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Abstract: Usually, miRNAs function post-transcriptionally, by base-pairing with the 3′UTR of target
mRNAs, repressing protein synthesis in the cytoplasm. Furthermore, other regions including gene
promoters, as well as coding and 5′UTR regions of mRNAs are able to interact with miRNAs. In
recent years, miRNAs have emerged as important regulators of both translational and transcriptional
programs. The expression of miRNA genes, similar to protein-coding genes, can be epigenetically
regulated, in turn miRNA molecules (named epi-miRs) are able to regulate epigenetic enzymatic
machinery. The most recent line of evidence indicates that miRNAs can influence physiological
processes, such as embryonic development, cell proliferation, differentiation, and apoptosis as
well as pathological processes (e.g., tumorigenesis) through epigenetic mechanisms. Some tumor
types show repression of tumor-suppressor epi-miRs resulting in cancer progression and metastasis,
hence these molecules have become novel therapeutic targets in the last few years. This review
provides information about miRNAs involvement in the various levels of transcription and translation
regulation, as well as discusses therapeutic potential of tumor-suppressor epi-miRs used in in vitro
and in vivo anti-cancer therapy.
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1. Introduction

Although research into RNA biology has been ongoing for more than two decades, almost each
year brings new discoveries. Until recently, it was thought that microRNAs (miRNAs) act mainly in
the cytoplasm at the post-transcriptional level. Interestingly, miRNAs can exert regulatory effect both
in the cell (i.e., cytoplasm and nucleus) in which they are produced and in neighboring cells. The latter
intracellular transfer of miRNA is mediated by gap junction channels or exosomes [1]. Interestingly,
mature miRNAs can regulate one or more mRNA targets, but also a single mRNA transcript can be
bound and regulated by many different miRNAs. It is estimated that each miRNA can recognize
~100–200 target sites of the transcriptome and the inhibitory effect on expression can be achieved at
1000 copies per cell [1,2]. miRNAs can recognize and bind to 3′UTR, 5′UTR and coding sequence of
their targets’ mRNA, as well as to promoter regions. Considering miRNAs variety and localization,
cell type and cell state, their possibilities to regulate gene expression are limitless.

2. Inhibition or Activation of Translation

Mature miRNAs (mainly guide strands) form a complex with Argonaut (AGO) proteins called
miRNA-induced silencing complex (miRISC) which interact with other proteins including DICER,
TRBP, PACT and GW182. The miRNA specific region called ‘seed sequence’ (which includes nucleotides
between 2 and 8, counting from the 5′ end of the miRNA) base-pairs with miRNA recognition elements
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(MREs) located on mRNA targets. miRISC complex binding to 3′UTR leads to mRNA cleavage or
mRNA decay and finally translation inhibition. For example, full complementarity of the seed region
to MRE induces AGO-2 endonuclease activity resulting in mRNA cleavage and destabilization of
AGO2-miRNA interaction that ultimately promotes miRNA degradation [3,4]. In contrast, incomplete
complementarity prevents AGO-2 endonuclease activity but initiates the recruitment of GW182 protein
family leading to mRNA decay. GW182 interacts with PABPC (polyadenylate-binding protein) that
promotes efficient mRNA deadenylation by recruiting poly(A)-deadenylase complexes (PAN2-PAN3
and CCR4-NOT). Subsequently, mRNA-decapping enzymes (DCP1-DCP2) recognize and remove the
5′-cap from mRNA transcripts making mRNA susceptible to degradation by 5′-3′ exoribonuclease
1 (XRN1) [5,6]. A recent study has revealed that mRNA decay is responsible for a large majority
(66–90%) of miRNA-mediated translation repression [7]. Moreover, miRISC can inhibit translation
at the initiation step probably through dissociation of eukaryotic initiation factors 4A (eIFA4-I and
eIFA4-II) making it difficult for ribosome scanning and assembly of the eIF4F translation initiation
complex [8,9].

In addition, miRNAs can also bind to target sites in the coding region and inhibit translation.
Probably, target sequences in the coding regions are used when the 3′UTR are too short or adjust to
protein abundance of alternative splice variants [10]. For example, Cardinali et al. have identified
that the AHNAK gene contains a miR-222 target sequence within the coding region hence miR-222 can
directly down-regulate its expression [11]. Additionally, a study by Splengler et al. has revealed an
abundance of miRNA target sites in gene coding regions [12].

Surprisingly, some studies have reported that miRNAs binding to 3′UTR or 5′UTR regions can
up-regulate gene expression by increasing translation rates of proteins.

It was demonstrated that translation activation can depend on the cell cycle state and proteins
that are bound to the AGO2-miRNA complex within the 3′UTR. Indeed, in serum starved cells
Fragile-X-mental retardation related protein 1 (FXR1) was recruited by the AGO2-miRNA complex
associated with AU-rich elements (AREs) at the 3′UTR and activated translation [13]. The
miRNA-mediated activation of transcription has been observed also in other quiescent cells, such as
immature oocytes of the Xenopus (e.g., Myt1 mRNA via AGO-miR16-FXR1 complex) [14].

Furthermore, it was revealed that miRNAs that bind to the 5′UTR can enhance translation through
various mechanisms. For example, liver specific miR-122 binding to RNA of hepatitis C virus protects
the single-stranded 5′ end from cytosolic exonuclease activities (increasing RNA stability against Xrn1)
and enhances the recruitment of ribosomes as well as possibly providing a scaffold for binding of other
essential factors for translation [15–18]. Another example is miR-10a that interacts with the 5′ terminal
oligopyrimidine (5′TOP) motif of ribosomal protein mRNAs and enhance their translation during
amino acid starvation [19]. Moreover, miR-346, produced mostly in brain tissues, binds to 5′UTR of the
receptor interacting protein 140 (RIP140) mRNA facilitating its association with the polysomes and
finally activating translation via an AGO2-independent manner [20].

3. Suppression or Enhancement of Transcription

Surprisingly, studies have shown bidirectional transport of the core components of miRNA
silencing machinery. It was demonstrated that several proteins including Importin-8, Importin α/β

(Impα/Impβ) and Exportin-1 (XPO1) mediate shuttling of key RISC components from the cytoplasm to
the nucleus, moreover, XPO1 is able to transport the nuclear RISC (miRNA-Ago-TNRC6A complex) to
the cytoplasm [21,22].

On the one hand, TNRC6A protein, also known as GW182, can be independently transported into
the nucleus binding directly to Impβ and interacting with Impα [23,24]. On the other hand, TNRC6A
facilitates the shuttling of miRNA containing AGO-2 into the nucleus via its own nuclear localization
signal sequence [25]. Besides, AGO-2 can be imported into the nucleus via IPO8 only when it loads
mature miRNA [26]. Figure 1 illustrates the different ways of delivering RISC proteins and miRNAs
from the cytoplasm into the nucleus.
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back to the cytoplasm by Exportin 1 (XPO1). In the nucleus, miRISC will interact with promoters or 
enhancers leading to transcriptional gene silencing (TGS) or transcriptional gene activation (TGA). 
The putative miRNA recognition elements (MREs) could be recognized by miRNAs that mediate 
chromatin silencing complex assembly or de novo DNA methylation at the promoter region resulting 
in compact, silent heterochromatin and TGS. Unlike, when miRISC interacts with TATA-box motifs 
enhancing promoter activities leading to TGA through enrichment of chromatin-remodeling factors 
and active chromatin marks. Moreover, miRNAs interaction with enhancers result in TGA through 
chromatin remodeling and the enrichment of active marks at enhancer regions. NLS—nuclear 
localization signal sequence. 
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AGGUUGKSUG-3’ motifs (where K is a uridine or a guanine) as well as the consensus ASUS 
sequence (where S is a cytosine or a guanidine) are presented in many miRNAs and are engaged in 
the nuclear translocation [27–29]. It is supposed that miRNAs translocation is controlled by RNA-
binding proteins (RBPs), however, molecular pathways are now recognized. Regarding processing 
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Figure 1. Transport of mature miRNAs and components of RISC (RNA-induced silencing complex)
into the nucleus. TNRC6A is shuttled from the cytoplasm into the nucleus either via its own NLS
sequence when it interacts with miRNA-AGO complex or independently via its interaction with
Importin β (Imp β) and Importin α (Impα). While mature miRNAs loaded into AGO-2 are translocated
into the nucleus by Importin 8 (IPO8) miRNA-AGO-TNRC6A complex can be exported back to the
cytoplasm by Exportin 1 (XPO1). In the nucleus, miRISC will interact with promoters or enhancers
leading to transcriptional gene silencing (TGS) or transcriptional gene activation (TGA). The putative
miRNA recognition elements (MREs) could be recognized by miRNAs that mediate chromatin silencing
complex assembly or de novo DNA methylation at the promoter region resulting in compact, silent
heterochromatin and TGS. Unlike, when miRISC interacts with TATA-box motifs enhancing promoter
activities leading to TGA through enrichment of chromatin-remodeling factors and active chromatin
marks. Moreover, miRNAs interaction with enhancers result in TGA through chromatin remodeling
and the enrichment of active marks at enhancer regions. NLS—nuclear localization signal sequence.

Moreover, it is proposed that miRNA nuclear localization can also be controlled by nuclear
localization signal sequences in miRNA molecules or full processing of pre-miRNAs in the nucleus.
Several studies show that various motifs, including AGUGUU-motif, 5′-UUGCAUAGU-3′ and
5′-AGGUUGKSUG-3′motifs (where K is a uridine or a guanine) as well as the consensus ASUS sequence
(where S is a cytosine or a guanidine) are presented in many miRNAs and are engaged in the nuclear
translocation [27–29]. It is supposed that miRNAs translocation is controlled by RNA-binding proteins
(RBPs), however, molecular pathways are now recognized. Regarding processing of pre-miRNA
molecules and their loading into nuclear RISC complex, there are many uncertainties that need to
be investigated.

Although the functions of nuclear miRNAs have not been fully elucidated, it is suggested that they
can regulate both transcriptional rates and post-transcriptional levels of mRNAs. miRNA-promoter
interaction mediated by AGO proteins may either suppress or activate transcription depending on
the location of their target region and epigenetic status of the promoter [22,30]. Genome-wide
analysis revealed that human promoters contain miRNA-seed matching sites, suggesting that
miRNA-mediated transcription regulation is likely to be a common phenomenon [31]. On the one hand,
Benhamed et al. demonstrated that AGO-2 and let-7f are involved in the transcriptional repression
of proliferation-promoting genes regulated by the retinoblastoma (Rb)/E2F repressor complex in
senescence [32]. The putative MREs for the let-7f have been localized in the promoters of two E2F-target
genes CDC2 and CDCA8. Similarly, nuclear miR-522 suppresses transcription of CYP2E1 gene by
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interacting with its promoter forming a DNA:RNA hybrid which probably prevents binding of Pol II
and transcription factor [33]. On the other hand, Zhang et al. revealed that several miRNAs, such as
let-7i, miR-138, miR-92a and miR-181d bind to the TATA-box motifs and enhance the promoter activities
of interleukin-2, insulin, calcitonin or c-Myc, respectively [34]. Also, Cyclin B gene has a sequence
located in its promoter that interacts with miR-744-5p and miR-466d-3p leading to transcriptional
upregulation [35]. A recent study has revealed, that miRNAs (miR-26a-1, miR-339, miR-3179, miR-24-1
and miR-24-2) are able to induce expression of neighboring genes and function as enhancer (cis-acting
DNA elements) regulators [36]. Moreover, this study has also shown that miR-24-1 (located in the
enhancer region) increases expression of FBP1 and FANCC genes and triggers direct chromatin state
alteration of the FBP1 enhancer that activate transcription. Another notable fact is that transcriptional
gene silencing (TGS) and transcriptional gene activation (TGA) can be achieved by miRNA-mediated
epigenetic regulation. Indeed, miRNA directs the RNA-induced transcriptional silencing complex
(RITS), which consists of chromatin remodeling enzymes (e.g., HDAC1, EHMT2 and EZH2) and DNA
methyltransferase (DNMT3A), to promoter leading to the transition of active chromatin structure to
silent heterochromatin [31]. According to the study carried out by Kim and co-workers miR-320 directs
to the promoter region AGO-1 that acts as the effector protein for transcriptional silencing of POLR3D
gene [37]. Furthermore, simultaneous enrichment of tri-methyl histone H3 lysine 27 (H3K27me3, a
repressive chromatin mark) and EZH2, a histone methyltransferase that mediates H3K27me3, has
been observed at the POLR3D promoter [37]. Another study has revealed that miR17-5p and miR20a,
encoded within a poly-miRNA cluster miR-17-92, are involved in the acquisition of heterochromatin
marks at the promoters through seed-paring manner [38]. miRNA-mediated TGS is involved in cell
differentiation processes. For example, during granulopoiesis miR-223-RISC interaction with the
promoter of nuclear factor I-A (NFI-A) results in the recruitment of Polycomb group complex and
histone-modifying enzymes that repress transcription of NFI-A, an important step for granulocytic
differentiation [39]. It is postulated that specific miRNA can initiate TGS through de novo DNA
methylation or chromatin modification in human cancer cells. In fact, miR-10a with AGO-1 and
AGO-3 reduces HOX4 expression in human breast cells mediating in de novo DNA methylation and
accumulation of repressive chromatin marks (H3K27me3 and H3K9me2, di-methyl histone H3 lysine
9) at its promoter [40].

In contrast, AGO-miRNA complex may activate the expression of target loci by either disruption of
the recruitment of silencing proteins (e.g., PRC2) to lncRNAs (long non-coding RNAs) or recruitment of
protein complex containing transcriptional activators (e.g., transcription factors) [31,41]. In the nucleus,
lncRNAs regulate epigenetic silencing of adjacent genes through recruiting chromatin-remodeling
factors in close proximity of their promoters [42]. In case of miR-744 and Ccnb1 gene, miRNA-mediated
TGA rely on the recruitment of AGO proteins and RNA Pol II enrichment as well as active chromatin
marks (such as H3K4me3, tri-methyl histone H3 lysine 4) at the regulated gene promoters [35].
Moreover, miR-373 activates transcription of E-cadherin and CSDC2 genes only via enrichment of
RNA Pol II at their promoters [43], while miR-205 induces the expression of IL24 and IL32 tumor
suppressor genes by targeting specific sites in their promoters as well enrichment of RNA Pol II and
active chromatin modifications [44].

Similar to cytoplasmic miRNAs, nuclear miRNAs can also mediate post-transcriptional gene
silencing (PTGS) inducing degradation of target mRNAs. Several studies suggest that miRNAs
contribute to the regulation of miRNA precursors and lncRNA transcripts [31]. For instance, mouse
nuclear miR-709 is involved in the post-transcriptional regulation of the pri-miR-15a/miR-16-1, binding
to a 19-nt recognition element and preventing processing of primary transcripts, thus, nuclear miRNAs
can influence the biogenesis of other miRNAs suggesting hierarchical structures among miRNAs [45].
Furthermore, some nuclear-retained lncRNAs are also regulated by AGO-miRNA complexes that
interact with miRNA-complementary sequences located in lncRNAs, thus impairing their stability
and function [42]. Indeed, the highly abundant lncRNA, metastasis associated lung adenocarcinoma
transcript 1 (MALAT1), has two MRE’s which are recognized and bound by miR-9 [46]. Subsequently,
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putative miR-675-5p binding site within H19 RNA transcripts has been identified and the overexpression
of miR-675-5p significantly downregulated the level of the H19 transcript [47]. So far, several other
non-coding RNAs directly targeted by miRNAs have been identified. Interestingly, a long non-protein
coding RNA involved in mammalian X-chromosome inactivation, X (inactive)-specific transcript
(XIST), has seed-paring sites for miR-210 which modulates its RNA level [48]. Additionally, miR-671
directs AGO2-mediated cleavage of a circular antisense transcript of the CDR1 gene and negatively
regulates this non-coding antisense transcript [49].

Regulation of Alternative Splicing

miRNAs are able to indirectly modulate alternative splicing by regulating translation of various
splicing factors. However, mounting evidence suggests that AGO-miRNA complexes can affect the
regulation of alternative splicing directly in the nucleus by epigenetic and non-epigenetic mechanisms.
A co-immunoprecipitation study has identified multiple AGO-associated splicing factors, moreover,
AGO-1, AGO-2 and DICER1 knockdown and overexpression experiments confirmed their involvement
in splicing decisions at alternatively spliced exons [50,51]. Advanced molecular analyses were able to
identify miRNA binding sites within intronic sequences in mouse and human brain as well as in human
myocardial cells [12,52,53]. It is proposed that miRNAs-mediated compaction of chromatin structure at
specific exon-intron junctions slows the rate of RNA Pol II elongation, which favors exon inclusion [54].
Surprisingly, exon skipping can be achieved by single-stranded oligonucleotides (ss-siRNA), ss-siRNA
is incorporated by AGO-2 in the cytoplasm, then is transported into the nucleus where AGO2-ss-siRNA
complex binds to the target mRNA and disrupts association with the splicing machinery [55].

Taken together, the above considerations illustrate the complex regulatory mechanisms of
miRNA-mediated gene expression in the cytoplasm and the nucleus. It should be emphasized, that
miRNAs are involved in many crucial cellular regulatory processes and may activate or inhibit gene
expression at both transcriptional and post-transcriptional level. Thus, deregulation of miRNAs
biogenesis and function can disrupt these processes and finally lead to a wide range of human diseases.
Hence, miRNAs are valuable as diagnostic and prognostic biomarkers for many diseases, including
cancer, diabetes mellitus, cardiovascular pathologies and neurological disorders. Moreover, miRNAs
are considered as molecular targets of novel therapies and treatment strategies.

4. miRNAs As Potential Cancer Epi-Therapeutics

Over the past few decades growing evidence has linked epigenetic mechanisms with the regulation
of gene expression. Epigenetic markers such as DNA methylation and post-translational modifications
of histone tails can rearrange the structure of chromatin leading either to activation or repression of
transcription activity (for details see reviews [56,57]). It is interesting that not only nucleotide sequences
determine the level of gene expression but also epigenetic modifications are involved in this process.
Epigenetic processes are orchestrated by multiple proteins (e.g., DNA methyltransferases, DNA
demethylases and histone modifying enzymes), non-coding RNAs (e.g., miRNAs and lncRNAs)
and environmental factors. Typically, loss of DNA methylation (hypomethylation) turns on
gene transcription by altering the structure of chromatin. In turn, too much DNA methylation
(hypermethylation) induces chromatin compaction and hinders the expression of genes. Therefore,
disruption of epigenetic regulation can lead to inappropriate gene expression that impairs crucial
biological processes resulting in the development of “epigenetic diseases”. The first “epigenetic disease”
was cancer and it was established that patients with colorectal cancer had less DNA methylation
levels in cancer tissues than from their normal tissue [58]. Growing evidence suggests that epigenetic
changes, unlike DNA sequence mutations, are reversible, so it seems that these changes can be an ideal
target for epigenetic treatments.

Recently, a subclass of miRNAs, referred to as epi-miRNAs, that influence the expression
of genes encoding epigenetic effector and reader proteins, has been identified [59]. Due to the
important role of epi-miRs in the modulation of the epigenome, they are currently considered as
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potential therapeutic targets, especially in cancer. Manipulation of epi-miRs can affect the expression
of epigenetically-regulated genes, such as oncogenes and/or tumor suppressor genes, involved in
important cellular pathways including DNA replication, cell cycle progression and apoptosis [60,61].
The two types of miRs, oncomiRs and tumor-suppressor miRs, can be distinguished regarding their role
in carcinogenesis. Generally, oncomiRs are up-regulated thereby increasing cancer cell proliferation
and metastasis, in contrast the expression of tumor-suppressor miRs are down-regulated leading to
enhanced tumorigenesis [62]. In this review, we focus on the therapeutic potential of tumor-suppressor
epi-miRs that are downregulated in various types of cancer (casi el tinc. Emerging studies found
that the decreased levels of epi-miRs promote cell proliferation, colony formation, tumor growth and
metastasis [62–64]. Moreover, the suppression of some epi-miRs are responsible for the drug resistance
of cancer cells [64,65]. Schematic relationship between downregulated tumor-suppressor epi-miRs,
chromatin-modifying enzymes and cellular processes is shown in Figure 2.
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Figure 2. Schematic diagram of epi-miRs involved in the regulation of epigenetic modifiers and
tumorigenesis. Suppression of miRNAs that regulate chromatin-remodeling enzymes lead to
their overexpression. In turn epigenetic dysregulation resulting in improper regulation of genes
responsible for different cell processes including cell proliferation, DNA repair and apoptosis thus
triggering tumorigenesis.

To date, several causes have been found that influence the activity of miRNAs, their
down-regulation is coupled with epigenetic silencing or genomic abnormalities, such as gene
amplification, deletions and microdeletions (e.g., at miR-101-1 loci) as well as mutations and
chromosomal rearrangements [66,67]. Considering, the drug resistance of cancer chemotherapy
(i.e., doxorubicin, cisplatin, paclitaxel), which are related to down-regulation of epi-miRs, their enforced
expression appears to be an interesting approach to restore drug sensitivity (Table 1). Fabbri and
co-workers revealed that the miR-29 family (29a, -b, and -c) act as tumor suppressor miRs in lung
cancer and regulate transcript levels of DNMT3A and DNMT3B [68]. Moreover, it has been established
that synthetic epi-miR, miR-29b oligonucleotides, potentiates a hypomethylating effect of DNMT1
inhibitors (decitabine or azacitidine) resulting in better AML response for treatment probably due
to the inhibition of other DNMT isoforms that are not efficiently suppressed by these agents [69].
Another study showed that synthetic miR-29b mimics inhibit HDAC4 expression in multiple myeloma
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cell lines, reduce migration potential and increase apoptosis, therefore, this approach could offer a
novel targeted therapy [70]. In addition, a recent study has shown that miR-148a combination therapy
with either cisplatin or doxorubicin significantly enhanced apoptosis in urothelial cell carcinoma of
the bladder cell lines [71]. Importantly, cancer stem cells (CSCs) are characterized by their ability to
self-renew and resistance to standard chemotherapy, during remission can regenerate a tumor identical
to the original one. An elegant study by Iliopoulos and colleagues uncovered that the combinatorial
therapy of doxorubicin with epi-miR (miR-200b) was more effective than doxorubicin alone, blocking
tumor growth and preventing relapse [72]. Interestingly, many natural agents, such as resveratrol,
curcumin and glabridin used for epigenetic therapy, among others, exert their potent anti-tumor effects
by enhancing expression of epi miRs. For instance, resveratrol causes up-regulation of miR-137 in
neuroblastoma tumors [73], curcumin increases levels of miR-29a and miR-185 in hepatocellular cancer
cells [74], in turn glabridin potentiates expression of miR-148a in breast cancer cells [75].

Epi-miRs-targeted cancer therapy seems to be a promising approach since it is able to influence
not only a single gene, but multiple pathways. It is possible to re-establish expression of epi-miRs by
delivering synthetic miR mimics (double stranded RNA oligonucleotides directly loaded into RISC) or
chemically modified poly(nucleic acids), however, cellular uptake of free synthetic miRs are limited
because of the ease in which they a degraded in biofluids [76]. In order to overcome poor in vivo
stability and improve efficient and specific-site delivery of miRs to the tumor, innovative delivery
systems are required. Currently, both viral and non-viral systems are used to increase stability of
miRNA oligonucleotides and enhance their therapeutic effect. Administration of epi-miRs via viral
vectors (e.g., adenoviruses, adeno-associated viruses (AAV) or lentiviruses) is very effective, as shown
by systemic intravenous injection of epi-miR, miR-26a, packaged into AAV vector, which inhibited
progression of hepatocellular carcinoma in a mouse model [77]. However, due to the viral vectors
possible toxicity and immunogenicity their use in clinical practice is limited. In this context, non-viral
systems seem to be more promising, because of the control of their molecular composition, ease in
manufacturing and relatively low immunogenicity. Different delivery systems including, lipid-based
delivery system, synthetic polymers (e.g, polyethyleneimine (PEI)) and naturally occurring polymers
(e.g., chitosan, protamine and atelocollagen) are applied to protect miRs from degradation (for details
see the review [78]). For example, a novel transferrin-conjugated nanoparticle delivery system for
synthetic epi-miR, miR-29b, was injected intravenously and significantly prolonged leukemic mice
survival [79]. Despite significant advances made in delivery systems of miRs, substantial improvements
will be necessary for achieving site-specific delivery.

The discovery of therapeutic epi-miRs potential in cancer therapy makes them attractive candidates
for next-generation cancer treatment. It therefore seems likely that profiling of miRs expression and
then using appropriate epi-miR-based therapeutics may revolutionize cancer treatment by enabling
the reversal of the epigenetic program of tumor cells to a more normal state.

However, we realize that turning epi-miR-based therapy into clinical practice faces challenges.
Indeed, some clinical trials with miRNA drugs have not always produced satisfactory results. For
example, the FDA (Food and Drug Administration) halted phase I clinical trial of miR-34a mimic (drug:
MRX34) used in patients with different types of cancer. Double-stranded miR-34a was encapsulated
into a liposome-formulated nanoparticle and administered intravenously [80]. Although, preclinical
studies were promising, immune-related serious adverse events (SAEs) appeared during phase I.
Due to SAEs this clinical trial was terminated and future phase II trials of MRX34 for melanoma
were withdrawn. In contrast human trial of miR-16 mimic (drug: MesomiR-1) exhibited hopeful
results in patients with pleural mesothelioma and non-small cell lung cancer. Double-stranded miR-16
was delivered by non-living bacterial minicells with a targeting moiety (i.e., an anti-EGFR bispecific
antibody that recognizes EGFR-expressing cancer cells) [81]. This is a new targeted therapy known as
TargomiRs. The successful completion of phase I trial confirmed safety and early signs of antitumor
activity of TargomiRs so phase II of the trial is expected to begin soon.



Biomolecules 2020, 10, 1285 8 of 21

Table 1. Epi-miRs as potential cancer therapeutics.

Epi-miRNA mRNA Target Cell Lines Methods Animal Study Results References

Breast cancer

miR-34a HDAC1
HDAC7

MCF-7, MDA-MB-231, BT-20,
T47-D, PC3, DU-145, LNCaP,
NIH:OVCAR, SK-OV-3, HeLa

and non-transformed
mammary MCF-10A cells

miR-34a mimics; luciferase
reporter assay (in MCF-7, PC3,

and MDA-MB-231 cells)
ND

miR-34a expression negatively correlates with
tumor grades; transfection of miR-34a mimic

reduces cell survival and increases the
cytotoxicity of chemotherapy drugs; re-expression

of miR-34a inhibits the tumorigenic activity of
cancer stem cells (CSCs).

[82]

miR-101 EZH2 SKBR3 pre-miR-101; luciferase reporter
assay (in SKBr3 cells) ND

miR-101 overexpression in SKBr3 attenuates cell
proliferation, migration and inhibits the invasive

potential.
[83]

miR-128 BMI1 SK-3rd, MCF-7 and SKBR3
lentivirus vector miR-128;

luciferase reporter assay (in
SK-3rd and MCF-7 cells)

ND

Ectopic expression of miR-128 decreases cell
viability and increases apoptosis and DNA

damage in the presence of doxorubicin; ectopic
miR-128 expression sensitizes BT-ICs (breast

tumor–initiating cells) to doxorubicin enhancing
the DNA damage and pro-apoptotic effects.

[84]

miR-148a SMAD2 MDA-MB-231 and Hs-578T
miR-148a mimics; luciferase

reporter assay (in
MDA-MB-231 cells)

BALB/c nude mice;
MDA-MB-231 cells were

injected s.c.; glabridin (GLA)
was administered

intragastrically each day.

GLA enhances the expression of miR-148a;
GLA-treated tumors have increased expression of
miR-148a and decreased expressions of SMAD2.

[75]

miR-185 DNMT1

MDA-MB-231, MDA-MB-361,
MDA-MB-435, MDA-MB-468,
MCF-7, T47D, BT-474, BT-20

and BT-483; normal mammary
epithelial cell lines (HBL-100,

184A1 and MCF-10A)

miR-185 mimics
Nude mice; MDA-MB-231 cells
were injected s.c.; intratumoral

injection of miR-185 mimics.

Ectopic expression of miR-185 inhibits cell
proliferation and induces apoptosis; inhibits

tumor growth in vivo.
[85]

miR200b SUZ12

MCF-10A cells containing the
ER-Src fusion gene, MCF7,

SKBR3, MDAMB-231,
MDA-MB-435, NSCCs
(non-stem cancer cells)

miR-200b; luciferase reporter
assay (in ER-Src cells)

Athymic nude mice; CSCs
were pretreated with miR-200b

and injected s.c.; ER-Src
(treated and untreated with
tamoxifen) were injected s.c.

and then doxorubicin or
combination doxorubicin and

miR-200b was administered i.p.

miR-200b overexpression affects CSCs growth and
reduces cell invasiveness; pretreatment of CSCs
with miR-200b blocked tumor formation in vivo;

combinatorial therapy (doxorubicin with
miR-200b) causes regression of tumor growth and

prevents relapse of the disease.

[72]
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Table 1. Cont.

Epi-miRNA mRNA Target Cell Lines Methods Animal Study Results References

Bladder cancer

miR-101 EZH2 T24, UM-UC-3 and TCCSUP
vector pcDNA3.1 with

pre-miR-101; luciferase reporter
assay (in UM-UC-3 cells)

ND
Restored miR-101 expression inhibits cell

proliferation, suppresses colony formation and
hinders EZH2-mediated neoplastic progression.

[86]

miR-124 UHRF1 J82, T24, HEK 293 and
SV-HUC-1

miR-124 mimics; luciferase
reporter assay (in

HEK-293cells)

Male BALB/C-A mice; T24 cells
were injected s.c. and then
intratumoral injection was
performed with miR-124

mimics.

miR-124 overexpression attenuates cell
proliferation, migration, invasion and

vasculogenic mimicry; inhibits tumor growth
in vivo.

[87]

miR-144 EZH2 T24
vector pcDNA–miR-144;

luciferase reporter assay (in
HEK293 cells)

ND miR-144 overexpression inhibits cell proliferation;
decreases EZH2 protein levels. [88]

miR-145-5p
miR-145-3p UHRF1 T24 and BOY

pre-miR-145-5p and
pre-miR-145-3p; luciferase

reporter assay (in T24 and BOY
cells)

ND
Ectopic expression of either miR-145-5p or
miR-145-3p suppresses cancer cell growth,

migration and invasion and induces apoptosis.
[89]

miR-148a DNMT1 SV-HUC-1, T24, TCCSUP, J82
and UM-UC-3

miR-148a mimics; cisplatin or
doxorubicin treatment ND

miR-148a overexpression reduces cell viability by
promoting apoptosis; combinatorial therapy
(miR-148a/cisplatin or miR-148a/doxorubicin)

enhanced apoptosis.

[71]

Colorectal cancer

miR-9 UHRF1 HCT116 and HT29

miR-9 oligonucleotides;
lentivirus vector miR-9;

luciferase reporter assay (in
HCT116 and HT29 cells)

ND
miR-9 overexpression attenuates CRC cell

proliferation and promotes cell apoptosis; reduces
UHRF1 expression.

[90]

miR-143 DNMT3A 228, CaCO2, Clone A, HCT116,
HT-29, MIP101 and SW480

pre-miR-143; luciferase reporter
assay (in 228 and SW480 cells) ND

Ectopic expression of miR-143 inhibits cell growth,
reduces clone formation; restored miR-143

expression decreases tumor cell growth and
soft-agar colony formation, and downregulates

DNMT3A expression.

[91]

miR-342 DNMT1 SW480, HT29, HCT116 and
HEK293T

miR-342 oligonucleotides;
lentivirus vector miR-342;

luciferase reporter assay (in
SW480 cells)

Female athymic BABL/c nude
mice; cell lines stably

expressing miR-342 were
injected s.c.

Enhanced miR-342 expression inhibits cell
proliferation and invasion; miR-342

overexpression leads to demethylation and
induction of tumor suppressor genes through

blocking DNMT1 expression; miR-342
overexpression inhibits tumor growth and lung

metastasis in vivo.

[92]
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Table 1. Cont.

Epi-miRNA mRNA Target Cell Lines Methods Animal Study Results References

Endometrial cancer

miR-101 EZH2

SPAC-1-L and SPAC-1-S;
HEC-50 and HOUA-I cell lines

were derived from
poorly-differentiated

endometrioid EC (endometrial
carcinoma)

vector with pre-miR-101-3p;
luciferase reporter assay (in

SPAC-1-L and HOUA-I cells)
ND

Ectopic overexpression of miR-101 suppresses cell
proliferation, attenuates the

epithelial-mesenchymal transition associated
cancer cell migration and invasion, abrogates the

sphere-forming capacity and enhances
chemosensitivity to paclitaxel.

[93]

Esophageal cancer

miR-203 BMI1 EC9706 and KYSE150
lentivirus vector miR-203;

luciferase reporter assay (in
EC9706 cells)

Female nude mice and
nonobese diabetic/severe

combined immunodeficient
mice; freshly prepared cells

were injected s.c.

miR-203 overexpression reduces colony formation,
tumorigenicity ability and self-renewal of

esophageal cancer stem-like cells; increases
sensitivity to cisplatin.

[94]

Gastric cancer

miR-29b/c DNMT3A AGS and BGC-823
miR-29b/c mimics; luciferase
reporter assay (in BGC-823

cells)
ND

miR-29b/c overexpression decreases migration and
reduces invasive ability; miR-29b/c suppresses the

expression of DNMT3A.
[95]

miR-146a
miR-146b UHRF1 GC9811, GC9811-P,

MKN28NM and MKN28M

pre-miR-146a/b; lentivirus
vector miR-146a/b; luciferase
reporter assay (in HEK293T

and GC9811 cells)

Nude mice; metastasis assay:
GC9811-P cells infected with
miR-146a/b were injected into

the tail vein.

Restored expression of miR-146a/b reduces the
expression of UHRF1; upregulation of miR-146a/b

suppresses metastasis.
[96]

miR-148a DNMT1

SGC-7901, BGC-823 and GES-1
(human gastric

epithelium-immortalized cell
line)

miR-148a mimics ND

miR-148a mimics suppresses cell proliferation;
miR-148a overexpression decreases DNMT1

expression and induces the overexpression of
MEG3 (lncRNA).

[97]

miR-206 HDAC4
SGC-7901, BGC-823, AGS,

non-malignant gastric cell line
GES-1 and HEK293T

miR-206 mimics; vector with
miR-206

Nude mice; SGC-7901 cells
carrying P2GM-miR-206 was

injected s.c.

Ectopic expression of miR-206 represses cell
proliferation, colony formation, invasion and

migration; miR-206 promotes myogenic
differentiation and blocks tumor growth in vivo.

[98]

Glioblastoma

miR-128 Bim-1 U87MG, U251MG and
U373MG

pre-miR-128 mimics; lentivirus
vector pri-miR-128-1; luciferase

reporter assay (in U87, U251,
and U373 cells)

Athymic mice; U87 cells stably
expressing miR-128 were

implanted s.c.

miR-128 expression reduces glioma cell
proliferation, self-renewal in vitro and glioma

xenograft growth in vivo.
[99]

miR-128 SUZ12
BMI1

U87 malignant glioma (MG)
and U251MG glioblastoma

cells

pre-miR-128; lentivirus vector
miR-128; luciferase reporter

assay (in HEK293 cells)

Mut3 mice (hGFAP-cre;
Nf1flox/+; Trp532/+).

miR-128 overexpression reduces proliferative
potential and colony formation; reestablishment
of miR-128 expression impairs glioma stem-like

cells self-renewal and increases their
radiosensitivity.

[100]
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Table 1. Cont.

Epi-miRNA mRNA Target Cell Lines Methods Animal Study Results References

Head and neck squamous cell carcinoma

miR-874 HDAC1 SAS, FaDu, HSC3, IMC-3,
human fibroblast and MRC-5

mature miR-874; luciferase
reporter assay (in SAS cells) ND Restoration of miR-874 inhibits cell proliferation,

induces cell cycle arrest and apoptosis. [101]

Hepatobiliary cancer

miR-152
miR-148a DNMT1

KMCH-1, Mz-ChA-1, TFK-1
and H69; Mz-IL-6 (KMCH-1
stably transfected with IL-6)

pre-miR-152 and pre-miR-148a;
luciferase reporter assay (in

Mz-ChA-1 cells)

Male athymic nu/nu mice;
Mz-IL-6 cells were injected s.c.

pre-miR-148a and pre-miR-152 decreases DNMT-1
protein expression and reduces cell proliferation;
miR-148a and miR-152 expression was reduced in

tumor cell xenografts in vivo.

[102]

Hepatocellular carcinoma

miR-22 HDAC4 Hep3B and SMMC7721 miR-22 mimics; luciferase
reporter assay (in Hep3B cells)

Male BALB/c athymic nude
mice; miR-22 mimics
transfected Hep3B or

SMMC7721 cells were injected
s.c.

Restoration of miR-22 expression suppresses cell
proliferation and endogenous expression of

HDAC4 protein; miR-22 transfection delays tumor
formation and reduces tumor size in vivo.

[103]

miR-29a
miR-185

DNMT3A
DNMT3B HepG2 and HuH-7 dendrosomal curcumin (DNC)

treatment ND

Overexpression of miR-29a and miR-185 after
dendrosomal curcumin (DNC) treatment,

down-regulates the expression of DNMT1, 3A
and 3B.

[74]

miR-145 HDAC2 Hep3B, HepG2, SNU-182,
SNU-449 and PLC/PRF/5

miR-145 mimics; vector with
miR-145; luciferase reporter

assay (in SNU-449 cells)

Male athymic nude mice;
Hep3B cells transfected with

miR-145 were injected s.c.

Ectopic expression of miR-145 inhibits cell growth
and HDAC2 expression; inhibits tumor growth

in vivo.
[104]

miR-200a HDAC4 SMMC-7721 and HepG2

miR-200a mimics; lentivirus
vector miR-200a; luciferase

reporter assay (in SMMC-7721
cells)

Nude mice; HepG2 cells stably
transfected with miR-200a were

implanted s.c.

miR-200a inhibits cell proliferation and migration
both in vivo and in vitro; miR-200a

overexpression induces up-regulation of global
acetyl-histone H3.

[105]

Acute myeloid leukemia

miR-29b DNMT3A
DNMT3B

AML cell lines, Kasumi-1,
MV4-11 and K562

pre-miR-29b; lentivirus vector
miR-29b; luciferase reporter

assays (in K562 cells)
ND

Enforced expression of miR-29b in AML cells
reduces of the expression of DNMT1, DNMT3A,

and DNMT3B; pre-miR-29b overexpression
induces partial differentiation of AML blasts.

[79]

miR-29b DNMT3B primary AML blasts, K562 and
Kasumi-1 synthetic miR-29b

Female nude mice; synthetic
miR-29b oligonucleotides were

injected directly into the
tumors.

Restoring miR-29b expression, induces apoptosis
and dampens cell growth in AML cells. [106]

miR-193a-3p DNMT3A
HDAC3

HL60, U937, U937-A/E-HA,
Kasumi-1, SKNO-1,

SKNO-1-siA/E-RNA and KG1

miR-193a mimics; lentivirus
vector miR-193a; luciferase

reporter assay (in 293T cells)

Nude mice; SKNO-1 cells were
injected s.c.; intratumor
injection of miR-193a.

Enhanced miR-193a levels induce G1 arrest,
apoptosis, and restores leukemic cell

differentiation; decreases tumor size in vivo.
[107]
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Table 1. Cont.

Epi-miRNA mRNA Target Cell Lines Methods Animal Study Results References

Chronic myeloid leukemia

miR-217 DNMT3A Bcr/Abl-expressing K562 cells
lentivirus vector miR-217;

luciferase reporter assay (in
K562DR cells)

Female immune deficient
BALB/c nude mice; K562 cells

were injected s.c.; drug
administration: dasatinib or
5-AzadC or a combination of
both dasatinib and 5-AzadC.

Forced expression of miR-217 inhibits expression
of DNMT3A and sensitizes cells to growth
inhibition mediated by the tyrosine kinase

inhibitors (prevents drug resistance).

[108]

Multiple myeloma

miR-29b DNMT3A
DNMT3B MM cell lines

pre-miR-29b mimics
(formulated with a Neutral

Lipid Emulsion (NLE) delivery
system); lentivirus vector

miR-29b; luciferase reporter
assay (in INA-6 cells)

Male CB-17 severe combined
immunodeficient (SCID) mice;
MM cells were inoculated s.c.;

miR-29b mimics were
administered intratumorally

and systemically via tail vein.

miR-29b mimics impair cell cycle progression and
potentiate the growth-inhibitory effects induced
by the demethylating agent 5-azacitidine; miR-29b

mimics induce anti-tumor effects in vivo.

[70]

Leukemia

miR-143 DNMT3A

AML (HL-60, NB4 and U937),
CML (K562), acute

erythroleukemia (HEL), T
lymphocytic leukemia (Jurkat
and CEM), B-cell lymphoma
(CA46, Raji cells of Burkitt’s

lymphoma) and multiple
myeloma (U266)

lentivirus vector miR-143 ND

miR-143 overexpression decreases DNMT3A
mRNA and protein expression, reduces cell

proliferation, colony formation and cell cycle
progression as well as induces apoptosis.

[109]

Lung cancer

miR-29a, -b, -c DNMT3A
DNMT3B A549 and H1299

pre-miR-29a, -29b-1, -29c
oligonucleotides; luciferase

reporter assay (in A549 cells)

Female nude mice; A549 cells
transfected with pre-miR-29a,
-29b, or -29c, were injected s.c.

Enforced expression of miR-29s restores normal
patterns of DNA methylation, induces

re-expression of methylation-silenced tumor
suppressor genes and inhibits tumorigenicity

in vitro and in vivo.

[68]

miR-193a-3p
miR-193a-5p UHRF1

SPC-A-1, SPC-A-1sci, A549,
H1299, LC-21, H358 and

HEK-293T

miR-193a-3p/5p mimics;
lentivirus vector

miR-193a-3p/5p; luciferase
reporter assay (in HEK293T

cells)

BALB/C-nu/nu nude male mice;
metastasis assays: SPC-A-1sci

cells stably expressing the
miR-193a-3p/5p-mimic were
injected into the tail vein.

miR-193a-3p/5p overexpression inhibits cell
proliferation, migration, invasion and

epithelial–mesenchymal transition (EMT); lung
metastasis formation in vivo.

[110]

Lymphoma

miR-26a EZH2
human BL cell lines; murine

MYC-induced lymphoma cell
lines

vectors with mature miR-26a;
luciferase reporter assay (in

HEK-293 cells)
ND miR-26a overexpression reduces cell numbers and

results in an anti-proliferative effect. [111]
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Table 1. Cont.

Epi-miRNA mRNA Target Cell Lines Methods Animal Study Results References

Melanoma

miR-200c BMI1 WM35, WM793, WM115A,
M3523A, 1205Lu and 293T

lentivirus vector miR-200c;
vector pEZX-miR-200c

Male athymic nu/nu mice;
miR-200c–WM115A cells were

injected s.c.

miR-200c overexpression decreases cell
proliferation, colony formation and migratory

capacity as well as drug resistance and increases
sensitivity to various chemotherapeutic agents

(including cisplatin); inhibits melanoma xenograft
growth and metastasis in vivo.

[112]

Neuroblastoma

miR-137 EZH2 Mouse Neuro-2a (N-2a);
human SH-SY5Y

miR-137 mimics; resveratrol
(RSV) treatment; luciferase
reporter assay (in HEK293

cells)

ND

miR-137 expression is up-regulated after RSV
treatment; miR-137 inhibits EZH2 expression after

RSV treatment; miR-137 regulates the
EZH2-mediated apoptosis after RSV treatment.

[73]

miR-124 EZH2 Neural Stem Cells (NSCs) and
HEK293T mature miR-124 ND

miR-124 overexpression down-regulates
expression of Ezh2 and up-regulates

neuron-specific Ezh2 target genes; promotes
neuronal differentiation.

[113]

miR-137 KDM1A IMR-32, SHEP, SKN-BE and
HEK-293

pre-miR-137; luciferase reporter
assay (in SHEP and HEK293

cells)
ND

Re-expression of miR-137 increases apoptosis,
decreases cell viability and proliferation, induces
neuronal differentiation; downregulates KDM1A.

[114]

miR-152 DNMT1 SK-N-BE, SH-SY5Y, SK-N-AS
and Kelly

pre-miR-152; luciferase reporter
assay (in Kelly cells) ND

Ectopic upregulation of miR-152 declines cell
invasiveness and anchorage-independent cell

growth, contributing to the differentiated
phenotype.

[115]

Oral squamous cell carcinoma

miR-32 EZH2
SCC-4, SCC-9, SCC-25 and

Tca8113; normal oral
keratinocyte cell line (hNOK)

mature miR-32 mimics;
luciferase reporter assay (in

Tca8113 cells)
ND

miR-32 overexpression reduces cell proliferation,
migration and invasion, promotes cell apoptosis;
miR-32 down-regulates the expression of EZH2.

[116]

Ovarian cancer

miR-15a
miR-16 BMI1

OVCAR-5, OV-167, OV-202,
CP-70, A2780 and OSE

(ovarian surface epithelial cell)

pre-miR-15a, pre-miR-16;
luciferase reporter assay (in

OV-202 and CP-70 cells)
ND

miR-15a or miR-16 overexpression decreases cell
proliferation and clonal growth; downregulates

BMI1 protein levels.
[117]

miR-152
miR-185 DNMT1

SKOV3, A2780, A2780/DDP
(cisplatin-resistant), A549 and

HepG2

miR-152 and miR-185 mimics;
luciferase reporter assay (in

SKOV3/DDP cells)

CD-1/CD-1 nude mice;
SKOV3/DDP cells transfected

with miR-152 that were
injected i.p.

miR-152 or miR-185 overexpression increases
cisplatin sensitivity by inhibiting proliferation

and promoting apoptosis; promotes sensitivity to
cisplatin through targeting DNMT1 directly.

[118]

Pancreatic cancer

miR-148a
miR152 DNMT1 MIA PaCa-2 and AsPC-1

pre-miR-148b, pre-miR-152;
luciferase reporter assay (in

MIA PaCa-2 and AsPC-1 cells)
ND

miR-148b and miR-152 overexpression inhibits cell
proliferation and induces apoptosis; decreases

DNMT1 expression, returns DNA methylation to
normal patterns and induces re-expression of

tumor suppressor genes.

[119]
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Table 1. Cont.

Epi-miRNA mRNA Target Cell Lines Methods Animal Study Results References

Prostate cancer

miR-101 EZH2 DU145 pre-miR-101; luciferase reporter
assay (in SKBr3 cells)

Male nude athymic BALB/c
nu/nu mice, DU145 stable cells
overexpressing miR-101 were

injected s.c.

miR-101 overexpression attenuates cell
proliferation, migration and invasive potential;

reduces colony formation; reduces tumor growth
in vivo.

[83]

miR-145 DNMT3B PC3 miR-145 mimics; luciferase
reporter assay (in PC3 cells) ND

miR-145 overexpression downregulates the
expression of DNMT3B; sensitizes prostate cancer

cells to X-ray radiation.
[120]

miR-449a HDAC1 PC-3, DU-145, BPH-1 and
LNCaP

mature miR-449a mimics; a
longer, dicer-dependent
pre-miR-449a; luciferase

reporter assays (in PC-3 cells)

ND
miR-449 expression arrests cell cycle, apoptosis;

regulates cell growth and viability in part by
repressing the expression of HDAC-1.

[121]

Renal cell carcinoma

miR-101 UHRF1 786-O and Caki-1 pre-miR-101-3p; luciferase
reporter assay (in 786-O cells) ND

Restoration of miR-101 inhibits cell proliferation,
migration and decreases invasion activity;

suppresses UHRF1 expression.
[122]

Rhabdomyosarcoma

miR-29 Yin Yang 1 (YY1) C2C12 myoblasts, RH30 and
RD2

pre-miR-29; lentivirus vector
miR-29; luciferase reporter

assays (in MB cells)

Athymic nu/nu female mice;
RH30 cells were injected s.c.;

intratumoral injection of
lentivirus with miR-29.

miR-29 overexpression reduces cell growth and
increases levels of the differentiation markers;

intratumoral addition of miR-29 stimulates
myogenic differentiation; inhibits tumor growth

in vivo.

[123]

Testicular cancer

miR-199a-3p
DNMT3A
(especially

DNMT3A2)
Ntera 2 (NT2) miR-199a-3p mimics; luciferase

reporter assay (in NT2 cells) ND
miR-199a-3p overexpression restores the

expression of tumor-suppressor genes by affecting
DNA methylation of their promoter regions.

[124]

Waldenström macroglobulinemia

miRNA-9 * HDAC4
HDAC5

BCWM.1, WM-WSU, MEC-1
and RL pre-miRNA-9 * ND

Restoring miRNA-9 * levels induces toxicity,
apoptosis and autophagy; supports

down-modulation of HDAC4 and HDAC5 and
up-regulation of acetyl-histone-H3 and -H4

[125]

ND—no data; s.c.—subcutaneous; i.p.—intraperitoneal injection. * miR-9-3p.
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5. Conclusions

Knowledge in the miRNA field is steadily increasing and recent information about the mechanisms
of action, especially their involvement in epigenetic regulation has shed new light on cellular
regulatory networks.

Interestingly, mature miRNAs are present in both the nucleus and the cytoplasm, therefore they
can be involved in the regulation of transcription and translation processes. Nuclear miRNAs can
influence gene expression via transcriptional activation or transcriptional gene silencing and shaping
alternative splicing, Cytoplasmic miRNAs mainly mediated translation inhibition, however, some
miRNAs are capable of activating translation of their target mRNA. A growing body of evidence
suggests that miRNAs can act as regulators of the cell epigenome through translation inhibition of
proteins engaged in epigenetic control and/or interaction with lncRNA. Considering the pervasive role
of miRNAs in numerous biological processes, especially tumorigenesis, better understanding of their
role in epigenetic regulation will aid the development of new therapeutic strategies.

Currently, miRNA-based treatment approaches for cancer, including tumor-suppressor epi-miRs,
are tested in in vitro and in vivo experiments. Although results seem promising further studies will
be needed to clarify the safety and effectiveness of epi-miR therapy in clinical practice. We strongly
believe that re-introduction of tumor-suppressor epi-miRs will allow for more effective, personalized
therapies in the near future.
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