2008).
Using GWA, several novel genomic regions associated with coleoptile
response of submerged rice plants, as well as 10 genomic regions that
were co-localized with published QTL were identified (Hsu and Tung
2015). Campbell et al. (2017), applying GWA on a rice diversity panel
of ca. 360 accessions, have identified OsGA2ox7, a gibberellic acid
catabolic gene which may regulate early vigor at the tillering stage of
rice (Campbell et al. 2017). Using GWA, qTIPS-11, a QTL that
contributes to the lateral root number of rice seedlings, was identified
and proven to harbor one causal gene for lateral root number
differences using a combination of haplotype analysis, expression
assessment, and transgenic approaches. (Wang et al. 2018).

As an allo-hexaploid (2n = 6x = 42) with a large genome (12.5Mbp)
(Yan et al. 2016b), the development of genomic tools in cultivated oats
has been relatively slow and late compared to rice. Meanwhile, thanks
to the community effort of oat workers, high-throughput marker
systems have been recently made available, such as Illumina 6K gene
chip (Tinker et al. 2014) or genotyping-by-sequencing (GBS) (Huang
et al. 2014). These two high throughput genotyping platforms have
been widely used by the oat community for genetic studies as well as for

breeding applications (Chaffin et al. 2016; Esvelt Klos et al. 2016;
Kebede et al. 2019; Sunstrum et al. 2019; Yan et al. 2016a; Yan et al.
2019; Bjørnstad et al. 2017; Carlson et al. 2019; Tumino et al. 2017;
Tumino et al. 2016). Thanks to the high throughput genotyping
platforms, oat GWA was made possible (Bekele et al. 2018;
Bjørnstad et al. 2017; Carlson et al. 2019; Esvelt Klos et al. 2016;
Klos et al. 2017; Montilla-Bascón et al. 2015; Tumino et al. 2017;
Winkler et al. 2016) even before the recent release of the draft oat
genome sequence (Avena sativa – OT3098 v1, PepsiCo, https://wheat.
pw.usda.gov/GG3/graingenes_downloads/oat-ot3098-pepsico; June
23, 2020). Indeed, the robust consensus map (Chaffin et al. 2016) has
allowed the anchoring of markers, both from the 6K gene chip or from
the GBS approach where the SNPs were called based on alignment
between reads where the reference genome sequence was not required
(Bekele et al. 2018; Lu et al. 2013). The development of the high-
throughput markers was part of the Collaborative Oat Research
Enterprise (CORE), which has also defined a set of germplasm
representative of the cultivated oat diversity (Esvelt Klos et al.
2016). The CORE panel consisted of 652 oat varieties or breeding
lines from major oat breeding programs across North America and
Europe. The panel has been genotyped using both 6K gene chip and
GBS which revealed the weak population structure within the elite oat
germplasm, with a rough distinction of two sub-populations: spring
oats vs. southern oats, as well as a quick linkage disequilibrium (LD)
decay, where pairwise r2 = 0.10 corresponded to an average pairwise
distance of 0.44 cM within the whole panel or 0.71 and 2.64 cM within
spring and southern oat, respectively (Esvelt Klos et al. 2016). GWAhas
been applied to the CORE panel to identify trait-associated markers for
agronomic and disease-resistance traits (Bjørnstad et al. 2017; Esvelt
Klos et al. 2016; Klos et al. 2017).

Given the importance of seed vigor for crop establishment, the
knowledge gap in the genetics of oat seed vigor, and the available
materials provided by the CORE, the objectives of the present study
were (i) to develop an image-based phenotyping pipeline for seed
vigor; (ii) to characterize the phenotypic variation of seed vigor-
related traits within elite oat lines under a temperature regime close to
sub-tropic and tropic setup; and (iii) to characterize the genetic
architecture of oat seed vigor-related traits using a GWA approach.

MATERIALS AND METHODS

Plant materials
The 650 lines of the Collaborative Oat Research Enterprise (CORE)
(Esvelt Klos et al. 2016) were evaluated for this study, including
103 lines comprising a world-diversity panel (WDP), 421 lines
nominated from spring oat breeding programs, and 126 lines nom-
inated from southern oat breeding programs. Six cultivars Lamont,
Ajay, CDCDancer, Swan, Mountain-1, and NTU-selection No.1 were
used as check varieties for batch effect adjustment.

Experimental design and plant growth condition
Oat lines were grown at two locations as independent replicates,
one in the Department of Agronomy, National Taiwan University
(Taipei) and the other in the USDA-ARS Small Grain and Potato
Germplasm Research (Aberdeen). We used the augmented design
(Federer 1956) to accommodate the large sample size while control-
ling for possible batch-to-batch environmental variability. For each
replicate, lines were allocated without replication into eight and
twelve batches in Taipei and Aberdeen, respectively, while the six
check varieties were assayed with each batch to estimate batch effect.
The evaluations in Taipei were conducted from July to October 2018,
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with 118 to 156 oat lines per batch. The evaluations conducted in
Aberdeen were conducted from July 2018 to March 2019 with 48 to
144 lines per batch (see Supplementary Figure S1 for an illustration of
experimental design). For each replicate of each line, 10 to 12 plump
seeds were manually selected, rinsed in 1% sodium hypochlorite solution
for 3 min, and washed three times with RO water. After cleaning, seeds
were soaked in RO water for 10 to 12 hr at 25� before being planted in
CYG germination pouches (13 cm · 15 cm; Mega international, MN,
USA). Nine plump seeds of similar size were evenly and carefully placed
with embryos downward in perforations of the germination paper. To
support the germination pouches and to facilitate further image taking, a
plastic board was placed behind the germination paper in each pouch.
Water was added into each pouch after seed set and about 45 pouches
were placed in a plastic basin (30 cm · 21 cm · 10.5 cm) with 4 cm tall
water. The bottom right corner of the germination pouchwas cut prior to
seed set to maintain the humidity of the germination paper through
capillary action. All pouches were then transferred into a growth
chamber at 25� without light till image acquisition.

Image-based seed vigor phenotyping

Image acquisition: A digital camera (Nikon D3400, Nikon Inc.,
Tokyo, Japan for the camera used in Taipei and Canon, EOS Rebel
XSi, Melville, New York, U.S.A., for the one used in Aberdeen) was set
at a height of 42 cm using a copy stand (Kaiser Fototechnik, Buchen,
Germany for Taipei and Polaroid MP-4 Land Camera 4401, Polaroid

Corp., Cambridge, MA, U.S.A. for Aberdeen). Pictures were taken at
day 3, 4, and 5 after setting the seeds into the pouch (day 0). At each
photo-taking, germination paper was carefully moved out from the
pouch with the help of the plastic board. The camera was set at ISO
400, 22 mm focal length, shutter speed at 1/13th second, and aperture
of F/5.6 using manual focus.

Image analysis – general principle: Image analysis was conducted
using Fiji (Schindelin et al. 2012), a distribution of ImageJ (Schneider
et al. 2012). Fiji has a graphical user interface with the ability to
perform image treatment in batch using user-defined commands.
Image analysis was performed through three main steps (Figure 1): i)
the area to be analyzed was cropped and converted into a black-and-
white image using a threshold value, ii) noise was removed, and iii)
measurements of interest were extracted. Details of the image anal-
yses of different traits and the threshold value is provided below.
Pixels were converted into standard distance units using grids on the
copy stand of known size. For images taken in Taipei, 450 pixels equal
30 mm and for those taken in the Aberdeen, 222 pixels equal to
25.4mm. All images were visually inspected and images were discarded
from subsequent analyses if the test line show poor germination
(, 5 seed germinated) or poor growth.

Image analysis–root traits: Images were first cropped to keep the area
occupied by roots. The cropped images were then split into green, red,

Figure 1 Seed vigor image-based phenotyping pipeline.
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and blue channels using “Split channels” in Fiji. The blue channel was
retained for its better separation of roots from the background. To
extract the root surface area (white to light gray) from the background
(dark gray), a threshold value was set empirically at approximate
1.7 times of median gray value of the image and was slightly adjusted
within each batch to fully capture the root surface area. Background
noise was removed with the help of the “Analyze Particles” function
in Fiji: particles with size between 0 and 300 pixels were defined as
noise removed; noise with particle size larger than 300 pixels were
manually removed after visual inspection. “Create selection” and
“Measure” were further used to select and measure root surface area.
For each image, the total number of roots and the number of
germinated seeds were counted through visual inspection. Other
derived traits are listed in Table 1.

Image analysis–shoot traits: The shoot part of the image was cropped
from the original image and converted to gray-scale using the “8-bit”
function. To distinguish shoot from background, a threshold value
was set empirically as 1.4 times of median gray value and was slightly
adjusted within each batch. Images were visually inspected and noises
were manually removed. Shoot was identified using “Analyze Par-
ticles” where particle size was set from 300 to infinity pixels. Because
most shoots grew upright, we used “Feret diameter”, an option in “Set
measurement” to measure the shoot length. All traits investigated in
this study are listed in Table 1.

Phenotypic data cleaning
Lines showing poor growth were removed prior to GWA. “Good” or
“poor” growth of each line was defined empirically using two sets of
parameters. One set of parameters was root or shoot growth rate
between day 4 and day 5 (RG_5 and SG_5, respectively). For root
traits, lines were discarded if its RG_5 was smaller than 7 and 4 mm2

day-1 in Taipei and Aberdeen, respectively. For shoot traits, a line was
discarded if its SG_5 was less than 12 mm per day and 4 mm day-1 for
lines assayed in Taipei and Aberdeen, respectively. The second set of
parameters was related to the image quality. For root traits, all images
were visually inspected and classified into four categories: category
1 indicated the best quality where all roots were captured using the
image analysis method and category 4 indicated the worst quality
where less than half of the roots were captured. Only images of
categories 1 and 2 were retained for subsequent root-related analyses.
For shoot traits, values of average shoot length may be biased by
variable emergence of shoots. Therefore, a line was discarded from

further analysis if more than one shoot or three shoots were emerged
at day 5 for Taipei and Aberdeen, respectively.

Genotypic data
Genotypic data consisted of 22,767 single nucleotide polymorphism
(SNP) markers, among which 4,561 were acquired using the Illumina
iSelect 6K chip array and 18,206 were genotyping-by-sequencing
(GBS) SNP markers (Bekele et al. 2018; Esvelt Klos et al. 2016).
Briefly, SNPs from the Illumina 6K chip were called initially using the
Genotyping module of the GenomeStudio software v.2011.1 (Illu-
mina Inc., San Diego, CA), followed by the elimination of multiallelic
and monomorphic SNPs, as well as SNPs with poor genotype calls
resulting from weak signal or ambiguous clustering through visual
inspection as described in (Esvelt Klos et al. 2016; Tinker et al. 2014).
GBS-SNPs were called using the UNEAK pipeline (Lu et al. 2013), a
de novo GBS-SNP calling pipeline which does not require a reference
genome sequence, with the PstI‐MspI restriction enzyme combina-
tion, as described in (Huang et al. 2014) with an updated nomen-
clature (Bekele et al. 2018). SNP markers of both technologies were
downloaded from T3/Oat (https://oat.triticeaetoolbox.org/) and we
filtered the data at per marker level with a missing rate , 0.2,
heterozygosity , 0.1 and minor allele frequency (MAF) ≧ 0.05.

Statistical analysis
All statistical analyses were performed using R (R Core Team 2018).
We have tested the genotype · location effect on the original traits
using the R package “lme4” (Bates et al. 2015) by comparing the
reduced model to the full model where the genotype · location effect
was included. Since the genotype· location effect was significant,
subsequent analysis were performed per each location. Analysis of
variance (ANOVA) was performed using the R package “augmen-
tedRCBD” (Aravind et al. 2020). Broad sense heritability (H2) was
estimated based on the sum of squares of the ANOVA table. Batch
effect was estimated as the marginal mean of the six check varieties
and the adjusted trait value for each test oat line was calculated by
subtracting batch effect from initial values. Further pairwise corre-
lation and GWA were conducted based on the adjusted values.
Pairwise correlation was conducted using cor function in R while
GWA was conducted separately for each replicate, using the method
of Fixed and random model Circulating Probability Unification
(FarmCPU) implemented in R (Liu et al. 2016). This method divides
the multiple loci linear mixed model into two parts: a fixed effect
model (FEM) and a random effect model (REM). FEM and REMwere

n■ Table 1 Trait designations and descriptions

Trait name Acronym Description (units) Definition

Original trait
Root number RN Average number of roots Total root number/number of germinated seeds
Root surface area RSA_i Root surface area measured at day i (mm2)
Shoot length SL_i Shoot length measured at day i (mm)
Derived trait
Average root surface area AVRSA Root surface area at day 5 divided by root number

(mm2)
RSA_5/RN

Root growth rate RG_i Difference of root surface area between two
subsequent time points (mm2�day-1)

RSA_i – RSA_i-1

Root relative growth rate RRGR_i Root growth rate divided by the root surface area at
the earlier time point (day-1)

(RG_i)/RSA_i-1

Shoot growth rate SG_i Difference of shoot length between two subsequent
time points (mm�day-1)

SL_i - SL_i-1

Shoot relative growth rate SRGR_i Shoot growth rate divided by the shoot length at the
earlier time point (day-1)

(SG_i)/SG_i-1
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used iteratively. FEM includes one-by-one marker testing; multiple
associated markers were further treated as covariates to control false
positives. To avoid the model over-fitting problem in FEM, the
associated markers, or pseudo quantitative trait nucleotide (pseudo
QTN), were estimated in REM by using them to define kinship. The
FEM is as follows:

yi ¼ Mi1b1 þMi2b2 þ . . .þMitbt þ Sijdj þ ei

where yi is the observation of individual i, Mi1;Mi2; . . .Mit are t
pseudo QTN, b1; b2; . . . bt are the corresponding effect of each pseudo
QTN, Sij is the jth marker to be tested in the model, dj is its effect and
ei is the error term following a normal distribution Nð0;s2

e Þ: Initially,
pseudo QTL are not available. Each marker is then tested and the
most significant ones will be retained in the model and will be
optimized through the REM:

yi ¼ ui þ ei

where yi and ei is as defined in FEM and the ui is the total genetic
effect of individual i. The expectation the individuals’ total genetic
effects is zero. The variance and covariance matrix of the individuals’

total genetic effects can be modeled as G ¼ 2Ks2
a, where K is the

kinship derived from pseudo QTN and s2
ais an unknown genetic

variance.
Bonferroni threshold at a = 0.1 was used to define pseudo QTN at

FEM, which corresponded to 4.3 · 1026. For each trait, zero to five
PCs were included in the model to correct for the effect of population
structure, and the best-fit model for a given trait was selected based on
quantile-quantile plot. Given the stringency of Bonferroni correction,
a post hoc threshold was set at a false discovery rate (FDR) of 10%.
A linkage group homeologous circle diagram was created using
R/circlize (Gu et al. 2014).

Sequence alignment
BLASTN 2.9.0+ (Altschul et al. 1997) was used in a local work station
to compare context sequences of trait-associated markers to the
sequences of three model cereals, Brachypodium distachyon (strain
Bd21, Brachypodium_distachyon_v3.0), maize (cv. B73, RefGen_v4),
and rice (cv. Nipponbare, IRGSP-1.0). A word size of 7 was set to
optimize sequence comparison between species. The E-value thresh-
old was set at 10210 due to relative short sequence of GBS markers
(64 bp).

Data availability
Phenotypic data collected in the study have been uploaded to T3/Oat:
https://triticeaetoolbox.org/oat/. Supplemental files are available at
FigShare. Supplementary S1 contains Figure S1 to S6: Figure S1 shows
the experimental design of oat seed vigor phenotyping in this study;
Figure S2 shows the growth difference between the two replicates.
Figure S3 contains distribution of adjusted value of seed-vigor traits of
CORE in two replicates; Figure S4 shows the correlation between
traits between the two replicates; Figure S5 shows the correlation
between traits in Taipei; Figure S6 shows the correlation between
traits in Aberdeen. Supplementary S2 contains ANOVA results of
traits. Supplementary S3 contains Manhattan plots and Q-Q plots for
all traits not presented in the main body of the text. Supplementary S4
contains trait value boxplots based on allele contrast of trait-associated

n■ Table 2 Test of genotype3 location interaction on original traits

Trait Model AIC BIC logLik x2 P-value

RSA_4 Reduced 3299.1 3358.8 21638.6
Full 3289.6 3354.6 21632.8 11.6 0.000674 ���

RSA_5 Reduced 3344 3403.6 21661
Full 3333.2 3398.3 21654.6 12.8 0.000344 ���

SL_4 Reduced 2584.9 2643.6 21281.4
Full 2568.7 2632.8 21272.3 18.2 1.99E-05 ���

SL_5 Reduced 3041.1 3100.6 21509.5
Full 3019.5 3084.5 21497.7 23.6 1.20E-06 ���

Compared to the Reduced model, Full model has one additional term which is
the interaction between the test genotype and location. AIC, Akaike information
criterion; BIC, Bayesian information criterion; logLik, log likelihood; x2, x2 test
value between reduced and full model with one degree of freedom; P-value,
P-value of the x2 test.

n■ Table 3 Summary statistics of seed vigor phenotypic data

Taipei Aberdeen

Trait Min Max Mean Median SD CV H2 Min Max Mean Median SD CV H2

Root (564/452)a

RN 2.7 4.9 3.4 3.3 0.5 13.4 0.86 2.6 5.1 3.4 3.3 0.4 13.2 0.86
RSA_3 (mm2) 12.1 157 93.9 95.8 24.0 25.6 0.45 NA NA NA NA NA NA NA
RSA_4 (mm2) 41 203.1 125.9 127.8 28.2 22.4 0.42 17.8 156.5 81.4 78.8 24.6 30.2 0.56
RSA_5 (mm2) 67.7 244.6 154.7 155.6 31.6 20.5 0.55 35 207.8 100.4 97.9 27.8 27.7 0.45
AVRSA (mm2) 18.1 73 45.8 45.3 9.6 21.0 0.58 7.4 56.8 30 29.4 7.9 26.3 0.45
RG_4 (mm2�day-1) 1.6 77.4 32.1 31.4 13.7 42.9 0.65 NA NA NA NA NA NA NA
RG_5 (mm2�day-1) 7.4 78.7 28.8 27.4 12.0 41.5 0.68 4 65.3 19 17 10.8 57.0 0.31
RRGR_4 (day-1) 0 2.5 0.4 0.3 0.2 65.6 0.66 NA NA NA NA NA NA NA
RRGR_5 (day-1) 0.1 1.3 0.2 0.2 0.1 50.1 0.57 0 1.2 0.3 0.2 0.2 64.4 0.32

Shoot (567/592)a

SL_3 (mm) 7.2 32.99 19.3 19.1 3.7 19.2 NA NA NA NA NA NA NA NA
SL_4 (mm) 13.43 73.37 33.9 33.2 6.5 19.2 0.71 9.7 38.4 20.2 20.1 4.9 24.3 NA
SL_5 (mm) 16.43 108.98 54 52.7 13.3 24.6 0.71 14.3 66.3 32.7 32 7.8 23.9 NA
SG_4 (mm�day-1) 1.32 43 14.6 14.3 4.4 30.0 NA NA NA NA NA NA NA NA
SG_5 (mm�day-1) 0.67 45.88 20.2 19.5 8.3 41.2 0.72 2.1 31.4 12.5 12.1 4.5 36.1 NA
SRGR_4 (day-1) 0.08 1.87 0.8 0.8 0.2 31 NA NA NA NA NA NA NA NA
SRGR_5 (day-1) 0.04 1.26 0.6 0.6 0.2 33.5 0.75 0.1 3.3 0.7 0.6 0.2 36.8 NA
a
No. of individual of good quality data collected in Taipei (left to the slash) and in Aberdeen (right to the slash).

NA, not available. Broad sense heritability (H2) are not available when the data of some check varieties were missing in some blocks, impeding the variance estimation.
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Figure 2 Manhattan and quantile-quantile plots for RSA5, RG5, SL5, SG5 collected in Taipei. Green horizontal line indicates the Bonferroni
threshold at a=0.1.
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SNPs. Supplemental material available at figshare: https://doi.org/
10.25387/g3.12721535.

RESULTS

Phenotypic data
We have observed obvious growth difference between the two
replicates: the replicate grown in Taipei was generally healthier than
the one grown in Aberdeen (Supplementary Figure S2). A test of
genotype · location interaction using mixed model on original traits
showed significant genotype · location interaction (Table 2). The
significant genotype· location interaction, as well as the obvious
difference between the two replicates, led us to estimated adjusted
genotypic values within each replicate. ANOVA was performed on
traits of interest for each replicate and broad sense heritability (H2)
was estimated based on the sum of squared of the ANOVA table

(Supplementary S2) where ever it was possible. Root number (RN)
showed significant genotypic effect (P , 0.001) for both replicates
and its H2 was high (0.86) in both replicates (Table 3). The batch
effect was not significant in Aberdeen (P = 0.23) and was slightly
significant in Taipei (P = 0.01; Supplementary Table). For all the other
traits, batch had significant effect (P , 0.001) for data collected in
both replicates, while genotype showed no statistically significant
effect. Therefore, it was necessary to calculate adjusted value for each
genotype based on the batch effect evaluated on replicated check
varieties. After removing poorly grown lines and images of bad
quality, the final number of individuals for root-related traits was
564 and 452 for Taipei and Aberdeen, respectively. For shoot-related
traits, the final number of individuals was 567 and 592 for Taipei and
Aberdeen, respectively (Table 3). All traits investigated in this study
followed normal or closed-to-normal distributions (Supplementary
Figure S3).

n■ Table 4 Root trait-associated markers identified in the CORE panel

Trait Marker Mrga Pos (cM) Sub. effectb P-valuec MAF Literatured

RSA_5 avgbs_29471.1.50 9 44.7 27.0 3.40E-06 0.35
avgbs_cluster_34557.1.39 9 44.7 26.5 1.19E-05 0.38
avgbs2_169620.1.39 9 44.7 26.5 1.19E-05 0.38
avgbs_cluster_33692.1.63 9 47.1 26.8 4.36E-06 0.39

RG_4 GMI_ES01_c5178_479 4 45.0 2.2 2.47E-05 0.20
avgbs_115262.1.42 5 114.7 24.0 5.17E-08� 0.06
avgbs2_46371.1.64 5 131.6 6.3 2.12E-05 0.06
avgbs2_46371.1.8 5 131.6 6.3 2.12E-05 0.06
avgbs_12458.1.21 9 29.6 22.8 2.33E-06 0.31
avgbs_205346.1.41 12 57.4 3.0 6.68E-08� 0.36 1
avgbs_cluster_34786.1.14 17 87.1 3.1 3.86E-08� 0.19
avgbs_218823 18 10.9 21.6 1.50E-05 0.38
avgbs_cluster_38064.1.46 18 12.8 22.4 2.98E-05 0.08
avgbs_cluster_37097.2.27 23 22.3 22.1 4.49E-05 0.29
avgbs2_102913.1.47 28 57.3 23.4 2.43E-05 0.09 3, 4
avgbs2_10058.2.59 UKN — 4.9 2.51E-06 0.06

RG_5 avgbs_cluster_26155.1.55 2 72.7 2.6 2.40E-05 0.37 2
avgbs2_122749.1.55 2 72.7 2.6 2.40E-05 0.37 2
avgbs_cluster_35609.1.46 2 87.3 21.3 2.33E-06 0.4
avgbs_49723.1.14 8 129.6 2.6 2.15E-06� 0.29 6
avgbs_21913.1.62 13 35.9 2.3 2.39E-06 0.35
avgbs_cluster_41284.1.50 15 32.7 21.9 1.66E-05 0.42
avgbs_92060.1.20 18 40.0 21.8 3.21E-05 0.31 2
avgbs_cluster_25488.1.14 21 146.0 23.1 2.42E-07� 0.16 5
avgbs_120739.1.46 24 41.8 22.8 7.76E-06 0.09
avgbs_218324 28 17.1 22.6 3.32E-05 0.07 3

RRGR_4 GMI_DS_LB_8372 13 59.6 20.047 8.46E-07� 0.27
avgbs_cluster_15604.1.25 17 55.6 20.055 2.38E-05 0.09
avgbs2_53658.1.10 18 60.3 20.104 1.26E-08� 0.08
avgbs_56897.1.18 28 36.8 20.086 3.51E-05 0.18
avgbs_cluster_31411.1.54 28 43.8 20.088 5.36E-08� 0.17 4
avgbs_cluster_29960.1.24 28 43.8 0.044 1.03E-05 0.15 4
GMI_GBS_13776 28 43.8 20.084 3.06E-05 0.19 4
GMI_GBS_96525 28 43.8 20.085 2.89E-05 0.19 4

RRGR_5 avgbs_cluster_10425.1.7 1 57.2 0.019 6.77E-06 0.46
avgbs_200217 4 50.3 0.021 9.28E-07� 0.34
avgbs_cluster_10309.1.10 6 28.1 0.021 3.43E-07� 0.44 2
avgbs_cluster_10035.1.11 13 106.5 0.020 1.84E-05 0.22
avgbs_207710 UKN — 20.029 1.41E-06� 0.1

AVRSA avgbs_29471.1.50 9 44.7 22.1 3.00E-06 0.35
avgbs_cluster_33692.1.63 9 47.1 21.9 1.17E-05 0.39
avgbs_cluster_28147.1.55 17 84.3 1.9 9.04E-06 0.46
GMI_ES03_c19505_223 17 85.3 1.9 6.90E-06 0.49

a
: “UKN” for unmapped SNPs. b: allelic substitution effect. c:� indicated markers having P-value below Bonferroni threshold. d: 1, (Holland et al. 1997); 2, (Huang et al.
2020); 3, (Siripoonwiwat et al. 1996); 4, (Sunstrum et al. 2019); 5, (Wooten et al. 2009); 6, (Tumino et al. 2017).
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In general, higher values were observed for data collected in
Taipei than in Aberdeen, except for shoot relative growth rate for
day 5 (SSGR5, Table 3). H2 followed similar trend which was
generally higher in the data collected in Taipei than in Aberdeen,
except for RN and RSA_4 (Table 3). Root traits generally showed
moderate H2 (0.31 to 0.68, Table 3) while H2 for shoot traits were
more important (0.71 to 0.75, Table 3). RN was stable and highly
correlated across the two replicates (Pearson’s r = 0.69, P , 0.001,
Supplementary Figure S4): RN varied between 2.7 and 4.9 in
Taipei and 2.6 and 5.1 in Aberdeen while the average (3.4) and
the median (3.3) were identical for both replicates (Table 3). Other
original traits, i.e., RSA and SL, were highly correlated across
different days within replicate (Pearson’s r = 0.77 – 0.93, P, 0.001,
Supplementary Figures S5 and S6), while the correlation was
significant, but to a lesser extent, for the joint consideration of
both replicates (Pearson’s r = 0.31 to 0.38, P , 0.001, Supplemen-
tary Figure S4). A similar trend was observed for the derived traits.

Genome-wide association and homeolog inference
We have identified the most appropriate GWA model for each trait
based on quantile-quantile plots (Figure 2, Supplementary S3). We
have identified 34 and 16 unique loci associated with root traits and
shoot traits, respectively, which corresponded to 41 and 16 unique
SNPs (Table 4 and Table 5, FDR , 10%), respectively. A unique
locus was defined as a unique position on the oat consensus map,
which may harbor several SNPs. MAF of trait-associated SNPs
varied between 0.06 and 0.49 and the allelic substitution effect were
generally small, even for highly significant SNPs (Table 4 and Table
5). For root traits, the 41 SNPs were associated with RSA_5, RG_4,
RG_5, RRGR_4, RRGR_5 and AVRSA, which were allocated on
16 linkage groups (LG) while 2 SNPs were unmapped; Seven
of them were highly significant, showing a p-value below the
Bonferroni threshold. SNPs avgbs_29471.1.50 and avgbs_cluster_
33692.1.63 were associated with more than one trait, both with
highly correlated RSA_5 and AVRSA.

The 16 SNPs associated with shoot related-trait were distributed
on 10 LG, with one unmapped. Seven of these SNP were statistically
significant at the Bonferroni threshold. For shoot trait-related SNPs,

avgbs_cluster_19949.1.14 was associated with both SL_5 and
SRGR_5 and the two SNPs associated with SG_5, avgbs_cluster_
38112.1.47 and avgbs_cluster_1872.1.10, were also significantly
associated with SRGR_5.

In order to have a clearer idea about the allele effect of the trait-
associated markers, we have examined the phenotypic distribution
of different alleles for markers associated with original traits, as well
as markers identified using Bonferroni threshold for the derived
traits (Supplementary S4). The median of phenotypic value between
the two alleles did not differ much, which was concordant with the
weak substitution effect of the trait-associated markers (Table 4 and
Table 5). Meanwhile, when we looked into the allelic mean within
germplasm of different genetic background, i.e., spring vs.. Southern
oats, we can notice a more pronounced allelic contrast in one
genetic background than the other. For example, the allelic contrast
of the marker avgbs_cluster_19949.1.14, associated with SL_5 col-
lected in Taipei, was more pronounced in Southern germplasm than
in the spring germplasm (Figure 3). When we selected the top and
bottom 10% of individual based on SL_5, the allelic contrast of this
marker was more accentuated than the full CORE panel, implying
this marker, although showing weak effect on the full panel, may
contribute more to the vigor difference between specific genetic
materials.

We further investigated the homeologous relationship between
associated SNPs based on the homeologous regions inferred by
Chaffin et al. (2016). For root traits, nine loci were organized into
four sets of homeologous regions, comprising of [Mrg02, Mrg12],
[Mrg05, Mrg06], [Mrg08, Mrg17], and [Mrg15, Mrg23, Mrg28]
(Figure 4). For shoot-related traits, nine loci were organized into
three sets of homeologous regions, consisted of [Mrg01, Mrg11],
[Mrg02, Mrg12], and [Mrg20, Mrg21] (Figure 5).

Most of the significant associations were identified on measure-
ments collected in Taipei except for five significant SNPs associations
with shoot traits collected in Aberdeen (GMI_ES17_c1687_437,
avgbs_cluster_49442.1.14, avgbs2_96578.1.61, avgbs_cluster_3597.1.11,
avgbs_310061; Table 5). Nonetheless, SNPs associated to traits collected
from two replicates fell into the homeologous regions [Mrg01, Mrg11]
and [Mrg02, Mrg12].

n■ Table 5 Shoot trait-associated markers identified in the CORE panel

Trait Marker Mrga Pos (cM) Sub. effectb P-valuec MAF Literatured

SL_5 avgbs_cluster_3321.1.50 11 69.3 22.8 3.75E-06 0.18
avgbs_cluster_19949.1.14 15 87.2 22.5 4.19E-07� 0.44
avgbs2_169934.1.10 24 41.3 23.1 7.46E-06 0.12

SRGR_5 GMI_ES17_c1687_437† 1 39.3 20.058 1.82E-05 0.15
avgbs_22768 2 27.3 0.039 6.43E-07� 0.23 8
avgbs_cluster_38112.1.47 3 55.8 20.035 3.20E-06 0.34
avgbs_cluster_49442.1.14† 3 77.8 20.061 3.82E-06 0.12
GMI_ES03_c5596_272 3 101.6 0.027 2.96E-06 0.43 2
avgbs_cluster_1872.1.10 4 40.2 20.027 3.43E-05 0.44
avgbs2_96578.1.61† 9 78.3 20.085 4.38E-06 0.15
avgbs_125970.1.51 11 42 0.029 4.79E-06 0.41
avgbs_cluster_3597.1.11† 12 33.4 20.062 3.28E-08� 0.25 4,7
avgbs2_183559.1.25 12 40.2 20.047 3.49E-07� 0.19 1,3,4,6
avgbs_cluster_19949.1.14 15 87.2 20.034 1.53E-07� 0.44
avgbs_cluster_26077.1.22 20 226.6 20.022 2.57E-05 0.44
avgbs_220709.1.57 21 22.7 20.042 1.52E-06� 0.21 4
avgbs_310061† UKN — 20.122 3.36E-07� 0.25

a
: “UKN” for unmapped SNPs. b: allelic substitution effect. c:� indicated markers having P-value below Bonferroni threshold. d: 1, (Holland et al. 1997); 2, (Huang et al.
2020); 3, (Siripoonwiwat et al. 1996); 4, (Sunstrum et al. 2019); 5, (Wooten et al. 2009); 6, (Beer et al. 1997); 7, (Herrmann et al. 2014); 8, (Zimmer et al. 2018).
†: associated SNPs identified on Aberdeen replicate.
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Identification of candidate genes
To identify candidate genes related to the seed vigor-related SNPs
identified in this study, we blasted the context sequences around
the SNPs to the reference genome of three model monocots,
brachypodium, maize and rice (Table 6). Four SNPs were highly
similar to sequences from all three organisms, except avgbs_
29471.1.50 which matched only rice and maize. All significant
matches (E , 10210) were retained. Context sequence around
avgbs_cluster_41284.1.50, associated to RG_5, was matched to
Os01g0675500, Bradi2g46410, and Zm00001d043879 which were
predicted to be similar to a glucuronosyltransferase, the SNP (A/T)
would change phenylalanine to isoleucine. Context sequence

around GMI_ES17_c1687_437, associated with SRGR_5, was
matched to Os03g0191100, Bradi1g71800, Zm00001d048218, and
Zm00001d028008, which was predicted to be similar to a mito-
chondrial carrier protein domain containing protein in rice. The
SNP (A/G) was located in the coding region and was a synony-
mous mutation. Context sequence around avgbs2_183559.1.25,
also associated with SRGR_5, was matched to Os06g0146400d,
Bradi1g51010.1d, and Zm00001d036145, which was predicted to
code for an iron-sulfur cluster protein in rice and brachypodium.
The SNP (T/C) was located in the coding region and would cause a
change from leucine to proline. Context sequence around avgbs_
29471.1.50, associated with AVRSA, matched to genome sequence

Figure 3 Allelic contrast of avgbs_cluster_19949.1.14 in the whole CORE panel (568 individuals), a subset of spring oats from the CORE
(407 individuals), a subset of Southern oats from the CORE (90 individuals) and the top and bottom 10% selected 185 individuals from CORE.
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of rice and maize, although no known gene model was predicted
for the matched sequences.

DISCUSSION

Seed vigor phenotyping pipeline
Measuring root traits has long been difficult and laborious, especially
if many accessions are to be assayed. In this study, we used a simple
approach with germination pouches which allowed us to measure
seed vigor-related traits on a large population of 650 individuals.
Previous studies on seed or seedling vigor regarding root traits
have used other methods, such as growing plants in paper rolls
or hydroponic systems, with images acquired through scanning
(Atkinson et al. 2015; Clark et al. 2013; Pace et al. 2015). Compared
to paper rolls or hydroponic systems, germination pouches occupy
much less space and are more suitable for large-scale phenotyping.
Germination pouches also provide a non-destructive measurement at
multiple time points, and image quality can be effectively controlled
once the appropriate camera parameters are identified. Image acqui-
sition was time-efficient in our study: pictures of 150 oat lines were
taken within less than 2 hr. The maximum observation time was
conditioned by the size of the germination pouch and the growth rate
of the target plant. In our experiment, the roots of fast-growing oat
lines would reach the bottom limit of the germination pouch after five

days under 25�, therefore, we limited our experiment to five days.
Despite this limitation, another advantage of the germination pouch
is its flexibility. With slight changes to the number of seeds per pouch,
more traits, such as root angle, root depth and root diameter, could be
measured.

The graphical user interface of the Fiji image analysis software
facilitated flexible analysis adjustment and batch image processing
which enabled a speedy and flexible image analysis. We opted to
measure total root surface area (RSA) instead of the more commonly
used root length to characterize seedling root growth. Measurement
of root surface area, potentially more reflective of root vigor, was
made possible by the imaging system. This side-stepped difficulty
with tangled or intertwined roots that can complicate root length
measurement, even with image analysis tools. In addition, previous
studies have shown high correlation between RSA and total root
length (Pace et al. 2015;Wang et al. 2018). Therefore, we consider our
study to be comparable to previous work.

Seed vigor variation
Seed vigor is a complex trait involving shoot and root growth. In this
study, variation among lines was observed for all traits in both
replicates with a variable H2. The data collected in Taipei were
generally larger than the data collected in Aberdeen (Table 3).
Obvious growth difference was observed on the seedling pictures

Figure 4 Root-trait-associated
markers positioned on the oat con-
sensus map. Blue lines at the in-
ner circle indicate trait-associated
markers located within homeolo-
gous regions while red lines rep-
resented trait-associated markers
not located within homeologous
regions. Homeologous regions are
related by the blue ribbon. The
inferred homeologous regions
were from Chaffin et al. (2016)
and the annotations of oat sub-
genomes were based on Yan
et al. (2016a).
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taken at both locations (Supplementary Figure S2). This should be
related to the sensitivity of seed vigor vis-à-vis of environmental
factors. Indeed, we have observed that roots would shrivel at the
contact of the germination pouch and we observed a higher pro-
portion of shriveled roots in the Aberdeen replicate. There may be
other unknown environmental factors influencing on the phenotyping
pipeline. For example, unknown environmental effects on coleoptile
length in wheat have been noticed under controlled environments
(Spielmeyer et al. 2007). In rice, mesocotyl length, an integral part of
seedling shoot length, is influenced by factors like light, auxin, abscisic
acid, jasmonate, and strigolactone (Hu et al. 2013; Tsunoda and
Takahashi 1984). Roots respond to environmental factors like nutri-
ents, water availability, and plant hormones such as auxin and cyto-
kinin; previous studies have identified large genotype · environment
and QTL · environment interactions in rice (MacMillan et al. 2006;
Kamoshita et al. 2002). In our study, we have observed a lower H2 for
root-related traits than that for shoot-related traits, which suggested the
higher sensitivity of roots to the environmental factors.

Root number was relatively stable across the two replicates,
compared to other seed vigor traits. Root number may be a marker
of crop improvement since it has been reported that an increased
number of seminal roots was observed in domesticated wheat, maize
and barley compared to their wild relatives (Robertson et al. 1979;

Burton et al. 2013; Grando and Ceccarelli 1995). In wheat, although
both wild and domesticated materials possessed five root primordia
in the embryo, the 4th and 5th primordia of wild wheat would not be
activated unless the plant sensed water stress (Golan et al. 2018).
Under well-watered condition, three seminal roots were sufficient to
maintain the seedling growth. Such information is not yet available
for oats. Despite the high H2 for RN, we did not identify any marker
associated with RN. It is mostly probably that our germplasm
consisted of elite germplasm where the RN did not vary much
(Table 3). We may be able to find more RN variation in landraces
or wild relatives, as shown in a wheat study (Golan et al. 2018).

Genetic architecture of oat seed vigor and
candidate genes
Seed vigor has been shown to be controlled by multiple QTL in wheat,
maize and rice (Pace et al. 2015; Atkinson et al. 2015; Rebetzke et al.
2014; Li et al. 2017; Lu et al. 2016; Wang et al. 2018). We applied
GWA to dissect the genetic architecture of seed vigor in elite oat lines.
To avoid the possible type II error, i.e., consider a marker-trait
association negative while it is indeed positive, due to the stringency
of Bonferroni correction, we also used FDR to identify significant
association. Trait-associated SNPs identified in our study showed
small allelic substitution effect (Table 4 and Table 5), together with

Figure 5 Shoot-trait-associated
markers positioned on the oat con-
sensus map. Blue lines at the in-
ner circle indicate trait-associated
markers located within homeolo-
gous regions while red lines repre-
sent trait-associated markers not
located within homeologous re-
gions. Homeologous regions are
related by the blue ribbon. The
inferred homeologous regions
were from Chaffin et al. (2016)
and the annotations of oat sub-
genomes were based on Yan
et al. (2016a).
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the moderateH2 of our trait (Table 3) suggested that seed vigor in oat
was complex and controlled by many loci of minor effect. Although
SNPs significantly associated with data collected in Taipei were not
those associated with data collected in Aberdeen, all significant
markers were organized into homeologous regions. This both
strengthens our confidence in these associations and suggests that
conserved regions from different subgenomes might influence these
similar traits. Ten loci identified in our study overlapped with, or were
close to (, 5 cM), previously reported plant height QTL (Holland
et al. 1997; Huang et al. 2020; Siripoonwiwat et al. 1996; Sunstrum
et al. 2019; Wooten et al. 2009; Beer et al. 1997; Herrmann et al.
2014)., providing further support for these QTL. We have focused on
plant height QTL in the literature because the information on oat
seedling QTL is lacking and the positive correlation between root size
and plant height has been revealed in field studies for oats (Li et al.
2008; Zhang et al. 2009).

It is known that trait-associated SNP identified using GWA may
not be directly the causal SNPs but in linkage disequilibrium with the
causal SNPs (Faye et al. 2013; Schaid et al. 2018). Nevertheless, we
tried to investigate whether trait-associated SNPs identified in the
present study were located in plausible candidate genes for seed vigor
in rice, brachypodium and maize. The context sequence of avgbs_
cluster_41284.1.50, associated to RSA_5, showed great similarity
with genes predicted to code for a glucuronosyltransferase in rice,
brachypodium and maize. The gene model identified in rice,
Os01g0675500, belonged to OsGT43 family which has been shown
to be involved in xylan elongation (Lee et al. 2014). Homologs of
GT43 family in Arabidopsis and Brachypodium have been reported
to be essential for xylan biosynthesis, a major component of cell
wall, required during root development (Lee et al. 2010; Wu et al.
2010; Whitehead et al. 2018). In addition, its maize ortholog,
Zm00001d043879, exhibited high expression level in primary root
and root cortex (Walley et al. 2016). Therefore, this is a plausible
candidate gene for oat early seed vigor. GMI_ES17_c1687_437
matched to a predicted mitochondrial carrier protein. At germina-
tion, seeds exit the extreme quiescent state and enter into an active
state upon water uptake, which activates seed metabolism and the
biogenesis of mitochondria. It has been shown that a mitochondrial
carrier family is involved in arginine metabolism during rice seed
germination (Taylor et al. 2010). On the other hand, the maize gene
model, Zm00001d048218, showing the highest similarity with GMI_
ES17_c1687_437, exhibited high expression in the primary root and
coleoptile of germinating seeds (Stelpflug et al. 2016; Hoopes et al.
2019), which together suggested this candidate apropos to seed vigor.
The context sequence of avgbs2_183559.1.25, associated with
SRGR_5, showed similarity to Os06g0146400, Bradi1g51010,
and Zm00001d036145. Gene prediction in rice and brachypodium
suggested the gene coding for iron-sulfur cluster protein. Iron-
sulfur cluster proteins are integral to plant growth and develop-
ment. Defects in some proteins involved in iron-sulfur assembly
and transfer cause delayed growth or lethal seedling in Arabidopsis
(Lu 2018). The maize ortholog Zm00001d036145 has no available
function prediction and its expression in maize seedling was weak
(Stelpflug et al. 2016; Hoopes et al. 2019).

In addition to the investigation on plausible seed vigor candidate
genes, the homeologous relationship between trait-associated-SNPs
supports the reliability of our results. Indeed, for polyploidy crops,
gene families tend to organzed in homeologous regons as a conse-
quence the polyploidization. It has been shown in cotton that the two
homeologous copies of GhSusA1, a gene increased cotton fiber yield
and quality, were both expressed in ovules and fibers at different daysn
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post-anthesis (Jiang et al. 2012). The perspective of making use of
homeologous relationship to identify candidate genes/loci for crop
improvement has recently been reiterate in a review article (Rasheed
et al. 2020).

CONCLUSION
The image-based phenotyping pipeline enabled us to measure seed
vigor traits across a large oat panel in an efficient way. We observed
variation within the traits that we have investigated. The moderate H2,
together with small effect trait-associated markers, suggested that
seed vigor in oat is complex and under control of many loci of small
effect. To make full use of data collected in the present study, further
experiment in field condition should complement the results of the
present study which were collected in lab condition. It will be
interesting to explore the trait variation and its underlying genetics
in other genetic background, such as landraces, or further study the
physiological implications using contrast genotypes. Fifty loci were
significantly associated with root or shoot traits and some of them
were located at inferred homeologous regions. We further identified
four SNP markers located within candidate gene models among
which are highly plausible biological candidate genes for seed vigor:
a glucuronosyltransferase involved in xylan synthesis (avgbs_cluster_
41284.1.50), mitochondrial carrier protein (GMI_ES17_c1687_437),
and iron-sulfur protein (avgbs2_183559.1.25). We have provided a
first large GWA study in oat seed vigor within elite germplasm under
mild temperature.
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