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Abstract
Many secreted peptides used for cell–cell communication require conversion of a C-terminal glycine to an amide for bio-
activity. This reaction is catalyzed only by the integral membrane protein peptidylglycine α-amidating monooxygenase 
(PAM). PAM has been highly conserved and is found throughout the metazoa; PAM-like sequences are also present in cho-
anoflagellates, filastereans, unicellular and colonial chlorophyte green algae, dinoflagellates and haptophytes. Recent studies 
have revealed that in addition to playing a key role in peptidergic signaling, PAM also regulates ciliogenesis in vertebrates, 
planaria and chlorophyte algae, and is required for the stability of actin-based microvilli. Here we briefly introduce the basic 
principles involved in ciliogenesis, the sequential reactions catalyzed by PAM and the trafficking of PAM through the secre-
tory and endocytic pathways. We then discuss the multi-faceted roles this enzyme plays in the formation and maintenance of 
cytoskeleton-based cellular protrusions and propose models for how PAM protein and amidating activity might contribute to 
ciliogenesis. Finally, we consider why some ciliated organisms lack PAM, and discuss the potential ramifications of ciliary 
localized PAM for the endocrine features commonly observed in patients with ciliopathies.
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Introduction

Cilia are membrane-bound cellular projections containing a 
microtubule-based scaffold, the axoneme, that is templated 
directly from the triplet microtubules of a modified cen-
triole termed the basal body. Cilia are sensory organelles 
that can be characterized as motile (capable of cell and/
or fluid propulsion) or immotile (also known as primary 
cilia) [1] (Fig. 1a, b). These organelles are of ancient ori-
gin, being widely found throughout the eukaryotes and are 
thought to have been present in the last common ancestor 
of eukaryotes. They play key roles in monitoring the extra-
cellular environment, processing developmental signals and 

generating propulsive force and fluid flow [2]. Recent stud-
ies suggest that cilia also act as secretory organelles and 
transduce information in the form of small vesicular packets 
called ectosomes that play a role in cell–cell communication, 
intracellular signaling and cell cycle-related processes such 
as mother cell wall degradation and consequent mitotic prog-
eny release in the unicellular green alga Chlamydomonas 
[3–5].

Nearly all cells in the human body (except those of lym-
phoid and myeloid origin) build a cilium at some point in 
their life cycle [6]. In addition to the motile sperm flagellum 
(a modified cilium), multiple motile cilia are present on the 
apical surfaces of cells lining various structures. The motile 
cilia on the ependymal cells lining the ventricles of the brain 
generate the force needed to move cerebrospinal fluid. In the 
lung, motile cilia play an essential role in mucus clearance 
which acts as a first line of defense against airborne pollut-
ants and pathogens. Most other cell types possess a solitary, 
immotile (primary) cilium (Fig. 1a) that acts as a sensory 
antenna [7] and in some cases has become highly modified 
to perform specific tasks, e.g., light detection by the outer 
segments of rods and cones in the eye and odorant reception 
by multiciliated olfactory neurons.
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Cilia are highly complex: proteomic, transcriptomic and 
comparative genomics approaches in various organisms have 
identified many hundreds of proteins associated with these 
organelles [8, 9]; indeed, a recent estimate suggests that 
the human “ciliome” consists of approximately 1200 genes 
[10]. Consequently, perhaps 5% or more of the ~ 21,000 
human protein-encoding genes [11] are involved in ciliary 
assembly, structure and/or function. Cilia are essential for 
organismal development and homeostasis; defects result in 
a wide array of ciliopathies [12]—complex syndromes (e.g., 
Bardet–Biedl [13] and Joubert [14] syndromes) which can 
have broad phenotypic consequences [15–17].

The cilium is a discrete cellular compartment; entry 
into both motile and immotile cilia is controlled in part by 
a multi-subunit gate termed the transition zone [18, 19] 
(Fig. 1b). Although the ciliary membrane is contiguous 
with the plasma membrane it has a very distinct lipid and 
protein content. Numerous receptors/channels are localized 
to this compartment, allowing the organelle to both sense the 
extracellular environment and initiate appropriate signaling 
cascades that relay information to the cell body in response 
to external chemical or mechanical signals. Well-known 

primary cilia-dependent pathways include non-canonical 
Wnt (planar cell polarity) [20, 21] and Hedgehog [22, 23] 
signaling as well as G-protein coupled receptor-mediated 
responses to peptide hormones such as somatostatin [24] and 
kisspeptin [25]. Motile cilia also exhibit sensory functions. 
For example, ciliated tracheal epithelial cells are mecha-
nosensitive, modulating ciliary beat frequency to match 
the viscosity of the mucus they encounter [26]. In Chla-
mydomonas, enhanced ciliary power output during viscous 
loading is mediated by increased trafficking of the dynein 
regulatory factor Lis1 into cilia [27]. Some cilia also pos-
sess chemoreceptors of the bitter taste family that can sense 
and respond to noxious compounds [28]. In addition, the 
initial steps of the cAMP-mediated signaling pathway, which 
are initiated in response to cell–cell contact during sexual 
reproduction in Chlamydomonas, are confined to its motile 
cilia [29].

Protein and membrane trafficking are critical, yet poorly 
understood, aspects of cilium assembly. For example, solu-
ble protein components must be specifically moved into the 
growing cilium, along with new membrane and proteins 
delivered in Golgi-derived vesicles. Although there are roles 

Fig. 1   Structure of primary and motile cilia. Electron micrographs 
showing the basal bodies, transition zones and axonemal structures 
of an immotile (primary) cilium in the neuroepithelium of an E12 
mouse (a) and a Chlamydomonas motile cilium (b). The axonemal 
microtubules are templated directly by the basal body, a specialized 
centriole characterized by appendages required for cilium forma-
tion. The basal body derives from a mature (mother) centriole while 
the newly formed (daughter) centriole is oriented orthogonally and 

located deeper in the cytoplasm (a). The primary cilium has a 9 + 0 
axoneme consisting only of nine outer doublet microtubules, while 
most motile cilia have a 9 + 2 structure with an additional central 
pair microtubule complex involved in motility regulation. The transi-
tion zone, which acts as a gate controlling ciliary entry and exit, con-
tains Y-links that connect the membrane to the microtubules. Scale 
bars = 500 nm. Reproduced from [115] © Dhivya Kumar
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for ARF family small GTPases [30] and microtubule motors 
[31, 32], how the vesicular trafficking process is regulated to 
control the rate of ciliary membrane addition is uncertain. 
Ciliary membrane is lost during the budding of ectosomes, 
a process that involves branched actin filament dynamics 
[3, 33]. Ciliary integrity and homeostasis require a deli-
cate balance between post-Golgi trafficking and the release 
of ectosomes. Indeed, ciliary length is a tightly regulated 
parameter [34] and, for example, can change in response to 
hypoxia [35].

Recent studies have uncovered an unanticipated role for 
a secretory pathway enzyme involved in bioactive peptide 
synthesis (peptidylglycine α-amidating monooxygenase; 
PAM) in building cilia [36–38]; this connection has been 
conserved between Chlamydomonas and metazoans (pla-
naria, mice and zebrafish) suggesting that it dates to the last 
eukaryotic common ancestor and represents an important 
aspect of ciliogenesis. Here we review the evidence sup-
porting a role for the PAM protein and its amidating activity 
in ciliary assembly, suggest models for PAM function in 
this process, and describe how interactions of PAM with the 
actin cytoskeleton might alter both cilia and microvilli, lead-
ing to broad and generalized effects on cytoskeleton-based 
cellular protrusions. Furthermore, we address the intrigu-
ing phylogenetic question of how some organisms that lack 
PAM can still build cilia and briefly discuss the more clinical 
implications of merging the fields of ciliogenesis and pep-
tidergic signaling.

General principles underlying ciliary 
formation and assembly

The process of ciliogenesis varies in different cell types [34, 
39, 40] (Fig. 2a). In the extracellular pathway, used by mul-
ticiliated epithelial cells and unicellular ciliated organisms 
such as Chlamydomonas and Tetrahymena, the basal body 
(a modified centriole decorated with distal and sub-distal 
appendages [34]) first docks at the plasma membrane; the 
axoneme (the microtubule core of the cilium), enveloped by 
the ciliary membrane, is then extended outwards into the 
extracellular space. In contrast, other cell types such as fibro-
blasts and neural progenitors, which build immotile sensory 
cilia, accomplish many of the initial steps intracellularly 
(Fig. 2a, b). Initially, small Golgi-derived “distal append-
age vesicles” fuse to give rise to a primary ciliary vesicle 
attached to the distal appendages of the basal body within 
the cytoplasm (Fig. 2b). Subsequently, the axoneme extends 
and secondary vesicles fuse with the initial primary ciliary 
vesicle to accommodate the growing structure. At this stage, 
the axoneme is covered by two membranes: an inner mem-
brane, which will eventually become the ciliary membrane, 
and an outer membrane, the sheath, which ultimately fuses 

with the plasma membrane. After this structure docks at the 
plasma membrane and fusion occurs, the cilium is extruded 
and continues to elongate as it is supplied with axonemal 
building blocks and membrane.

Since the ciliary matrix lacks ribosomes, proteins are not 
synthesized in this cellular compartment. Cargoes destined 
for this organelle must be recognized, sorted and trafficked 
from the cytoplasm or endomembrane system. This pro-
cess involves the intraflagellar transport (IFT) machinery 
that mediates bi-directional transport along ciliary dou-
blet microtubules (Fig. 3). The multimeric IFT-B complex 
is required for the kinesin-dependent movement of cargo 
from the ciliary base to the tip [41, 42]. In organisms such 
as Chlamydomonas, the IFT-A complex associates with a 
specific “cytoplasmic” dynein isoform to return IFT parti-
cles to the ciliary base and ultimately to export proteins out 
of the cilium [43]. In nematodes, the IFT system is some-
what modified and although IFT-A is required for retrograde 
transport, the IFT-A complex itself has been found to asso-
ciate with the anterograde heterotrimeric kinesin II motor, 
while IFT-B is transported by a homodimeric kinesin [44]. 
In addition to IFT-mediated transport, there is also evidence 
for retrograde diffusion of certain proteins [45], including 
α-tubulin and the KIF17 kinesin, within the axonemal lumen 
of primary cilia [46].

The trafficking of membrane proteins such as PAM into 
and out of the cilium poses further challenges [47], and their 
movement is aided by an additional IFT-associated multi-
meric complex—the BBSome [48–51]. Indeed, current evi-
dence suggests that the BBSome is primarily involved in 
ciliary protein export [52]. Although some IFT-cargo inter-
actions, including those involved in tubulin and outer arm 
dynein transport with its associated IFT46 cargo adaptor, 
are now understood at the structural level e.g., [53, 54], the 
general principles by which IFT and BBSome complexes 
recognize the enormous range of ciliary cargoes that must 
be trafficked remain unclear. Intriguingly, some IFT proteins 
play non-cilia related roles in the cytoplasm and, for exam-
ple, have been implicated in cell cycle progression [55], 
mitotic spindle orientation [56] and cytoplasmic microtu-
bule dynamics [57].

PAM, bioactivation by amidation 
and the secretion of signaling peptides

PAM (EC 1.14.17.3) is best known for its role in the 
neuroendocrine system, where it catalyzes a late step 
(α-amidation) in the synthesis of many secreted bioactive 
peptides such as oxytocin, vasopressin, gonadotropin-releas-
ing hormone and neuropeptide Y [58]. As peptide precur-
sors traverse the secretory pathway, they are acted on by 
proprotein convertases that cleave after paired basic amino 
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acid sites, and then by carboxypeptidases, which remove 
the basic residues. If during this process a glycine residue is 
exposed at the C-terminus of the processing intermediate, it 
becomes a potential substrate for amidation by PAM. Ami-
dation plays three major roles: (1) it alters the charge and 
structure at the C-terminal end of the peptide allowing spe-
cific and high affinity recognition by cognate receptors, (2) 
it affects overall peptide conformation, and (3) it enhances 

peptide stability, extending lifetime in the extracellular envi-
ronment. In addition to their numerous roles in metabolism, 
tissue homeostasis and other aspects of vertebrate physiol-
ogy, amidated peptides are commonly used by invertebrates. 
For example, species-specific amidated peptides released by 
sea urchin eggs allow for sperm chemoattraction [59], and 
many of the toxic peptides present in cone snail, bull ant and 
spider venoms [60–63] are amidated.

Fig. 2   Pathways of ciliogenesis. a Schematic showing the two distinct 
modes of ciliogenesis used by various cell types. Fibroblasts and neu-
ronal progenitors assemble their primary cilium within the cytoplasm 
prior to docking at the plasma membrane (intracellular ciliogenesis). 
In contrast, tracheal epithelial cells and Chlamydomonas utilize an 
extracellular pathway (extracellular ciliogenesis) to assemble their 
motile cilia, which starts with the docking of basal bodies at the 
membrane. Golgi-derived vesicles, moved along cytoplasmic micro-
tubules by dynein motors, deliver specific membrane proteins and 

lipids to the growing organelle. Color code: basal body distal append-
age, green; basal body sub-distal appendage, purple; transition zone 
Y-links, blue-gray; dynein, pink; membrane proteins, brown; other 
dynein cargoes, yellow, blue and light blue. b Electron micrographs 
illustrating the different stages of intracellular ciliogenesis during 
the assembly of primary cilia in neural epithelial cells from the third 
ventricle of an E12 mouse. The primary ciliary vesicle (CV) and a 
basal body distal appendage (DA) are indicated by arrows. Scale 
bar = 500 nm. Panel (b) is reproduced from [115] © Dhivya Kumar
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PAM is a Type 1 integral membrane protein with two 
catalytic cores located in the lumen of the secretory path-
way, followed by a transmembrane domain and a cytosolic 
C-terminal region that is not required for catalysis but is nec-
essary for trafficking the enzyme through the biosynthetic 
and endocytic pathways (Fig. 4a). PAM produces amidated 
peptides from glycine-extended precursors in a two-step pro-
cess. Initially, the peptidylglycine α-hydroxylating monooxy-
genase (PHM; Fig. 4b) domain catalyzes the copper-, oxy-
gen- and ascorbate-dependent hydroxylation of the α-carbon 
of the C-terminal glycine. This is followed by cleavage of the 
Cα-N bond by the peptidyl-α-hydroxyglycine α-amidating 

lyase (PAL; Fig. 4c) domain, a zinc-dependent enzyme, 
to release glyoxylate and the α-amidated peptide product 
(Fig. 4d). Although PAL activity is required in the acidic 
environment of the secretory pathway, this second reaction 
step can occur spontaneously as pH rises above neutrality.

PAM is essential for vertebrate development and edema 
is a major feature observed in mice and zebrafish lacking 
PAM. Pam-null mice die by embryonic day (E) 14.5 with 
ventricular hypertrophy, massive edema and a poorly formed 
vasculature [64]. Homozygous pam−/− zebrafish embryos 
exhibit small eyes, cyst-like protrusions associated with the 
pronephros, hydrocephalus and edema, dying at ~ 10 days 

Fig. 3   Mechanisms of ciliary 
trafficking. Diagram illustrat-
ing the major systems involved 
in trafficking components into, 
within and out of cilia. Intrafla-
gellar transport (IFT) trains with 
attached axonemal and trans-
membrane cargo proteins are 
specifically gated into the orga-
nelle at the transition zone and 
driven towards the ciliary tip 
by one or more kinesin motors. 
Following cargo release, 
remodeling and association of 
components destined for ciliary 
export, IFT trains are returned 
to the cell body by a specific 
dynein isoform. Note that the 
anterograde kinesin motor has 
been proposed to return to 
the cell body by diffusion in 
Chlamydomonas [45], although 
in other organisms there is 
evidence for its return by active 
dynein-mediated transport 
[116–118]. Once returned to 
the cell body, IFT components 
are thought to disperse into the 
general cellular pool prior to 
re-recruitment to the basal body 
region for reuse [119]. Modified 
and adapted from [120] under a 
CCBY license
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Fig. 4   PAM structure, reaction chemistry and zebrafish mutant phe-
notype. a Domain organization of PAM. The two catalytic cores 
(PHM and PAL) are located in the lumen of the secretory pathway 
and on the ciliary surface. They are followed by a transmembrane 
region (TMD) and an unstructured cytosolic domain (CD) that con-
tains signals required for trafficking through the biosynthetic and 
endocytic pathways [58]. In cilia the CD is located within the orga-
nelle, and ciliary Chlamydomonas PAM associates with the micro-
tubular axoneme via an unknown mechanism. b, c Ribbon diagrams 
of the crystal structures for rat PHM (b; 1PHM [121]) and PAL (c, 
3FVZ [122]) generated using the PyMOL molecular graphics sys-
tem (Schrödinger, LLC). Both domains are color-coded by secondary 
structure (red, β-strands; blue, α-helices; purple, loops). The essen-

tial Cu atoms (orange) in PHM are coordinated by two His clusters 
(yellow). PAL forms a six-bladed β-propeller with a single Zn atom 
(grey) at the active site. d Mechanism of the amidation reaction. Gly-
cine-extended peptide precursors are stereo-specifically hydroxylated 
on the Cα carbon by PHM in a process that requires copper bound 
at two different sites, molecular oxygen and two molecules of ascor-
bate [121]. Subsequently, the Cα-N bond is cleaved by PAL to yield 
the amidated peptide and release glyoxylate. e Pam-null zebrafish 
embryo and wild-type sibling at 5  days post-fertilization (dpf) [38]. 
The mutant exhibits pericardial and abdominal edema, hydrocephalus 
and small eyes; these embryos die at ~ 10 dpf. Panel (e) is modified 
from [38] under a Creative Commons license
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post-fertilization (Fig. 4e) [38]. PAM is highly expressed 
in the mouse heart at these early developmental stages but 
is not highly expressed in zebrafish heart. Nevertheless, 
in both cases the edema is first observed in the pericardial 
region and likely derives from altered hormonal signaling 
and consequent alterations in fluid homeostasis. In Dros-
ophila, which has separate dPHM and dPAL genes, loss of 
the dPHM gene, which encodes soluble amidating enzyme, 
leads to larval lethality during molting due to defective pep-
tidergic signaling [65].

It is now clear that bifunctional, integral membrane PAM 
predates evolution of the nervous system [66]. A PAM-like 
gene is present throughout the metazoa including sponges 
and placozoans that lack neurons; insects are an exception 
as they lack integral membrane PAM but rather express 
separate PHM and PAL proteins. Bifunctional PAM is also 
found in unicellular and colonial chlorophyte green algae 
(Chlamydomonas, Gonium and Volvox), strongly suggesting 
that this enzyme was present in the last eukaryotic common 
ancestor which is thought to have had a motile cilium that 
was also used for signaling [36, 66].

Post‑Golgi trafficking, ciliary/cellular 
localization and topology of PAM

In mammalian cells, PAM is subject to complex, cell type-
specific trafficking through the biosynthetic and endocytic 
pathways [67]; the trafficking of PAM to mammalian cilia 
has not yet been examined (Fig. 5a–c). At steady state, very 
little PAM is found on the plasma membrane; nevertheless, 
surface biotinylation and antibody internalization studies 
revealed a significant flux of PAM protein onto and off of 
the plasma membrane. Newly synthesized PAM that exits 
the trans-Golgi can enter the constitutive or regulatory secre-
tory pathway. Following exocytosis, PAM appears briefly 
on the plasma membrane. While plasma membrane-bound 
or extracellular proteases can release its catalytic cores into 
the extracellular environment, most plasma membrane PAM 
undergoes clathrin-mediated endocytosis, after which it can 
be recycled to secretory granules, cleaved by γ-secretase or 
degraded. Endocytosed PAM appears rapidly on the external 
membranes of maturing multivesicular bodies (MVBs). Its 
entry into the intraluminal vesicles (ILVs) that characterize 
MVBs is a temperature-dependent step controlled in part 
by the phosphorylation state of its cytosolic domain (CD). 
Fusion of MVBs with the plasma membrane leads to the 
release of ILVs (exosomes); consistent with the presence of 
PAM in ILVs, PAM has been identified in both urinary and 
salivary exosomes [68, 69].

Separation of the catalytic domains of PAM from its 
TMD/CD allows intramembrane proteolysis by γ-secretase, 
producing a soluble cytosolic fragment (sfCD) that traffics 

to the nucleus and alters the expression of a subset of genes 
[70, 71]. Golgi-derived vesicles destined for cilia are known 
to transport both ciliary membrane proteins and specific 
lipids [72, 73], and potentially contain PAM (Fig. 5a). Alter-
natively, ciliary PAM may derive from endosomes recycling 
PAM from the cell surface; directed exocytosis would allow 
internalized PAM to enter the cilium, as has been proposed 
for the Kim1 protein [74, 75]. Indeed, in Chlamydomonas, 
~ 7% of the total PHM activity is present in cilia [36]. 
Disrupting the Golgi with Brefeldin A leads to cell body 
accumulation of PAM and Arf1, a vesicle trafficking factor, 
and to a decrease in the modified tubulins normally pre-
sent in Chlamydomonas cilia. Similarly, Chlamydomonas 
PAM lacking most of its CD exhibits impaired trafficking; 
although the mutant protein is still found in the cilia, it tends 
to accumulate in the secretory pathway [37]. The trafficking 
determinants in the CD appear to have been well conserved 
as Chlamydomonas PAM is distributed appropriately when 
expressed in murine cells (Fig. 5b).

Given PAM’s topology in the secretory pathway, the cata-
lytic domains are predicted to be on the outside of the cilium 
(Fig. 5a) where they could potentially act catalytically on 
soluble glycine-extended factors in the environment; i.e., 
locally generating amidated products on/near the ciliary 
surface. This domain orientation was directly demonstrated 
in Chlamydomonas cilia using antibodies against both the 
PAM luminal domain and the CD; the latter only yielded a 
signal after the ciliary membrane had been permeabilized 
[36]. Intriguingly, immuno-electron microscopy revealed 
that PAM staining exhibits a distinct periodicity of ~ 250 to 
300 nm along the Chlamydomonas cilium, and biochemi-
cal fractionation demonstrated that PAM associates with the 
microtubular axoneme as does another ciliary membrane 
protein—the non-selective cation channel, polycystin 2 [76]; 
whether this tethering occurs directly through the PAM CD 
or via some other axoneme-associated component remains 
uncertain.

PAM‑actin associations and microvillus 
formation

The actin cytoskeleton is intimately involved in the for-
mation of cilia [77], has effects on vesicular trafficking 
and transcriptional regulation [33], is important for ecto-
some release during receptor-mediated ciliary signaling 
[3], and participates in ciliary tip excision [78]. Numer-
ous studies point to a key role for PAM in organizing and 
controlling the actin cytoskeleton. For example, overex-
pression of PAM in AtT20 corticotrope cells leads to a 
dramatic reorganization of cytoplasmic actin resulting in 
a mainly cortical array and disrupts regulated secretion 
[79]. In mammals, the PAM CD associates with Kalirin 
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and Trio, modular proteins containing a series of spectrin-
like repeats, two guanine exchange factor (GEF) domains, 
an SH3 domain and a C-terminal kinase module [80]. 
These GEFs activate Rac1, RhoG and RhoA, which in 
turn regulate actin filament assembly and dynamics [81]. 
Furthermore, rat PAM CD also binds actin directly with 
sub-μM affinity [38]. On its own, the PAM CD does not 
alter filament assembly dynamics in standard pyrene-actin 
assembly/disassembly assays. However, as PAM and small 
vesicular structures colocalize with a dense actin array 
within the peri-basal body region of multiciliated tracheal 

epithelial cells, the CD may aid in tethering PAM-contain-
ing vesicles to the actin cytoskeleton (Fig. 6a). In Chla-
mydomonas, lack of PAM results in upregulation of an 
actin paralogue that can functionally compensate for the 
loss of canonical actin in essential cellular systems; upreg-
ulation of this paralogue also occurs in the ida5 actin-null 
mutant [82], so in this particular phenotypic response, loss 
of PAM in Chlamydomonas mimics loss of actin. Further-
more, in Chlamydomonas cells lacking PAM, cellular actin 
is reorganized from a diffuse array spread throughout the 
cytoplasm into a few phalloidin-stained foci [38].
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Further evidence that PAM plays a key role in the for-
mation and/or maintenance of actin-based structures came 
from observations in mutant zebrafish [38] (Fig. 6b). In 
wild-type embryos at 3 days post-fertilization, the lumen 
of the pronephros (kidney) is almost completely filled by 
motile cilia surrounded by a dense outer array of micro-
villi. In zebrafish, many mRNAs are maternally loaded 
into the early zygote and indeed Pam mRNA is one of 
the most abundant [83]. Initially, both cilia and microvilli 
form in pam-null mutant embryos as PAM protein can be 
made at very early developmental stages from the large 
maternally derived mRNA stores. However, after several 
days of development, there is no detectable amidating 
activity and a dramatic loss of microvilli and motile cilia is 
observed along almost the entire length of the pronephros, 
suggesting that these structures either cannot form or be 
maintained in the absence of PAM. As PAM is absent from 
the microvilli themselves (Fig. 6a), the essential role this 
enzyme plays in their assembly and/or maintenance must 
be indirect.

Thus, although the observed changes are both com-
plex and varied, and the vertebrate and Chlamydomonas 
PAM-CD sequences are highly divergent, control of actin 
cytoskeletal dynamics and behavior is a fundamental prop-
erty of PAM that has been highly conserved across the 
eukaryotes.

PAM and amidating activity are needed 
to build cilia

Reducing PAM levels to ~ 10% of wild-type in Chla-
mydomonas revealed an unexpected phenotype [37]. Spe-
cifically, PAM-deficient cells were completely unable to 
build cilia, and instead assembled only short ciliary stubs 
containing accumulated IFT proteins and short singlet 
microtubule fragments oriented approximately orthogo-
nal to the normal ciliary long axis (Fig. 7a). Analysis of 
the transition zone (TZ) in PAM-deficient cells revealed 
the absence of normal Y-links that form part of the ciliary 
gate [84, 85]. Although levels of several ciliary proteins 
were unaltered in PAM-deficient cells, there was a strik-
ing increase in the amounts of two TZ proteins (NPHP4 
and CEP290) and one IFT-A protein (IFT139), presum-
ably as part of a cellular response attempting to repair or 
overcome detected abnormalities in Chlamydomonas cili-
ogenesis. These observations suggest that in the absence 
of adequate amounts of PAM, there is a defect in either the 
IFT process itself, or in the ability of IFT particles to exit 
the organelle through the malformed TZ gate.

Golgi morphology was altered in these knockdown 
strains, as the stacks were more curved than in controls, 
possibly due to the loss of PAM-actin interactions. PAM 
deficiency also reduced trafficking of Golgi-derived starch 
metabolic enzymes, leading to changes in starch granule 
size, and there were defects in both basal and nutrient dep-
rivation-stimulated secretion. Importantly, PAM knock-
down strains grew at the same rate as controls (under both 
photoautotrophic and photoheterotrophic conditions), 
and exhibited a normal contractile vacuole cycle, which 
is another process heavily dependent on membrane traf-
ficking. Thus, the ciliary and Golgi defects observed fol-
lowing the loss of Chlamydomonas PAM derive from the 
disruption of specific cellular processes and do not merely 
reflect a general decrease in cell fitness or viability.

Demonstration that PAM plays a role in metazoan cili-
ogenesis came from studies in the planarian Schmidtea 
mediterranea and two vertebrates (zebrafish and mice) 
[37, 38]. Planaria have a ventral ciliated epithelium used 
for gliding locomotion and express three PAM-related pro-
teins: a canonical bifunctional integral membrane PAM 
as well as separate, soluble PHM and PAL proteins that 
would reside within the secretory pathway. Knock down of 
membrane PAM and soluble PHM together, using RNAi 
constructs, reduced enzyme activity to < 10% of control 
levels and dramatically reduced the number of motile 
cilia on the ventral surface (Fig. 7b). The remaining cilia 
were dyskinetic and often had aberrant axonemal archi-
tecture likely due to defective remodeling. The double 
knockdown animals moved at a much slower rate than 

Fig. 5   PAM trafficking pathways. a Diagram illustrating the path-
ways that may be taken by PAM as it moves out of the Golgi complex 
and through the endomembrane system. PAM contained in constitu-
tive secretory pathway vesicles (the regulated secretory pathway is 
not shown) appears on the plasma membrane following exocytosis. 
The active catalytic domains can be shed following proteolysis, but 
most PAM is rapidly endocytosed, leaving only a small fraction of 
total cellular PAM (~ 2%) on the cell surface at steady state. In mam-
malian cells, PAM appears in early endosomes before it is found on 
the limiting membrane of multi-vesicular bodies. Consistent with its 
identification in exosomes, PAM can enter the intraluminal vesicles 
contained within multi-vesicular bodies; fusion of the multi-vesicu-
lar body with the plasma membrane results in release of exosomes. 
Proteolytic cleavages that separate the catalytic cores from the TMD 
and CD of PAM occur in the multi-vesicular body, allowing release 
of soluble PAM and generation of sfCD. The factors governing recy-
cling versus lysosomal degradation of PAM are poorly understood. 
PAM may enter Golgi-derived vesicles that transport specific lipid 
and protein cargoes to the cilium (ciliary pathway). Alternatively, 
ciliary PAM may derive from the endocytic pathway (dashed line). 
Within cilia, the PAM catalytic domains are on the external surface. 
Like polycystin 2, PAM associates with the axoneme via an unknown 
mechanism. b Murine AtT20 corticotrope tumor cell expressing 
Chlamydomonas PAM. Stably transfected cells were stained to reveal 
CrPAM (red), GM130 (a Golgi marker; green) and the nucleus (blue). 
PAM is present in the Golgi complex (white arrows) and numerous 
small vesicles throughout the cytoplasm [36]. c Optical section of 
a serum-starved NIH 3T3 cell stained for endogenous PAM (red), 
acetylated tubulin (green) and the nucleus (blue). PAM co-localized 
with acetylated tubulin within the primary cilium (white arrow) [36]. 
Scale bars = 10 μm. Panels (b) and (c) were adapted from [36] under a 
Company of Biologists publication agreement

◂
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controls, consistent with movement driven by contrac-
tions of the body musculature rather than ciliary beating 
against secreted mucus. Analysis of the ciliated epithelial 
cells in these knockdown animals revealed some basal 
bodies docked at the plasma membrane lacking axone-
mal extensions, and numerous morphologically normal 
motile ciliary axonemes located in the cytoplasm very 
close to the plasma membrane but with no surrounding 
ciliary membrane (Fig. 7b, lower panel). Strikingly, these 
unusual cytosolic axonemes were in general oriented with 
their distal end towards the head of the animal. This latter 
observation suggests that lack of PAM affects the docking 
of at least some basal bodies and/or trafficking of Golgi-
derived ciliary membrane components. Intriguingly, this 
“cytosolic axoneme assembly” phenotype was also seen 
in cells lining the pronephros of pam-null zebrafish [38], 

suggesting that it is a conserved response of multiciliated 
cells to the lack of PAM.

In mice, lack of PAM is lethal in early development, 
prior to the formation of multiciliated epithelial cells [64]. 
However, primary cilia in the developing neuroepithelium 
of Pam−/− embryos were much shorter than controls (0.5 
versus 0.9 μm), suggesting that they represent immature or 
aberrant forms (Fig. 7c). Zebrafish pam−/− mutant embryos 
have several cilia-related phenotypes, including small eyes, 
kidney-associated cysts and hydrocephalus [86], and exhibit 
loss of both cilia and microvilli in the pronephros within 
5 days after fertilization [38]. Interestingly, some ciliary 
structures, including those in the olfactory bulb, otic vesicles 
and on neuromasts, appear generally unaffected.

A key question raised by these observations is whether the 
ciliary phenotypes are caused by the lack of PAM-mediated 

Fig. 6   PAM-actin associations and microvillus formation. a Immu-
nofluorescence images of murine tracheal epithelial cells illustrating 
that PAM (green) and F-actin (as detected by fluorescent phalloidin) 
colocalize in the peri-basal body region, whereas ezrin (red), which 
marks the microvilli, is more distal; note that microvillar actin is not 
strongly stained by fluorescent phalloidin presumably because the 
binding sites are occluded by other microvillar components. The inset 
(brightness/contrast-adjusted) illustrates the PAM-positive puncta in 

cilia. b Electron micrographs of transverse sections through the pro-
nephros of wild-type and pam−/− homozygous mutant zebrafish at 
6  days post-fertilization. In the controls (pam+/+), a dense array of 
microvilli surrounds the numerous closely packed cilia in the pro-
nephric lumen. In contrast, lack of PAM results in complete loss 
of microvilli and most cilia within the pronephros of the mutant 
(pam−/−). Scale bars = 5 μm and 1 μm in a and b, respectively. Modi-
fied from [38] under a Creative Commons license
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protein–protein interactions, by the loss of amidating activ-
ity per se, or both. Currently, several lines of evidence pro-
vide support for a role for amidating activity. First, planaria 
exhibited the strongest ciliogenesis phenotype only when 
both membrane-PAM and soluble PHM were targeted 
together, thereby reducing amidating activity to very low 
levels. Furthermore, knockdown of soluble PHM alone 
resulted in ciliary loss and the slow muscle-driven motility 
characteristic of animals with defective motile cilia [87], 
again suggesting a role for monooxygenase activity. Second, 
PHM is inhibited by 4-phenyl-3-butenoic acid (PBA) [88], 
a suicide inhibitor, and by neocuproine, a copper-specific 
chelator (PHM has an absolute requirement for copper) [89]. 
When wild-type Chlamydomonas were deflagellated in the 
presence of either inhibitor, reciliogenesis was significantly 
delayed, strongly suggesting that amidating activity is a 
key ciliogenic parameter. That reciliogenesis was delayed 
rather than completely inhibited likely reflects the observa-
tion that Chlamydomonas maintains sufficient components 
(potentially including enough amidated products) in the cell 

body to build two approximately half-length cilia without 
additional protein synthesis [90]. Third, Chlamydomonas 
cells expressing CrPAMΔCD, a mutant with functional 
catalytic cores that lacks ~ 75% of the CD, have enhanced 
enzyme activity as the truncated protein accumulates in 
the secretory pathway, and make full-length cilia that are 
completely motile [37]. Furthermore, insects only express 
separate PHM and PAL proteins [66], and while for many 
(e.g., Drosophila) the PAL protein also has an associated 
TMD/CD, recent database searches suggest that one insect 
order—the lepidoptera—express only soluble PAL lacking 
the TMD/CD again indicating the catalytic domains may 
be important. Although insects lack multiciliated epithelial 
cells, they still build ciliated motile sperm and use modified 
cilia for mechano- and chemo-sensation and in the chordo-
tonal organ [91–93]. These experimental and bioinformat-
ics observations suggest that the PAM CD may not play a 
fundamentally essential role in cilia formation and thus that 
the catalytic domains likely provide a key ciliogenic factor. 
The ability of PAM to amidate the C-termini of proteins 

Fig. 7   PAM plays a role in ciliogenesis in Chlamydomonas, pla-
naria and mice. a Immunofluorescence (red, acetylated tubulin; 
green, PAM; blue, DNA) and scanning electron micrographs of 
control and PAM knockdown Chlamydomonas cells (upper pan-
els; scale bars = 5 μm). Lack of PAM results in the failure of ciliary 
assembly and the formation of short ciliary stubs that accumulate 
IFT material and short microtubule fragments (lower panel; scale 
bar = 100 nm). The inset shows the PAM staining in the cilia (boxed) 
of the left-most cell—the ciliary tip is oriented to the right. b Scan-
ning electron micrographs of the ventral surface of control and PHM-

knockdown planaria (upper and center panels; scale bars = 10  μm); 
reducing PHM activity leads to the loss of cilia as they fail during 
remodeling. The lower panel illustrates the presence of a morphologi-
cally normal axoneme lacking a ciliary membrane in the cytoplasm 
of a ciliated epithelial cell from a PHM + PAM knockdown planar-
ian (scale bar = 100  nm). c Electron micrographs of primary cilia 
on the neuroepithelium of wild-type and PAM-null mice at E12.5 
(scale bar = 500 nm). Modified from [37] under a Creative Commons 
license
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(e.g., ubiquitin and monoclonal antibody heavy chains [94]), 
selected lipids [95, 96] and other metabolites, complicates 
the search for substrates. Site-directed mutants lacking PHM 
and/or PAL activity will be needed to definitively answer 
this important question.

Models for the role of PAM in ciliogenesis

The available evidence supports a species-specific role for 
amidating activity in promoting ciliogenesis. However, 
the identity of the substrate(s), product(s) and downstream 
target(s) important for this process remain unknown. In addi-
tion to a general lack of amidated products in the secretory 
pathway, PAM deficiency leads to several other distinct 
effects, each of which might also impact a different aspect 
of the ciliogenic pathway (Fig. 8). In Chlamydomonas, 
loss of PAM alters Golgi structure as the membrane stacks 
become more highly curved [37]. This may reflect a role 
for PAM in modifying or counteracting imposed membrane 
curvature, perhaps through its associations (either direct 
or via Rho-GEFs) with the actin cytoskeleton [38, 80]. 

Secretion of a subset of proteins is diminished when PAM 
levels are reduced [37]. Clathrin levels more than double 
in PAM-deficient cells, which may alter the availability of 
ciliary membrane lipid and/or protein components. Altered 
vesicular trafficking due to the loss of PAM might disrupt 
the balance between ciliary membrane incorporation and its 
loss through membrane budding and ectosome release from 
cilia. Changes in branched actin dynamics in PAM-deficient 
cilia might also cause membrane loss at a rate that cannot 
be fully replenished. Together these processes could result 
in the failure of new cilia to assemble normally, and lead 
to the gradual loss of existing cilia as their membrane is 
shed. There is also clear evidence that lack of PAM in Chla-
mydomonas affects formation of the TZ and disrupts or mod-
ifies the ciliary gate such that IFT components accumulate 
in the post-TZ stubs [37]. Potentially, this too might reflect 
altered ciliary membrane lipid content affecting TZ assem-
bly. Interestingly, Chlamydomonas responds to the loss of 
PAM with a large increase in the level of two TZ proteins 
(CEP290 and NPHP4) and an IFT-A protein (IFT139) [37]; 
these proteins are all cytosolic and thus cannot be direct 
substrates for PAM as its enzymatic cores are located in the 

Fig. 8   Model for PAM function during ciliogenesis in Chla-
mydomonas. Model depicting the general phenotypes observed in 
Chlamydomonas caused by the reduction of PAM expression. These 
include alterations in both Golgi morphology, which became more 
highly curved, and post-Golgi trafficking that may be a consequence 

of actin reorganization. In addition, transition zone architecture was 
disrupted and Y-links, which form a key component of the ciliary 
gate, were absent. Only short ciliary stubs formed; these accumulated 
IFT particle components and short microtubule fragments. Proteins 
shown are identified in the key to Fig. 3
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secretory pathway lumen. This suggests a more complex 
response to the lack of PAM leading to compromised ciliary 
exit and disrupted regulatory processes.

In multiciliated epithelial cells of both planaria (Fig. 7b) 
and zebrafish, loss of PAM leads to the presence of cyto-
solic membrane-less axonemes [37, 38]. There are two gen-
eral mechanisms by which these might form (Fig. 9). In the 
“axoneme reentry” model, membrane-less axonemes would 
derive from previously assembled cilia that have experienced 
enhanced ciliary membrane loss and basal body undock-
ing from the plasma membrane and have thus been driven 
back into the cytoplasm. This is essentially the reverse of 
exflagellation, the process used by Plasmodium to extrude a 
membrane-less axoneme assembled in the cytoplasm [97]. 
In the “direct assembly” model, defects in basal body dock-
ing after their initial formation might lead to the exposure of 
the axonemal assembly template in the cytoplasm near the 
plasma membrane where stores of ciliary components are 
localized, thereby allowing for axoneme formation in the 
cytoplasm. One observation supporting a specific defect in 

basal body docking is that in planaria, nearly all of the cyto-
solic axonemes were located very close to the plasma mem-
brane and oriented in approximately the same direction, with 
the distal tip towards the front of the animal. This observa-
tion implies some type of directional signal that leads to a 
specific basal body orientation. The “direct assembly” model 
predicts that cytosolic axoneme assembly is an ancestral or 
default state. In the absence of compartmentalization within 
the ciliary membrane or proper regulation of the axoneme 
assembly properties of the basal body template (as mediated, 
for example, by CP110 [98]), cytosolic axoneme formation 
could occur spontaneously.

What function(s) might ciliary localized PAM 
perform?

In addition to its role in cilia formation, PAM is also traf-
ficked into these organelles; in Chlamydomonas, it becomes 
stably associated with the microtubular axoneme [36]. The 

Fig. 9   Models for formation of cytosolic axonemes. Two models for 
how axonemes might form in the cytoplasm of multiciliated cells 
following loss of PAM. In the “axoneme reentry” model, PAM loss 
leads to enhanced ciliary membrane loss and failure of basal body 
docking, and results in the preassembled axoneme being driven into 

the cytoplasm. Alternatively, in the “direct assembly” model, lack of 
PAM might lead to misoriented newly synthesized basal bodies at the 
plasma membrane, which could then act to template axoneme assem-
bly from components concentrated in this peri-basal body region of 
cytoplasm
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topology of ciliary-PAM places its catalytic domains on 
the external face of the organelle. Although PHM has an 
acidic pH optimum, it retains some activity under neutral 
conditions; in the presence of adequate copper, ascorbate 
and molecular oxygen, cilia-localized PAM is expected 
to be catalytically active. Thus, ciliary PAM could act on 
glycine-extended proteins present in the extracellular envi-
ronment or associated with the external face of the ciliary 
membrane, generating amidated products which might 
play a role in signaling or some other process. In situations 
where cilia interact, e.g., during mating in Chlamydomonas, 
ciliary PAM might function in trans, amidating substrates 
present on the surface of the interacting cilium. In Chla-
mydomonas, the ciliary membrane is the only membrane 
normally directly exposed to the environment (except when 
the cell wall is shed during the mating reaction). Local gen-
eration of amidated factors might play a key role in provid-
ing a sufficiently high concentration of modified products for 
productive downstream signaling. As PAM CD binds actin 
directly with sub-μM affinity [38], it is also possible that cili-
ary PAM alters the formation or dynamics of short branched 
actin filaments within cilia, a process which is thought to 
control primary ciliogenesis in animal cells [98, 99].

Intriguingly, PAM is tightly associated with the axoneme 
and in vitro, unlike most ciliary membrane proteins, PAM is 
only solubilized when demembranated cilia are treated with 
increased salt concentrations, as observed for several other 
axonemal substructures such as the dynein arms. This inter-
action might occur directly, through association of the intra-
ciliary PAM CD with the axoneme, or indirectly, through an 
axoneme-associated component (which might even extend 
across the membrane into the extracellular space). Why is 
this unusual transmembrane protein tethering necessary? 
One possible explanation is that it provides a mechanism to 
avoid the general, non-specific or unregulated loss of mem-
brane-associated PAM from the cilium—either in ectosomes 
budded from the ciliary membrane or from BBSome/IFT-
mediated recycling back to the cell body. A further puzzle 
is the apparent 250–300 nm spacing for PAM observed by 
immunogold EM [36]; this spacing does not directly cor-
relate with other known axonemal repeat distances.

A phylogenetic conundrum—many 
organisms lacking PAM still build cilia

PAM and/or separate PHM and PAL modules are present 
throughout metazoans and the chlorophyte green algae; 
in addition to key roles in peptidergic signaling, in both 
these lineages PAM is involved in ciliogenesis. However, 
the pattern of PAM-like gene expression in other eukary-
otic groups is more varied, suggesting that this enzyme 
has undergone multiple independent loss events during 

evolution and that in some organisms, ciliary assembly in 
the absence of PAM occurs (Fig. 10). For example, within 
the opisthokonts (which includes the metazoa, fungi, cho-
anoflagellates and filasterea), PAM is missing throughout the 
fungi, even though the chytrids build flagellated zoospores. 
In contrast, although a previous bioinformatics analysis did 
not find evidence for PAM-related gene(s) in choanoflagel-
lates, more recent database searches revealed a PHM-like 
sequence in Monosiga brevicollis (XP_001746677) and both 
PHM- (GGOY01024199) and PAL-like (GGOY01026207) 
sequences in Salpingoeca urceolata. Similarly, membrane-
PAM is present in the filasterean Capsaspora owczarzaki 
(XP_004363913). A second clear instance of PAM loss 
occurs in the green plant lineage. Although PAM is found 
in ciliated unicellular and colonial chlorophyte algae (Chla-
mydomonas, Gonium and Volvox), it is missing in all land 
plants, including mosses and Ginkgo, which both have flag-
ellated sperm cells.

Genomic studies reveal that numerous other ciliated 
groups, including excavates (e.g., Trypanosoma), strameno-
piles (e.g., diatoms, oomycetes and brown algae), and for-
nicates (e.g., Giardia), also completely lack PAM. Intrigu-
ingly, a more complex pattern of loss is apparent in the 
ciliated alveolates. Some, such as Tetrahymena and Parame-
cium, do not encode PAM-like sequences. However, PHM- 
(EX872387) and PAL-like (EX872386) partial sequences 
were previously reported in another alveolate—the dinoflag-
ellate Karenia brevis [66]. Furthermore, there are now two 
examples of PAM-like genes in ciliated haptophytes—uni-
cellular organisms abundant in the marine phytoplankton; 
both Emiliania huxleyi and Chrysochromulina sp. express 
a soluble PHM + PAL (XP_005764558 and KOO21218, 
respectively). Haptophytes have calcite-based coccoliths 
forming an exoskeleton and two motile cilia. Furthermore, 
they assemble an additional thin microtubule-based cellular 
protrusion (the haptonema), and use bidirectional transport 
along this structure for food/prey retrieval [100] in a pro-
cess that, at least superficially, is remarkably reminiscent of 
IFT-driven bead transport along Chlamydomonas cilia [101, 
102]; haptonema may also play a sensory role. Together, 
these observations suggest that the presence/absence of 
PAM may define a fundamental dichotomy in the assembly 
and/or function of cilia and divide the ciliated eukaryotes 
into two broad groupings. Identification of genes expressed 
in ciliated organisms encoding PAM but missing in ciliated 
organisms lacking PAM may provide a path to revealing a 
unique subset of genes that affect or define this intriguing 
ciliogenic pathway.

A broad and diverse array of non-ciliated unicellular 
organisms (e.g., yeasts, amoebae, rhizarians such as Reticu-
lomyxa, and the red alga Cyanidioschyzon merolae) lack 
PAM. However, that PAM likely plays non-cilia related 
roles in at least some unicellular organisms is evidenced by 
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its retention in the filasterean C. owczarzaki, which appears 
to lack all cilia-specific genes [103]. Similarly, the plank-
tonic pico-chlorophyte Ostreococcus lucimarinus, which 
is entirely missing any IFT machinery, also has PAM; this 
organism does not build cilia and retains only a single axone-
mal inner arm dynein that may have been repurposed for a 
non-ciliary role [104, 105]. Likewise, the presence of PHM 
sequences in both Coccomyxa sp. and Chlorella variabilis 
[66] further suggest a cilia-independent role for amidation 
in green algae; intriguingly, although both these organisms 
encode components of the outer dynein arm [106, 107], they 
lack most of the IFT system and neither has been observed 
to form cilia.

Implications for cilia‑based signaling 
and ciliopathies

Ciliopathies represent a broad group of multisystemic dis-
orders that derive from defective cilia-based signaling and/
or motile behavior [12, 17]. Signaling-associated pheno-
types can include severe brain malformations (e.g., Joubert 

and Meckel Syndromes [108]), skeletal abnormalities (e.g., 
juvenile thoracic dystrophy and short rib polydactyly [16]), 
polycystic kidney disease (the most common genetic dis-
order in humans with an incidence of ~ 1/1000) [109], and 
other complex syndromes with multiple overlapping clinical 
features such as rod/cone dystrophy, mental retardation, obe-
sity, anosmia, and insulin resistance (e.g., Bardet–Biedl syn-
drome [110]). Recent studies have revealed human genetic 
variants in PAM affecting insulin resistance [111], altered 
risk for diabetes [112], and hypertension with associated 
insulin resistance and altered low density lipoprotein levels 
[113]. As many ciliopathies include endocrine features such 
as obesity in their pathology, this raises the possibility that 
ciliary PAM defects contribute to these complex phenotypes.

Defects in motile cilia result in primary ciliary dyskine-
sia [114]. Phenotypes include inhibition of sperm motility, 
resulting in male infertility. More generally, defective cili-
ary motility compromises lung function as secreted mucus, 
which acts as a protectant, cannot be cleared, and cerebrospi-
nal fluid flow in the brain ventricles is restricted, leading to 
hydrocephalus. In addition, left–right patterning is disrupted 
by cilia dysfunction at the embryonic node, resulting in situs 

Fig. 10   PAM expression and ciliogenesis throughout the eukaryotes. 
Phylogenetic tree illustrating members of the main eukaryotic groups. 
Connecting lines indicate the presence (green) or absence (red) of 
PAM (or PHM) in specific lineages. Organisms that have both PAM 
and cilia are outlined in grey; organisms that lack PAM but build cilia 
are highlighted in yellow. Capsaspora, which has PAM but lacks 
cilia, is indicated with a blue oval, and organisms that lack both PAM 

and cilia are not outlined. Although the precise branching of some 
deep phylogenetic divisions remains unresolved [123] and is not 
addressed here, currently available sequence data suggest that PAM 
has undergone multiple independent loss events in different lineages 
at least some members of which still retain cilia; e.g., in the fungi, 
plants, and alveolates. The initial plot was generated using PHYLOT 
[124] and manually modified and annotated
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inversus or heterotaxy. Lack of cilia-driven flow in the fallo-
pian tubes, which is required to move oocytes to the uterus, 
causes female infertility. In these latter cases, it is the cilia-
driven movement of fluid bathing the ciliated epithelium 
that is required for normal physiology. Although no obvious 
motile cilia phenotypes (such as laterality defects) have yet 
been described in PAM knockout mice, the zebrafish null 
mutants exhibit hydrocephalus and kidney-associated cysts, 
both of which can derive from defective ciliary motility in 
this organism.

Conclusions

Recent studies revealed an unexpected role for the peptide 
amidating monooxygenase (PAM), a highly conserved cop-
per-, molecular oxygen- and ascorbate-dependent secretory 
pathway enzyme, in building cilia. This connection has been 
observed in both vertebrates and algae, suggesting that it 
dates to the last common ancestor of eukaryotes and rep-
resents a fundamental feature of ciliogenesis. Current data 
support a role for amidating activity in forming the ciliary 
gate and regulation of the IFT system. Numerous studies 
have also revealed a connection between PAM and control 
of the actin cytoskeleton, and lead to the suggestion that 
PAM might play a central role in trafficking of membrane 
or other components to these cytoskeleton-based cellular 
extensions. Key issues for the future include identifying the 
PAM substrate(s) involved in ciliogenesis and determining 
the role and fate of ciliary-localized PAM and its potential 
amidated products.
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