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To understand the pathophysiology of complex diseases, including hypertension, diabetes, and autism, deleterious phenotypes are
unlikely due to the effects of single genes, but rather, gene-gene interactions (GGIs), which are widely analyzed by multifactor
dimensionality reduction (MDR). Early MDRmethods mainly focused on binary traits. More recently, several extensions of MDR
have been developed for analyzing various traits such as quantitative traits and survival times. Newer technologies, such as genome-
wide association studies (GWAS), have now been developed for assessingmultiple traits, to simultaneously identify genetic variants
associated with various pathological phenotypes. It has also been well demonstrated that analyzing multiple traits has several
advantages over single trait analysis. While there remains a need to find GGIs for multiple traits, such studies have become more
difficult, due to a lack of novel methods and software. Herein, we propose a novel multi-CMDR method, by combining fuzzy
clustering and MDR, to find GGIs for multiple traits. Multi-CMDR showed similar power to existing methods, when phenotypes
followed bivariate normal distributions, and showed better power than others for skewed distributions. The validity ofmulti-CMDR
was confirmed by analyzing real-life Korean GWAS data.

1. Introduction

In genome-wide association studies (GWAS), genotype data
from a large number of single nucleotide polymorphisms
(SNPs) are collected, to associate SNPs with traits of interest
[1]. Not only single gene effects, but also interaction effects,
between genes, play important roles in complex diseases such
as hypertension, diabetes, and autism. By identifying gene-
gene interactions (GGIs), we expect to increase statistical
power, to detect associations. Moreover, we also hope to
clarify the biological pathways underlying humandiseases, by
detecting interactions between loci [2].

In many cases, a phenotype is considered, and there
are various studies on statistical methods for finding GGIs,
for univariate phenotypes. For studying qualitative traits,
as in the case-control studies, one simple way for identify-
ing genetic interaction is to fit a logistic regression model

(LRM) that includes main effects and relevant interaction
terms. However, LRMs perform poorly when there is a
dimensionality problem. Another well-known approach is a
multifactor dimensionality reduction (MDR) method [3, 4],
which reduces dimensions by converting a high-dimensional
to a one-dimensional model. The genotype combinations are
classified as either “high-risk” or “low-risk,” depending on
the ratio of cases to controls, for each genotype combination.
Thus, an MDR can avoid the issues of sparse data cells
and overparameterization of models [2] and can outperform
LRMs, for detecting higher order GGIs [5]. Recently, var-
ious approaches such as using multiple contingency table
(MODENDR) [6] or particle swarm optimization method
(PBMDR) have been developed [7].

Due to its superior performance there are now various
extensions of MDR, including ordinal phenotypes, quantita-
tive phenotypes, survival information, and odds-ratio-based
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analysis [8–11]. One specific extension of MDR, generalized
MDR, which is applicable to both dichotomous and contin-
uous traits, was proposed [12]. However, GMDR does not
provide a computationally efficient algorithm that is easy
to implement, and it still requires a dichotomous outcome
in the data file [9]. As an alternative, quantitative MDR
(QMDR) modified MDR’s constructive induction algorithm,
which assigns a genotype to either the high- or low-risk
groups by comparing the local and global means and then
applies a t-test to compare the means of the two groups.
More recently, cluster-based MDR (CL-MDR), which is less
sensitive to outliers and distributional assumptions, was also
developed [13, 14]. Compared to QMDR, CL-MDR was
shown to yield higher power, when the phenotype distri-
bution is skewed. However, CL-MDR was developed only
for univariate phenotype rather than multivariate pheno-
types.

When considering multiple phenotypes, it becomes more
difficult to find GGIs. Thus, most GWAS studies still focus on
one trait to identify genetic variants associated with common
complex traits, even though multiple phenotypes or repeated
measurements of phenotypes are available. However, in the
study of a complex disease, several correlated traits are often
measured at the same time as risk factors for the disease.
For example, it is known that intermediately correlated phe-
notypes, such as Factors VII, VIII, IX, XI, and XII and
von Willebrand factor, jointly predict the risk of developing
thrombosis [1, 9, 20]. By modeling multivariate disease-
related traits, the power to detect associations between genes
and diseases is expected to increase. Analyses of multiple
traits have been successful in analyzing various complex
diseases. In general, the multivariate approach has several
advantages over the univariate approach considering one
trait at a time. For example, the multivariate approach can
consider several traits simultaneously in one model and
hence it can take into account the correlation among traits. As
a result, the multivariate approach would have higher power
to detect pleiotropic genes and it can identify genetic variants
not easily detected by the univariate approach [21].

There is relatively less GGI research on multivariate traits
case. To deal with multiple phenotypes, generalized esti-
mating equations (GEE)-GMDR is an extension of GMDR
method, using the GEE model [22]. Multi-QMDR, which
extends QMDR to multivariate cases, has also been pro-
posed [5]. Multi-QMDR classifies samples into high- vs.
low-risk groups, by using summary statistics, based mainly
on principal component scores. After classification, the
two groups’ mean vectors are compared, using Hotelling’s𝑇2 statistic. While this approach is simple and intuitive,
it is not appropriate when the distribution of phenotypes
is not symmetric and/or skewed and is also sensitive to
outliers.

Recently, several MDR extensions were proposed using
the fuzzy set theory [23–27]. Such fuzzy set-based MDR
methods classify high-risk or low-risk groups as equivalent to
defining the degree of membership in high- and low-risk
groups. By adopting the fuzzy set theory, fuzzy set-based
MDR methods take into account the uncertainty of this
binary classification. Fuzzy set-based MDR methods allow

the possibility of partial membership into high- and low-risk
groups, through a membership function, which transforms
the degree of uncertainty into a [0, 1] scale. Then, the best
genotype combinations can be selected, maximizing a new
fuzzy set-based accuracy measure. Specifically, fuzzy MDR
[23] was proposed to detect GGIs for a binary trait and
was shown to yield higher power than the original MDR.
Furthermore, an empirical fuzzy MDR (EF-MDR) model
[24] was proposed to overcome the selection problem of
tuning parameters in the original fuzzy MDR, while a fuzzy
set-based generalized multifactor dimensionality reduction
(FGMDR)model [25] was also proposed for covariate adjust-
ment, for both quantitative and binary traits. More recently,
a faster version of EFMDR was developed [26]. Fuzzy C-
means-based entropy approach [27] was proposed as the
method to detect GGIs for binary trait. It uses two measures:
correct classification rate (FCMEMDR-CCR) and likelihood
ratio (FCMEMDR-LR).

Here, we propose a new method to detect GGIs for
multiple quantitative traits. The main idea of our method to
detect GGIs for multiple quantitative traits lies in combining
fuzzy clustering with a modified multifactor dimensionality
reduction (MDR) approach, named “multivariate cluster
MDR” (multi-CMDR). Like other MDR-based methods,
multi-CMDR also pools multiple genotype combinations
into two groups and uses them as a new attribute, reducing
multidimensional space into one dimension. To classify
genotype combinations, we first performed fuzzy k-means
clustering and computed a threshold, representing the ratio of
the sum of the membership degrees of the two groups. Each
multilocus genotype is labeled by comparing the local ratio,
in each multilocus genotype, to the global ratio. Then, multi-
CMDR identifies the best genotype model, using Hotelling’s𝑇2 statistic. To find the overall best model, 10-fold cross-
validation (CV) is performed and the best model is chosen
which has the largest CV consistency. Unlike other GGI
methods for multiple quantitative traits, multi-CMDR is
robust to outliers and underlying distributions.

We first introduce the multi-CMDR method in detail in
Section 2. We next present a simulation study in Section 3,
to show the performance of the proposed methods by com-
paring them to other methods, such as multi-QMDR. For a
phenotype distribution,multivariate normal andmultivariate
gamma distributions are considered. In Section 4, we apply
our method to three lipid-related phenotypes data extracted
from the GWA study of the Korean Association Resource
(KARE) project, as an illustration. We end with some con-
clusions in Section 5.

2. Materials and Methods

In this section, we introduce a new procedure, multi-CMDR,
for finding GGIs formultiple continuous phenotypes. Similar
to other MDR-based methods, multi-CMDR pools multiple
genotype combinations into two groups and uses them as
a new attribute that reduces a multidimensional space into
only one dimension. The detailed algorithm is described in
Figure 1 and the multi-CMDR pseudocode is presented in
Pseudocode 1.
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Figure 1: Summary of the multi-CMDR algorithm in the case of 10-fold and 2nd-order gene-gene interactions.

(01) perform fuzzy k-means clustering with noise cluster for phenotypes
(02) remove samples in noise cluster
(03) compute global ratio 𝜃
(04) get all combinations of SNPs
(05) divide samples into N folds
(06) for k = 1 to N
(07) set samples in kth folds as test dataset and the other samples as training data
(08) for i = 1 to number of all combinations of SNPs
(09) get all combination of genotypes
(10) for j = 1 to number of all combination of genotypes
(11) compute local ratio 𝜃𝑗
(12) classify each genotype combination as𝐷1 if 𝜃𝑗 ≥ 𝜃, otherwise𝐷2
(13) end j
(14) compute Hotelling’s 𝑇2 statistics for training and test data
(15) end i
(16) select the best SNP combination at 𝑖𝑡ℎ fold by comparing Hotelling’s 𝑇2 statistics for training data
(17) end k
(18) compute CVC and select SNP combination with highest CVC as the best SNP combination
(19) compute p-value by permutation test for the best SNP combination

Pseudocode 1: Pseudocode of multi-CMDR.

Step 0. Preprocessing.

(i) Suppose there are 𝑛 samples, with 𝑝 SNP data
points and 𝑞 continuous phenotypes. Let 𝑌𝑖 =(𝑦𝑖1, 𝑦𝑖2, ⋅ ⋅ ⋅ , 𝑦𝑖𝑞)𝑇 be the phenotype vector and let

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋅ ⋅ ⋅ , 𝑥𝑖𝑝)𝑇 be the genotype vector for the𝑖-th subject, respectively, (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛).
(ii) Standardize all the phenotypes to have amean of zero

and no unit variance.
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Step 1. Perform fuzzy k-means clustering.

(i) Perform fuzzy k−means clustering with 𝑘 = 2 using
phenotype information. Here, we make an additional
pseudocluster (i.e., “noise cluster”) during the process
of clustering [28]. Samples are then allocated into
one of three clusters: two good cluster groups and
one noise cluster. In this study, we set the noise
cluster threshold value to equal the average squared
Euclidean distance between samples. Two good clus-
ters and one noise cluster are obtained byminimizing
the following 𝐽𝑁𝑜𝑖𝑠𝑒:

𝐽𝑁𝑜𝑖𝑠𝑒 = 𝑛∑
𝑖=1

2∑
𝑘=1

𝑀𝑖𝑘𝑚 (𝑥𝑖 − 𝑐𝑘)2 + 𝑛∑
𝑖=1

𝛿2(1 − 2∑
𝑘=1

𝑀𝑖𝑘)
𝑚

(1)

such that𝑀𝑖𝑘 ∈ [0, 1], ∑3𝑘=1𝑀𝑖𝑘 = 1.𝑀𝑖𝑘 is the mem-
bership degree of the 𝑖𝑡ℎ subject in group 𝐶𝑘, 𝑐𝑘 is the
center of the cluster𝐶𝑘,𝑀𝑖3 is themembership degree
of the noise cluster, 𝑚(>1) is the fuzzifier parameter
which defines the group’s fuzziness (usually 𝑚 = 2),
and 𝛿 is a squared distance of each data point to the
noise cluster.

Step 2. Trim the data and calculate the global ratio.

(i) Data are trimmed by removing all the samples in the
noise cluster. The remaining samples have member-
ship degrees for each of the two groups. Denote these
two groups as 𝐶1 and 𝐶2. The membership degree of
the 𝑖𝑡ℎ subject in group 𝐶𝑘 (𝑘 = 1, 2) is given by

𝑀𝑖𝑘 = 1
∑2𝑗=1 [(𝑥𝑖 − 𝑐𝑘)2 / (𝑥𝑗 − 𝑐𝑗)2]1/(𝑚−1) (2)

(ii) Calculate global ratio 𝜃:
𝜃 = ∑𝑛𝑖=1𝑀𝑖1∑𝑛𝑖=1𝑀𝑖2 , (3)

where𝑀𝑖𝑘 is the membership degree of the 𝑖𝑡ℎ subject
in cluster 𝐶𝑘.

Step 3. Divide the samples by N-folds.

(i) For N-folds, split the cross-validation (CV) samples
randomly into N subgroups of equal size. Let N-
1 sets of samples be the training dataset and let
the remaining dataset be the test dataset used for
evaluating the model.

Step 4. Calculate the local ratio.

(i) To find the 𝑚𝑡ℎ-order gene-gene interactions, select
a set of m SNPs from a pool of SNPs. Calculate
the local ratio 𝜃𝑗 for the 𝑗𝑡ℎ genotype combination

in the training set. 𝜃𝑗 is the ratio of the sum of
membership degrees of the samples belonging to 𝐶1
to that belonging to 𝐶2:

𝜃𝑗 = ∑𝑛𝑗𝑖=1𝑀𝑖𝑗1
∑𝑛𝑗𝑖=1𝑀𝑖𝑗2 , (𝑗 = 1, ⋅ ⋅ ⋅ , 3𝑚) (4)

where𝑀𝑖𝑗𝑘 is themembership degree of the 𝑖𝑡ℎ subject
with the 𝑗𝑡ℎ genotype combination, in cluster 𝐶𝑘.

(ii) Label each genotype combination either “𝐷1,” if 𝜃𝑗 ≥𝜃, or “𝐷2,” if 𝜃𝑗 < 𝜃.
Step 5. Calculate the test statistic.

(i) CalculateHotelling’s𝑇2 statistic, for both training and
testing datasets, to test differences of the mean vectors
between the 𝐷1 and 𝐷2 groups:

𝑇2 = (𝑥1 − 𝑥2)𝑇 [( 1𝑛1 +
1𝑛2) 𝑆𝑝𝑜𝑜𝑙𝑒𝑑]−1 (𝑥1 − 𝑥2) (5)

where 𝑛1 is the number of observations in group𝐷1 and 𝑛2 is
the number of observations in group𝐷2; 𝑥1𝑖 is 𝑖th observation
of 𝐷1; 𝑥2𝑗 is 𝑗th observation of 𝐷2.

𝑥1 = 1𝑛1
𝑛1∑
𝑖=1

𝑥1𝑖,

𝑥2 = 1𝑛2
𝑛2∑
𝑗=1

𝑥2𝑗,

𝑆1 = 1𝑛1 − 1
𝑛1∑
𝑖=1

(𝑥1𝑖 − 𝑥1) (𝑥1𝑖 − 𝑥1)𝑇 ,

𝑆2 = 1𝑛2 − 1
𝑛2∑
𝑗=1

(𝑥2𝑗 − 𝑥2) (𝑥2𝑗 − 𝑥2)𝑇 ,

𝑆𝑝𝑜𝑜𝑙𝑒𝑑 = 𝑛1 − 1𝑛1 + 𝑛2 − 2𝑆1 + 𝑛2 − 1𝑛1 + 𝑛2 − 2𝑆2

(6)

(ii) Themodelwith the largest statistic in the training data
is chosen as the best model. Statistics for the test data
will be performed later.

Step 6. Find the final best model and obtain the empirical p-
value.

(i) Repeat Steps 4 and 5 N times, for each fold, and count
the number of specific SNP combinations for the
best model. We call this cross-validation consistency
(CVC).

(ii) Find the best final interaction model, i.e., the one with
the largest CVC.
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(iii) Derive the final statistic for the best model by averag-
ing N 𝑇2 statistics for the test data and let this statistic
be 𝑇2𝑡𝑒𝑠𝑡.

(iv) To evaluate the statistical significance of the best
model, perform a permutation test and obtain the
empirical p-value. Generate 𝐵 permuted datasets
by shuffling only the phenotype vector 𝑌𝑖 across
individuals while fixing the genotype vector 𝑋𝑖. This
way of shuffling nullifies the association between the
phenotype and genotype vectors, while preserving
the correlation structures within their components.
Perform the multi-CMDR and calculate 𝑇2 statistics
for each permuted dataset. 𝐵 test statistics are in𝑇2𝑛𝑢𝑙𝑙. The empirical p-value is calculated as

𝑝 − V𝑎𝑙𝑢𝑒 = 1𝐵
𝐵∑
𝑖=1

𝐼 (𝑇2𝑛𝑢𝑙𝑙 > 𝑇2𝑡𝑒𝑠𝑡) (7)

where 𝐼(𝑥) is indicator function, returning 1 if 𝑥 is
true, otherwise 0.

3. Results and Discussion

3.1. Simulation Analysis. In this section, we conducted simu-
lations to compare the performance of the proposed multi-
CMDR method, with multi-QMDR and univariate QMDR
methods. We also compared the performance of the two
versions of multi-CMDR. One version is a nontrimmed
version of multi-CMDR. That is, the noise cluster is not
generated in the fuzzy clustering step. The other version uses
k-means clustering, without considering membership score.
For multi-QMDR methods, the First Principal Component
(FPC) was used to classify each cell into high- or low-
risk groups, as previously described [5]. For a univariate
approach, QMDR was performed for each phenotype, sep-
arately. All of these methods were compared in terms of their
hit-ratios, representing the ratio at which the true causal SNP
pair is identified by the best model.

We then generated amultivariate normal distribution and
a multivariate gamma distribution for phenotypes. We used
70 different penetrance functions that define a probabilis-
tic relationship with disease-causal interaction. The models
consisted of 7 different heritability values (0.01, 0.025, 0.05,
0.1, 0.2, 0.3, and 0.4) and 2 different minor allele frequencies
(MAFs, 0.2 and 0.4). A total of 5 models for each of the 14
heritability-minor allele frequency combinations were con-
sidered.Thus, a total of 70models were generated.The details
of the 70 penetrance functions are given in [29]. For every
70 models, 100 datasets were generated. For each dataset,
the sample size was 400, and we considered 20 SNPs and
2 continuous phenotypes. SNP1 and SNP2 denoted disease-
causal SNP interactions. We used 10-fold cross-validation to
determine best overall model.

3.1.1. Multivariate Normal Distribution. For the multivariate
normal distributed case, two continuous phenotype values,𝑌 = (𝑌1, 𝑌2)𝑇, were associated with SNP1 and SNP2,

respectively, and were generated from the bivariate normal
distribution,

𝑌 | (𝑆𝑁𝑃1 = 𝑖, 𝑆𝑁𝑃2 = 𝑗) ∼ 𝑀𝑁(𝜇𝑖𝑗, Σ) , (8)

where 𝜇𝑖𝑗 = ( 𝑓𝑖𝑗𝑓𝑖𝑗 ) and Σ = ( 1 𝜌𝜌 1 ), and 𝑓𝑖𝑗 is the element
from the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of a penetrance function,
representing the two functional interacting SNPs. From this,
we considered 3 different 𝜌 s : 𝜌 = 0, 0.25, 0.5. We used R
software to generate simulation data. Formultivariate normal
distributed cases, we used mvrnorm() function in MASS
package in R.

The hit-ratios for each heritability values are reported in
Figure 2. In the bivariate normal distribution case, all the
multivariate methods were generally more powerful than the
univariate QMDR methods. As the correlation increased,
however, the difference between multivariate and univariate
methods decreased. All multivariate methods showed similar
performance. In the case of zero correlation, multi-QMDR
showed slightly better performance than multi-CMDR. The
hit-ratios of multi-CMDR, with trimming, were similar to
those of multi-CMDR without trimming. That is, there
was no effect of trimming outliers in multi-CMDR for the
bivariate normal distribution case. The lower the correlation,
the higher the hit-ratio, when the values of heritability were
0.05, 0.1, and 0.2. This is because the lower the correlation,
the more unique information for each variable. In a similar
context, when the correlation was high, the hit-ratios of the
multivariate and univariate methods were similar.

3.1.2. Multivariate Gamma Distribution. For the skewed dis-
tribution, we generated bivariate gamma distribution using
Gaussian copula [30]. In the Gaussian copula, the correlation
matrix is responsible for the dependence. We used the
same correlation structure, for the bivariate normal case.
When themarginal distributions were continuous, a bivariate
distribution could be defined by the density of the following
form:

𝑔 (𝑦1, 𝑦2; Σ) = 𝑐 (𝑢, Σ) 𝑓1 (𝑦1) 𝑓2 (𝑦2) , (9)

where 𝑐(𝑢, Σ) represents the copula density, Σ = ( 1 𝜌𝜌 1 ), 𝑓1,𝑓2
are marginal probability density functions, and 𝑔 is joint
density function.TheGaussian copula density is then defined
as follows:

𝑐 (𝑢, 𝑅) = |Σ|1/2 exp[−𝑢̃𝑇 (Σ−1 − 𝐼) 𝑢̃
2 ] (10)

where 𝑢̃ = (Φ−1(𝑢1), Φ−1(𝑢2))𝑇, 𝑢𝑖 = 𝐹𝑖(𝑦𝑖), 𝑖 = 1, 2,
and Φ−1 is the inverse cumulative distribution function
of the standard normal distribution; 𝐹1, 𝐹2 are marginal
cumulative distribution functions. The forms of two gamma
distributions, 𝑓1(𝑦1) and 𝑓2(𝑦2), are as follows:

𝑌1 | (𝑆𝑁𝑃1 = 𝑖, 𝑆𝑁𝑃2 = 𝑗) ∼ 𝐺𝑎𝑚𝑚𝑎(𝑓𝑖𝑗2, 1𝑓𝑖𝑗) ,

𝑌2 | (𝑆𝑁𝑃1 = 𝑖, 𝑆𝑁𝑃2 = 𝑗) ∼ 𝐺𝑎𝑚𝑚𝑎(𝑓𝑖𝑗2, 1𝑓𝑖𝑗)
(11)
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Figure 2:Hit-ratios for amultivariate normal distribution andmultivariate gammadistribution.MCMDR (multi-CMDR),MCMDR2 (multi-
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Figure 3: (Left) Scatter plots, histograms, and correlations between phenotypes. (Right) Box plots of phenotypes.

From this, we considered 3 different 𝜌 s : 𝜌 = 0, 0.25,
0.5. For multivariate gamma distributed cases, we used
mvdc(),normalCopula(),rMvdc() functions in copula
package in R.

In Figure 2, we observed that the proposed multi-CMDR
outperformed the QMDR and the multi-QMDR, for all
ranges of heritability, for the bivariate gamma distribution
case. Also, multi-CMDR, without trimming, performed bet-
ter than multi-QMDR. For the bivariate gamma distribution,
the lower the correlation, the higher the overall hit ratio.
The difference of hit-ratios between multi-CMDR and other
methods was greatest when the heritability was 0.1. As the
correlation increases, the differences between hit ratios of the
multivariate methods, except multi-CMDR, decrease.

To sumup, the power of proposedmulti-CMDR is similar
to that of multi-QMDR, for symmetric distribution while
it outperformed multi-QMDR for the skewed distribution.
Moreover, the powers of the two different versions of multi-
CMDR were also slightly better than those of multi-QMDR,
in skewed phenotype distributions. For all situations, multi-
variate methods performed better than univariate methods.
Results for each combination of two minor allele frequency
(MAF) values and 5models are presented in the supplemental
materials (Supplemental Figures 1-6).

3.1.3. Empirical False Positive Rate. We computed empirical
false positive rate. To compute empirical false positive rate,
we permuted phenotypes over individuals for each case to
generate null data. The selection rate of each SNP pair in null
data is 1/ ( 202 )= 0.0053. To compute empirical false positive
rate, we counted the number of detecting a specific SNP
combination, SNP1 and SNP2, as the best model. Overall,
empirical false positive rates of each method are closed to
the expected value 0.0053. Results for empirical false positive
rates of each method are presented in the supplemental
materials (Supplemental Tables 1-6).

3.2. Real Biological Data Analysis. For real-life data anal-
ysis, three lipid-related phenotypes’ data, retrieved from
the Korean Association Resource (KARE) project [31], were
considered to evaluate the proposed multi-CMDR. Three
lipid-related phenotypes consisted of high-density lipopro-
tein cholesterol (HDL), low-density lipoprotein cholesterol
(LDL), and triglyceride (TG). After removing those obser-
vations with at least one missing phenotype value, there
were 8,581 samples remaining. The largest absolute value of
correlation between three phenotypes was 0.39 (Figure 3).
Among 344,596 SNPs, we used 324 SNPs selected in [5] for
this analysis.

We then applied the proposed multi-CMDR to search for
the best second interaction model, again by using 10-fold CV.
Table 1 displays the best 1𝑠𝑡 and 2𝑛𝑑-order SNP combinations,
identified by the proposed multi-CMDR. In addition to the
best model, which has the highest CVC, Table 1 shows other
candidate models selected from the best models, in every
10 training datasets. To see if these SNP combinations have
been previously detected, one previous study [5] reported the
best SNP combinations found in this study, including those
described in Table 1.

For 1𝑠𝑡-order analysis, rs1106280 was selected as the best
model with the highest CVC. rs11066280 was identified as
significantly associated with metabolism, TGs, and HDLs
[5, 15] and was selected as the best lipid-related phenotypes
in a 2𝑛𝑑-order analysis from univariate analysis of HDL using
QMDR [5]. The second best model, rs10503669, has been
reported to associate with LPL [16]. The third best model,
rs2074356, associated with HDL [1]. All p-values selected by
the multi-CMDR method were < 10−3.

For 2𝑛𝑑-order analysis, the proposed multi-CMDR iden-
tified the best two SNP combinations, rs11216126 and
rs4244457, where rs11216126 is reported to be related to
HDL [17]. rs4244457 (LPL) occurs in the gene for the key
enzyme responsible for the lipolytic processing of TG-rich
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Table 1: Best models from 1𝑠𝑡- and 2𝑛𝑑-order interaction analysis. 𝑇2 statistics were calculated from the test set.

Order rs ID Chr. CVC Hotelling’s 𝑇2 p-value Ref.

1st
rs11066280 12 4 2.86 <0.001 [5, 15]
rs10503669 8 4 2.79 <0.001 [16]
rs2074356 12 2 2.82 <0.001 [1]

2nd

rs11216126, rs4244457 11, 8 4 3.86 <0.001 [5, 17]
rs11600380, rs10503669 11, 8 3 3.54 <0.001 [16, 18]
rs11216126, rs10503669 11, 8 1 3.29 <0.001 [17, 18]
rs16940212, rs10503669 15, 8 1 3.57 <0.001 [18, 19]
rs16940212, rs4244457 15, 8 1 2.78 <0.001 [5, 19]

lipoproteins [5]. Note that rs4244457 was selected as the
most lipid-related SNP in a 1𝑠𝑡- and 2𝑛𝑑-order analysis,
using a multi-QMDR method for testing association with
LDL [5]. Moreover, rs11600380, rs10503669, and rs16940212
were previously reported to relate to TG, LDL, and HDL,
respectively [16, 18, 19]. Each of those three SNPs was also
reported in previous studies, but as far as we know, there were
no simultaneously reported 2𝑛𝑑-order interactions.
4. Discussion

For GGI analysis for multiple quantitative traits, we proposed
multi-CMDR. Analyzing correlated multivariate phenotypes
was shown to have higher power to detect susceptible genes
and GGIs, by using more information from data [32]. The
main feature differences between multi-QMDR and multi-
CMDR lies in how to define groups for each combination cell.
Multi-QMDR uses summary scores obtained by principal
component analysis to classify high-risk and low-risk groups.
The observations of each cell are assigned to the high-risk
group if the local mean is greater than or equal to the global
mean; otherwise the observations are assigned to the low-
risk group. On the other hand, multi-CMDR divides groups
using clustering. By comparing the global and local ratios,
as calculated by using the membership degrees obtained
through fuzzy k-means clustering, the observations of each
cell are assigned to𝐷1 , if the local ratio is greater than or equal
to the global ratio; otherwise the observations are assigned to𝐷2.

This proposed multi-CMDR was shown to be less sensi-
tive for outliers and nonsymmetric distributions than other
methods. 10-fold cross-validation and Hotelling’s 𝑇2 statistic
were used to select the best model. In the simulation study,
we showed that the proposed multi-CMDR could be used
effectively in case of bivariate gamma distribution. While
the proposed method did not seem to have advantage of
computing time over the multi-QMDRmethod, it was higher
for the skewed distribution. In real-life data analysis, multi-
CMDR detected the best SNPs and 2-way interactions for
lipid-related traits (HDL, TG, and LDL). The best SNPs,
selected by our method, have been reported to associate
with similar traits [1, 5, 15–19]. While our proposed method
performs well for nonsymmetric distributions, it would be
always worth to try appropriate transformations to make
nonsymmetric distributions symmetric.

In terms of computation time efficiency, multi-QMDR
was slightly faster than multi-CMDR. Using an AMD Ryzen
2700x desktop machine with 16G RAM, multi-QMDR took
145.8841 seconds on average (100 repetitions) to conduct real
data analysis for the first-order interaction, whereas multi-
CMDR took 162.7906 seconds on average. For simulation
dataset with 400 sample size and 20 SNPs, multi-QMDR
took 17.3334 seconds on average to conduct the 2nd-order
interaction, while multi-CMDR took 19.3947 seconds on
average. That is, when the number of SNPs is small, the
difference in computation time is small. R program to
conduct multi-CMDR is available at our github repository
(https://github.com/stat17-hb/Multi-CMDR).

5. Conclusion

For the analysis of GGIs associated with multiple quantitative
traits, we proposed a new extension of the MDR algorithm
that includes clustering. Using fuzzy k-means clustering, we
divided samples into two groups and trimmed outliers in
noise cluster. By fuzzy k-means clustering, we can capture
numerous attributes of multivariate data. Therefore, this
is a very productive way to use values calculated from
clusters to set thresholds to assign observations to specific
groups, in that the proposed multi-CMDR uses a fuzzy k-
means clustering method. Unlike k-means clustering, where
each observation is assigned to only one cluster, fuzzy k-
means clustering provides each observation with a degree
of membership to each cluster. Fuzzy k-means clustering
is especially useful when the cluster boundary is not clear,
and it also allows outliers to be clustered into a noise
cluster and reflects individual membership degrees of ele-
ments in the same cluster. We expect that multi-CMDR
would improve the identification of gene-gene interactions
associated with numerous multifactorial human patholo-
gies.

Data Availability

The Korea Association Resource (KARE) project data will
be publicly distributed by the Distribution Desk of Korea
Biobank Network (https://koreabiobank.re.kr/). The data
request should be made directly to Distribution Desk of
Korea Biobank Network. Any inquiries should be sent to
admin@koreabiobank.re.kr.

https://github.com/stat17-hb/Multi-CMDR
https://koreabiobank.re.kr/
mailto:admin@koreabiobank.re.kr


BioMed Research International 9

Disclosure

This paper has been presented at 2018 annual meeting
of the Western North American Region of the Inter-
national Biometric Society (WNAR), Edmonton, Canada.
Our earlier work on univariate CL-MDR was presented at
2017 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Kansas City, USA.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This research was supported by Basic Science Research
Program through theNational Research Foundation of Korea
(NRF) funded by theMinistry of Science, ICT& Future Plan-
ning (NRF-2017R1A2B4011504, 2013M3A9C4078158). This
researchwas also supported by the Bio&Medical Technology
Development Program of the NRF funded by the Korean
government, MSIP (No. 2016M3A9B694241).

Supplementary Materials

There were 10 combinations of minor allele frequencies
(MAFs) and 5 models for each simulation setup. The MAF
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